Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2): 237-253.doi: 10.1007/s40242-025-4249-z
• Reviews • Previous Articles Next Articles
HU Miao1,2, Jumanah ALHARBI1,2, ZHANG Huabin1,2, Hassan S. Al QAHTANI3, FENG Chengyang1,2
Received:
2024-12-23
Accepted:
2025-03-06
Online:
2025-04-01
Published:
2025-03-31
Contact:
Hassan S. Al QAHTANI,hassan.alqahtani.2@aramco.com;FENG Chengyang,chengyang.feng@kaust.edu.sa
E-mail:hassan.alqahtani.2@aramco.com;chengyang.feng@kaust.edu.sa
Supported by:
HU Miao, Jumanah ALHARBI, ZHANG Huabin, Hassan S. Al QAHTANI, FENG Chengyang. Advanced In situ Characterization Techniques for Photocatalysis[J]. Chemical Research in Chinese Universities, 2025, 41(2): 237-253.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Fujishima A., Honda K., Nature, 1972, 238, 37. [2] Meng A., Zhang J., Xu D., Cheng B., Yu J., Appl. Catal. B: Environ., 2016, 198, 286. [3] Zong X., Yan H., Wu G., Ma G., Wen F., Wang L., Li C., J. Am. Chem. Soc., 2008, 130, 7176. [4] Martin D. J., Qiu K., Shevlin S. A., Handoko A. D., Chen X., Guo Z., Tang J., Angew. Chem. Int. Ed., 2014, 53, 9240. [5] Wang Y., Suzuki H., Xie J., Tomita O., Martin D. J., Higashi M., Kong D., Abe R., Tang J., Chem. Rev., 2018, 118, 5201. [6] Liu X., Ye M., Zhang S., Huang G., Li C., Yu J., Wong P. K., Liu S., J. Mater. Chem. A, 2018, 6, 24245. [7] Sorcar S., Thompson J., Hwang Y., Park Y. H., Majima T., Grimes C. A., Durrant J. R., In S.-I., Energy Environ. Sci., 2018, 11, 3183. [8] Shi X., Huang Y., Bo Y., Duan D., Wang Z., Cao J., Zhu G., Ho W., Wang L., Huang T., Angew. Chem. Int. Ed., 2022, 134, e202203063. [9] Ghuman K. K., Wood T. E., Hoch L. B., Mims C. A., Ozin G. A., Singh C. V., Phys. Chem. Chem. Phys., 2015, 17, 14623. [10] Jiang Z., Sun H., Wang T., Wang B., Wei W., Li H., Yuan S., An T., Zhao H., Yu J., Energy Environ. Sci., 2018, 11, 2382. [11] He B., Wang Z., Xiao P., Chen T., Yu J., Zhang L., Adv. Mater., 2022, 34, 2203225. [12] Siahrostami S., Li G.-L., Viswanathan V., Nørskov J. K., J. Phy. Chem. Lett., 2017, 8 1157. [13] Raziq F., Feng C., Hu M., Zuo S., Rahman M. Z., Yan Y., Li Q.-H., Gascon J., Zhang H., J. Am. Chem. Soc., 2024, 146, 21008. [14] Zhou Z., Zeng H., Li L., Tang R., Feng C., Gong D., Huang Y., Deng Y., Water Res., 2024, 255, 121521. [15] Feng C., Bo T., Maity P., Zuo S., Zhou W., Huang K. W., Mohammed O. F., Zhang H., Adv. Funct. Mater., 2024, 34, 2309761. [16] Feng C., Wu Z. P., Huang K. W., Ye J., Zhang H., Adv. Mater., 2022, 34, 2200180. [17] Tao X., Zhao Y., Wang S., Li C., Li R., Chem. Soc. Rev., 2022, 51, 3561. [18] Li X., Wang W., Dong F., Zhang Z., Han L., Luo X., Huang J., Feng Z., Chen Z., Jia G., ACS Catal., 2021, 11, 4739. [19] Zhu M., Sun Z., Fujitsuka M., Majima T., Angew. Chem. Int. Ed., 2018, 57, 2160. [20] Maeda K., ACS Catal., 2013, 3, 1486. [21] Huang M., Kong Z., Ai Z., Shi D., Yang M., Yao X., Shao Y., Wu Y., Hao X., Small, 2024, 20, 2304784. [22] O'Brien P. G., Sandhel A., Wood T. E., Ali F. M., Hoch L. B., Perovic D. D., Mims C. A., Ozin G. A., Adv. Sci., 2014, 1, 1400001. [23] Zhang F., Li Y.-H., Qi M.-Y., Yamada Y. M., Anpo M., Tang Z.-R., Xu Y.-J., Chem. Catal., 2021, 1, 272. [24] Wang Z., Zhu J., Zu X., Wu Y., Shang S., Ling P., Qiao P., Liu C., Hu J., Pan Y., Angew. Chem. Int. Ed., 2022, 61, e202203249. [25] Feng C., Tang L., Deng Y., Wang J., Luo J., Liu Y., Ouyang X., Yang H., Yu J., Wang J., Adv. Funct. Mater., 2020, 30, 2001922. [26] Jung E., Shin H., Lee B.-H., Efremov V., Lee S., Lee H. S., Kim J., Hooch Antink W., Park S., Lee K.-S., Nat. Mater., 2020, 19, 436. [27] Zhou Z., Zeng H., Feng C., Li L., Tang R., Li W., Huang Y., Deng Y., Energy Environ. Sci., 2024, 17, 5627. [28] Zhang M., Tang L., Zhu Y., Zhang Y., Liu J., Wang J., Feng C., Qiao L., Chen Y., J. Clean. Prod., 2023, 419, 138199. [29] Tang R., Zeng H., Feng C., Xiong S., Li L., Zhou Z., Gong D., Tang L., Deng Y., Small, 2023, 19, 2207636. [30] Ouyang X., Feng C., Zhu X., Liao Y., Fan X., Zhou Z., Zhang Z., Tang L., Environ. Sci.: Nano, 2023, 10, 229. [31] Ouyang X., Feng C., Tang L., Zhu X., Peng B., Fan X., Liao Y., Zhou Z., Zhang Z., Biosens. Bioelectron., 2022, 197, 113734. [32] Mu C., Lv C., Meng X., Sun J., Tong Z., Huang K., Adv. Mater. Inter., 2023, 10, 2201842. [33] Zuo S., Wu Z. P., Zhang H., Lou X. W., Adv. Energy Mater., 2022, 12, 2103383. [34] Zhang L., Ran J., Qiao S.-Z., Jaroniec M., Chem. Soc. Rev., 2019, 48, 5184. [35] Bentrup U., Chem. Soc. Rev., 2010, 39, 4718. [36] Li X., Wang H. Y., Yang H., Cai W., Liu S., Liu B., Small Methods, 2018, 2, 1700395. [37] Zhang C., Firestein K. L., Fernando J. F., Siriwardena D., von Treifeldt J. E., Golberg D., Adv. Mater., 2020, 32, 1904094. [38] Ouyang X., Feng C., Zhu X., Liao Y., Zhou Z., Fan X., Zhang Z., Chen L., Tang L., Biosens. Bioelectron., 2023, 220, 114817. [39] Ouyang X., Tang L., Feng C., Peng B., Liu Y., Ren X., Zhu X., Tan J., Hu X., Biosens. Bioelectron., 2020, 164, 112328. [40] Seegerer A., Nitschke P., Gschwind R. M., Angew. Chem. Int. Ed., 2018, 130, 7615. [41] Zhang D., Wang R., Wang X., Gogotsi Y., Nat. Energy, 2023, 8, 567. [42] Wang X., Rosspeintner A., Ziarati A., Zhao J., Bürgi T., Nat. Commun., 2022, 13, 5458. [43] Li X., Wang S., Li L., Sun Y., Xie Y., J. Am. Chem. Soc., 2020, 142, 9567. [44] Yu D., Wei Z., Zhang X., Zeng Y., Wang C., Chen G., Shen Z. X., Du F., Adv. Funct. Mater., 2021, 31, 2008743. [45] Cao X., Tan D., Wulan B., Hui K., Hui K., Zhang J., Small Methods, 2021, 5, 2100700. [46] Wang Y.-H., Zheng S., Yang W.-M., Zhou R.-Y., He Q.-F., Radjenovic P., Dong J.-C., Li S., Zheng J., Yang Z.-L., Nature, 2021, 600, 81. [47] Glass D., Quesada-Cabrera R., Bardey S., Promdet P., Sapienza R., Keller V., Maier S. A., Caps V., Parkin I. P., Cortés E., ACS Energy Lett., 2021, 6, 4273. [48] Li K., Ge Q., Liu Y., Wang L., Gong K., Liu J., Xie L., Wang W., Ruan X., Zhang L., Energy Environ. Sci., 2023, 16, 1135. [49] Cai Z.-F., Merino J. P., Fang W., Kumar N., Richardson J. O., De Feyter S., Zenobi R., J. Am. Chem. Soc., 2021, 144, 538. [50] Liu X., Luo Y., Ling C., Shi Y., Zhan G., Li H., Gu H., Wei K., Guo F., Ai Z., Appl. Catal. B: Environ., 2022, 301, 120766. [51] Li X., Sun Y., Xu J., Shao Y., Wu J., Xu X., Pan Y., Ju H., Zhu J., Xie Y., Nat. Energy, 2019, 4, 690. [52] Feng C., Zuo S., Hu M., Ren Y., Xia L., Luo J., Zou C., Wang S., Zhu Y., Rueping M., Nat. Commun., 2024, 15, 9088. [53] Feng C., Raziq F., Hu M., Huang H., Wu Z. P., Zuo S., Luo J., Ren Y., Chang B., Cha D., Ayirala S., Al-Yousef A., Dao T. D., Zhang H., Adv. Energy Mater., 2024, 14, 2303792. [54] Kofuji Y., Ohkita S., Shiraishi Y., Sakamoto H., Tanaka S., Ichikawa S., Hirai T., ACS Catal., 2016, 6, 7021. [55] Teng Z., Zhang Q., Yang H., Kato K., Yang W., Lu Y.-R., Liu S., Wang C., Yamakata A., Su C., Nat. Catal., 2021, 4, 374. [56] Cheng W., Zhao M., Lai Y., Wang X., Liu H., Xiao P., Mo G., Liu B., Liu Y., Recent Advances in Battery Characterization Using In situ XAFS, SAXS, XRD, and Their Combining Techniques: From Single Scale to Multiscale Structure Detection, Exploration, Wiley Online Library, 2024, 20230056. [57] Lee J.-W., Park W. B., Lee J. H., Singh S. P., Sohn K.-S., Nat. Commun., 2020, 11, 86. [58] Guan C., Yang Y., Pang Y., Liu Z., Li S., Vovk E. I., Zhou X., Li J. P. H., Zhang J., Yu N., J. Catal., 2021, 396, 202. [59] Zhang F., Liu Z., Chen X., Rui N., Betancourt L. E., Lin L., Xu W., Sun C.-J., Abeykoon A. M., Rodriguez J. A., ACS Catal., 2020, 10, 3274. [60] Zhang F., Li Y., Ding B., Shao G., Li N., Zhang P., Small, 2023, 19, 2303867. [61] Wang L., Cheng B., Zhang L., Yu J., Small, 2021, 17, 2103447. [62] Li Y., Wang L., Zhang F., Zhang W., Shao G., Zhang P., Adv. Sci., 2023, 10, 2205020. [63] Zhang J., Zhang L., Wang W., Yu J., J. Phy. Chem. Lett., 2022, 13, 8462. [64] Han Y., Zhang H., Yu Y., Liu Z., ACS Catal., 2021, 11, 1464. [65] Fang L., Seifert S., Winans R. E., Li T., Small, 2022, 18, 2106017. [66] Zhang Q., Li Z., Wang S., Li R., Zhang X., Liang Z., Han H., Liao S., Li C., ACS Catal., 2016, 6, 2182. [67] Park S. H., Kim S., Park J. W., Kim S., Cha W., Lee J., Nat. Commun., 2024, 15, 5416. [68] Zhang P., Li Y., Zhang Y., Hou R., Zhang X., Xue C., Wang S., Zhu B., Li N., Shao G., Small Methods, 2020, 4, 2000214. [69] He C., Wu S., Li Q., Li M., Li J., Wang L., Zhang J., Chem, 2023, 9, 3224. [70] Feng C., Hu M., Zuo S., Luo J., Castaño P., Ren Y., Rueping M., Zhang H., Adv. Mater., 2025, 37, 2411813. [71] Zhou J., Li J., Kan L., Zhang L., Huang Q., Yan Y., Chen Y., Liu J., Li S.-L., Lan Y.-Q., Nat. Commun., 2022, 13, 4681. [72] Ding J., Teng Z., Su X., Kato K., Liu Y., Xiao T., Liu W., Liu L., Zhang Q., Ren X., Chem, 2023, 9, 1017. [73] Piccolo L., Afanasiev P., Morfin F., Len T., Dessal C., Rousset J. L., Aouine M., Bourgain F., Aguilar-Tapia A., Proux O., ACS Catal., 2020, 10, 12696. [74] Zhang H., Zuo S., Qiu M., Wang S., Zhang Y., Zhang J., Lou X. W., Sci. Adv., 2020, 6, eabb9823. [75] Zhang X., Su H., Cui P., Cao Y., Teng Z., Zhang Q., Wang Y., Feng Y., Feng R., Hou J., Nat. Commun., 2023, 14, 7115. [76] Bonke S. A., Risse T., Schnegg A., Brückner A., Nat. Rev. Methods Primers, 2021, 1, 33. [77] Liu H., Zhang F., Wang H., Xue J., Guo Y., Qian Q., Zhang G., Energy Environ. Sci., 2021, 14, 5339. [78] Zhang S., Zhao Y., Miao Y., Xu Y., Ran J., Wang Z., Weng Y., Zhang T., Angew. Chem. Int. Ed., 2022, 61, e202211469. [79] Xiao J., Xie Y., Rabeah J., Brückner A., Cao H., Acc. Chem. Res., 2020, 53, 1024. [80] Madani A., Pieber B., ChemCatChem, 2023, 15, e202201583. [81] Zhao E. W., Jónsson E., Jethwa R. B., Hey D., Lyu D., Brookfield A., Klusener P. A., Collison D., Grey C. P., J. Am. Chem. Soc., 2021, 143, 1885. [82] Xiang Y., Zheng G., Liang Z., Jin Y., Liu X., Chen S., Zhou K., Zhu J., Lin M., He H., Nat. Nanotech., 2020, 15, 883. [83] Mashiach R., Weissman H., Avram L., Houben L., Brontvein O., Lavie A., Arunachalam V., Leskes M., Rybtchinski B., Bar-Shir A., Nat. Commun., 2021, 12, 229. [84] Tang L., Feng C., Deng Y., Zeng G., Wang J., Liu Y., Feng H., Wang J., Appl. Catal. B: Environ., 2018, 230, 102. [85] Feng C., Tang L., Deng Y., Wang J., Liu Y., Ouyang X., Yang H., Yu J., Wang J., Appl. Catal. B: Environ., 2021, 281, 119539. [86] Feng C., Luo J., Chen C., Zuo S. W., Ren Y., Wu Z.-P., Hu M., Ould-Chikh S., Martínez J. R., Zhang H., Energy Environ. Sci., 2024, 17, 1520. [87] Feng C., Tang L., Deng Y., Zeng G., Wang J., Liu Y., Chen Z., Yu J., Wang J., Appl. Catal. B: Environ., 2019, 256, 117827. [88] Feng C., Deng Y., Tang L., Zeng G., Wang J., Yu J., Liu Y., Peng B., Feng H., Wang J., Appl. Catal. B: Environ., 2018, 239, 525. [89] Jiang Y., Li S., Wang S., Zhang Y., Long C., Xie J., Fan X., Zhao W., Xu P., Fan Y., J. Am. Chem. Soc., 2023, 145, 2698. [90] Feng C., Ouyang X., Deng Y., Wang J., Tang L., J. Hazard. Mater., 2023, 441, 129845. [91] Feng C., Tang L., Deng Y., Wang J., Liu Y., Ouyang X., Chen Z., Yang H., Yu J., Wang J., Appl. Catal. B: Environ., 2020, 276, 119167. [92] Feng C., Tang L., Deng Y., Wang J., Tang W., Liu Y., Chen Z., Yu J., Wang J., Liang Q., Chem. Eng. J., 2020, 389, 124474. [93] Shoji S., Peng X., Yamaguchi A., Watanabe R., Fukuhara C., Cho Y., Yamamoto T., Matsumura S., Yu M.-W., Ishii S., Nat. Catal., 2020, 3, 148. [94] Berg N., Bergwinkl S., Nuernberger P., Horinek D., Gschwind R. M., J. Am. Chem. Soc., 2021, 143, 724. [95] Rothfelder R., Streitferdt V., Lennert U., Cammarata J., Scott D. J., Zeitler K., Gschwind R. M., Wolf R., Angew. Chem. Int. Ed., 2021, 133, 24855. [96] Sun L., Zhang Z., Bian J., Bai F., Su H., Li Z., Xie J., Xu R., Sun J., Bai L., Adv. Mater., 2023, 35, 2300064. [97] Zhao Y., Yang C., Zhang S., Sun G., Zhu B., Wang L., Zhang J., Chin. J. Catal., 2024, 63, 258. [98] Chang K. F., Reduzzi M., Wang H., Poullain S. M., Kobayashi Y., Barreau L., Prendergast D., Neumark D. M., Leone S. R., Nat. Commun., 2020, 11, 4042. [99] Zhu Y., Kuo T.-R., Li Y.-H., Qi M.-Y., Chen G., Wang J., Xu Y.-J., Chen H. M., Energy Environ. Sci., 2021, 14, 1928. [100] Parvatkar P. T., Kandambeth S., Shaikh A. C., Nadinov I., Yin J., Kale V. S., Healing G., Emwas A.-H., Shekhah O., Alshareef H. N., J. Am. Chem. Soc., 2023, 145, 5074. [101] Feng C., Alharbi J., Hu M., Zuo S., Luo J., Qahtani H. S. A., Rueping M., Huang K. W., Zhang H., Adv. Mater., 2025, 2406748. [102] Tamming R. R., Lin C.-Y., Hodgkiss J. M., Yang S.-D., Chen K., Lu C.-H., Sci. Rep., 2021, 11, 12847. [103] Zhang J., Zhu B., Zhang L., Yu J., Chem. Commun., 2023, 59, 688. [104] Cheng C., Zhang J., Zhu B., Liang G., Zhang L., Yu J., Angew. Chem. Int. Ed., 2023, 62, e202218688. [105] Koenderink A. F., Tsukanov R., Enderlein J., Izeddin I., Krachmalnicoff V., Nanophotonics, 2022, 11, 169. [106] Wang X., Liu B., Ma S., Zhang Y., Wang L., Zhu G., Huang W., Wang S., Nat. Commun., 2024, 15, 2600. [107] Ullah W., Slassi A., Wang C., Paineau E., Ha-Thi M. H., Pino T., Halime Z., Gayral A., Vallet M., Degrouard J., Adv. Energy Mater., 2024, 14, 2401547. [108] Jinschek J., Chem. Commun., 2014, 50, 2696. [109] Hansen T. W., Wagner J. B., Dunin-Borkowski R. E., Mater. Sci. Technol., 2010, 26, 1338. [110] Zhang G., Meng Y., Xie B., Ni Z., Lu H., Xia S., Appl. Catal. B: Environ., 2021, 296, 120379. [111] Chen Y., Ji S., Sun W., Lei Y., Wang Q., Li A., Chen W., Zhou G., Zhang Z., Wang Y., Angew. Chem. Int. Ed., 2020, 132, 1311. [112] Weng B., Jiang Y., Liao H.-G., Roeffaers M. B., Lai F., Huang H., Tang Z., Nano Res., 2021, 14, 2805. [113] Vadai M., Angell D. K., Hayee F., Sytwu K., Dionne J. A., Nat. Commun., 2018, 9, 4658. [114] Yu S., Jiang Y., Sun Y., Gao F., Zou W., Liao H., Dong L., Appl. Catal. B: Environ., 2021, 284, 119743. [115] Weng S., Chen B., Xie L., Zheng Z., Liu P., J. Mater. Chem. A, 2013, 1, 3068. [116] Xia B., He B., Zhang J., Li L., Zhang Y., Yu J., Ran J., Qiao S. Z., Adv. Energy Mater., 2022, 12, 2201449. [117] Liu Y., Zhang M., Wang Z., He J., Zhang J., Ye S., Wang X., Li D., Yin H., Zhu Q., Nat. Commun., 2022, 13, 4245. [118] Wu H., Irani R., Zhang K., Jing L., Dai H., Chung H. Y., Abdi F. F., Ng Y. H., ACS Energy Lett., 2021, 6 3400. [119] Ben H., Liu Y., Liu X., Liu X., Ling C., Liang C., Zhang L., Adv. Funct. Mater., 2021, 31 2102315. [120] Mao J., An X., Gu Z., Zhou J., Liu H., Qu J., Environ. Sci. Technol., 2020, 54 10323. [121] Chen R., Ni C., Zhu J., Fan F., Li C., Nat. Protoc., 2024, 19, 2250. [122] Tang Y., Xu Z.-F., Sun Y., Wang C., Guo Y., Hao W., Tan X., Ye J., Yu T., Energy Environ. Sci., 2024, 17, 7882. [123] Li F., Yue X., Liao Y., Qiao L., Lv K., Xiang Q., Nat. Commun., 2023, 14, 3901. |
[1] | YANG Xiaodan, GUO Ziqi, XU Yichen, LI Ziliang, ZHOU Yangtao, YANG Zhenming, ZHOU Zishuai, GAO Yong, ZHANG Jinsong. In situ Preparation and Visible-light-driven Photocatalytic Degradation Performance of Nano 3C-SiC@Multilayer Graphene Oxide Heterostructure [J]. Chemical Research in Chinese Universities, 2024, 40(3): 536-547. |
[2] | WANG Xinyi, ZHAO Zhenwei, ZAHRA Kiran, LI Junjun, ZHANG Zhicheng. Sub-nanomaterials for Photo/Electro-catalytic CO2 Reduction: Achievements, Challenges, and Opportunities [J]. Chemical Research in Chinese Universities, 2023, 39(4): 580-598. |
[3] | Samavia RAFIQ, Zulfiqar Ali RAZA, Muhammad ASLAM, Muhammad Junaid BAKHTIYAR. Graphene Nanosheets Decorated with Copper Oxide Nanoparticles for the Photodegradation of Methylene Blue [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1518-1525. |
[4] | SONG Weiyu, LV Xintong, GAO Yang, WANG Lu. Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation:A DFT Study [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1025-1031. |
[5] | DU Shihao, BIAN Xuanang, ZHAO Yunxuan, SHI Run, and ZHANG Tierui. Progress and Prospect of Photothermal Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(3): 723-734. |
[6] | LIU Shujing, GUO Jia. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2022, 38(2): 373-381. |
[7] | HU Guilin, HE Jingyi, LI Yongjun. Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1195-1212. |
[8] | MA Yuying, HE Dayong, LIU Jiadi, WANG Yuannan, YANG Mei, WANG Hao, QIU Ju, LI Wenyan, LI Yongxin, WANG Ce. Adsorption and Visible Light Photocatalytic Degradation of Electrospun PAN@W18O49 Nanofibers [J]. Chemical Research in Chinese Universities, 2021, 37(3): 428-435. |
[9] | JIAN Shaoju, TIAN Zhiwei, ZHANG Kaiyin, DUAN Gaigai, YANG Weisen, JIANG Shaohua. Hydrothermal Synthesis of Ce-doped ZnO Heterojunction Supported on Carbon Nanofibers with High Visible Light Photocatalytic Activity [J]. Chemical Research in Chinese Universities, 2021, 37(3): 565-570. |
[10] | ZHAO Weifeng, HAO Ning, ZHANG Gai, MA Aijie, CHEN Weixing, ZHOU Hongwei, YANG Dong, XU Ben Bin, KONG Jie. In situ Carbon Modification of g-C3N4 from Urea co-Crystal with Enhanced Photocatalytic Activity Towards Degradation of Organic Dyes Under Visible Light [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1265-1271. |
[11] | GU Xianmo, MA Pengwei, LIU Pei, WANG Ruiyi, LI Xincheng, ZHENG Zhanfeng. Visible-light-driven Hydroamination of Alkynes over a New Type of Activated Carbon Immobilized Cu2+ Photocatalyst [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1039-1044. |
[12] | CHEN Ting, ZHONG Lei, YANG Zhen, MOU Zhigang, LIU Lei, WANG Yan, SUN Jianhua, LEI Weiwei. Enhanced Visible-light Photocatalytic Activity of g-C3N4/Nitrogen-doped Graphene Quantum Dots/TiO2 Ternary Heterojunctions for Ciprofloxacin Degradation with Narrow Band Gap and High Charge Carrier Mobility [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1083-1090. |
[13] | JIANG Wenshuai, ZONG Xupeng, WANG Xiayan, SUN Zaicheng. Transparent Coating with TiO2 Nanorods for High-performance Photocatalytic Self-cleaning and Environmental Remediation [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1097-1101. |
[14] | CEN Qing, XIAO Wei, LIU Yingqi, WANG Qi, NAFADY Ayman, MA Shengqian. Fabrication of Fe-POMs as Visible-light-active Heterogeneous Photocatalyst [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1128-1135. |
[15] | WANG Changhua, ZHANG Xintong. Anatase/Bronze TiO2 Heterojunction: Enhanced Photocatalysis and Prospect in Photothermal Catalysis [J]. Chemical Research in Chinese Universities, 2020, 36(6): 992-999. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||