Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2): 373-381.doi: 10.1007/s40242-022-2007-z
• Reviews • Previous Articles Next Articles
LIU Shujing1, GUO Jia1,2
Received:2022-01-03
Revised:2022-02-08
Online:2022-04-01
Published:2022-02-17
Contact:
GUO Jia
E-mail:guojia@fudan.edu.cn
Supported by:LIU Shujing, GUO Jia. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution[J]. Chemical Research in Chinese Universities, 2022, 38(2): 373-381.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] Tilford R. W., Gemmill W. R., Zur Loye H.-C., Lavigne J. J., Chem. Mater., 2006, 18, 5296. [2] Guan Q., Wang G.-B., Zhou L.-L., Li W.-Y., Dong Y.-B., Nanoscale Adv., 2020, 2, 3656. [3] Rabbani M. G., El-Kaderi H. M., Chem. Mater., 2012, 24, 1511. [4] Islamoğlu T., Rabbani M. G., El-Kaderi H. M., J. Mater. Chem. A., 2013, 1, 10259. [5] Cejka J., Wichterlova B., Catal. Rev., 2002, 44, 375. [6] Qu Y., Zhou W., Pan K., Tian C. G., Ren Z. Y., Dong Y. Z., Fu H. G., Phys. Chem. Chem. Phys., 2010, 12, 9205. [7] Feng X., Chen L., Honsho Y., Saengsawang O., Liu L. L., Wang L., Saeki A., Irle S., Seki S., Dong Y. P., Jiang D. L., Adv. Mater., 2012, 24, 3026. [8] Wang R., Cai Q., Zhu Y., Mi Z., Weng W., Liu Y., Wan J., Hu J., Wang C., Yang D., Guo J., Chem. Mater., 2021, 33, 3566. [9] Wang R., Kong W. F., Zhou T., Wang C. C., Guo J., Chem. Comm., 2021, 57, 331. [10] Zhao Z., Chen W., Impeng S., Li M., Wang R., Liu Y., Zhang L., Dong L., Unruangsri J., Peng C., Wang C., Namuangruk S., Lee S.-Y., Wang Y., Lu H., Guo J., J. Mater. Chem. A., 2020, 8, 3459. [11] Zhao Z., Wang R., Peng C., Chen W., Wu T., Hu B., Weng W., Yao Y., Zeng J., Chen Z., Liu P., Liu Y., Li G., Guo J., Lu H., Guo Z., Nat. Commun., 2021, 12, 6606. [12] Duan H., Li K., Xie M., Chen J.-M., Zhou H.-G., Wu X., Ning G.-H., Cooper A. I., Li D., J. Am. Chem. Soc., 2021, 143, 19446. [13] Mi Z., Yang P., Wang R., Unruangsri J., Yang W., Wang C., Guo J., J. Am. Chem. Soc., 2019, 141, 14433. [14] Tan J., Namuangruk S., Kong W., Kungwan N., Guo J., Wang C., Angew. Chem. Int. Ed., 2016, 55, 13979. [15] Chen X., Shen S., Guo L., Mao S. S., Chem. Rev., 2010, 110, 6503. [16] Fujishima A., Honda K., Nature, 1972, 238, 37. [17] Kudo A., Miseki Y., Chem. Soc. Rev., 2009, 38, 253. [18] Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti M., Nat. Mater., 2009, 8, 76. [19] Cherevko S., Geiger S., Kasian O., Kulyk N., Grote J.-P., Savan A., Shrestha B. R., Merzlikin S., Breitbach B., Ludwig A., Mayrhofer K. J. J., Catal. Today., 2016, 262, 170. [20] Zeng M., Li Y., J. Mater. Chem. A, 2015, 3, 14942. [21] Stegbauer L., Schwinghammer K., Lotsch B. V., Chem. Sci., 2014, 5, 2789. [22] Zhou T., Huang X., Mi Z., Zhu Y., Wang R., Wang C., Guo J., Poly. Chem., 2021, 12, 3250. [23] Zhang S., Cheng G., Guo L., Wang N., Tan B., Jin S., Angew. Chem. Int. Ed., 2020,59, 6007. [24] Biswal B. P., Vignolo-González H. A., Banerjee T., Grunenberg L., Savasci G., Gottschling K., Nuss J., Ochsenfeld C., Lotsch B. V., J. Am. Chem. Soc., 2019, 141, 11082. [25] Banerjee T., Gottschling K., Savasci G., Ochsenfeld C., Lotsch B. V., ACS Energy Lett., 2018,3, 400. [26] Vyas V. S., Haase F., Stegbauer L., Savasci G., Podjaski F., Ochsenfeld C., Lotsch B. V., Nat. Commun., 2015, 6, 8508. [27] Wang J., Zhang J., Peh S. B., Liu G., Kundu T., Dong J., Ying Y., Qian Y., Zhao D., Sci. China Chem., 2020, 63, 192. [28] Chen W. B., Wang L., Mo D. Z., He F., Wen Z. L., Wu X. J., Xu H. X., Chen L., Angew. Chem. Int. Ed., 2020, 59, 16902. [29] Ding S. Y., Gao J., Wang Q., Zhang Y., Song W. G., Su C. Y., Wang W., J. Am. Chem. Soc., 2011, 133, 19816. [30] Bai L. Y., Phua S. Z. F., Lim W. Q., Jana A., Luo Z., Tham H. P., Zhao L. Z., Gao Q., Zhao Y. L., Chem. Commun., 2016, 52, 4128. [31] Halder A., Kandambeth S., Biswal B. P., Kaur G., Roy N. C., Addicoat M., Salunke J. K., Banerjee S., Vanka K., Heine T., Verma S., Banerjee R., Angew. Chem. Int. Ed., 2016, 55, 7806. [32] Wan S., Guo J., Kim J., Ihee H., Jiang D., Angew. Chem. Int. Ed., 2008, 47, 8826. [33] Spitler E. L., Koo B. T., Novotney J. L., Colson J. W., Uribe-Romo F. J., Gutierrez G. D., Clancy P., Dichtel W. R., J. Am. Chem. Soc., 2011, 133, 19416. [34] Dalapati S., Jin E., Addicoat M., Heine T., Jiang D., J. Am. Chem. Soc., 2016, 138, 5797. [35] Wang K., Yang L. M., Wang X., Guo L., Cheng G., Zhang C., Jin S., Tan B., Cooper A., Angew. Chem. Int. Ed., 2017,56, 14149. [36] Yu S. Y., Mahmood J., Noh H. J., Seo J. M., Jung S. M., Shin S. H., Im Y. K., Jeon I. Y., Baek J. B., Angew. Chem. Int. Ed., 2018, 57, 8438. [37] Liu M., Huang Q., Wang S., Li Z., Li B., Jin S., Tan B., Angew. Chem. Int. Ed., 2018, 57,11968. [38] Zhao Y., Nagai A., Chen X., Feng X., Ding X., Guo Z., Jiang D., Angew. Chem. Int. Ed., 2013, 52, 3770. [39] Zhu Y., Wan S., Jin Y., Zhang W., J. Am. Chem. Soc., 2015, 137, 13772. [40] Li Z. J., Ding S. Y., Xue H. D., Cao W., Wang W. S., Chem. Commun., 2016, 52, 7217. [41] Vyas V. S., Haase F., Stegbauer L., Savasci G., Podjaski F., Ochsenfeld C., Lotsch B. V., Nat. Commun., 2015, 6, 8508. [42] Waller P. J., Lyle S. J., Osborn Popp T. M., Diercks C. S., Reimer J. A., Yaghi O. M., J. Am. Chem. Soc., 2016, 138, 15519. [43] Zhang Y., Shen X., Feng X., Xia H., Mu Y., Liu X., Chem. Commun., 2016, 52, 11088. [44] El-Kaderi H. M., Hunt J. R., Mendoza-Cortés J. L., Côté A. P., Taylor R. E., O'Keeffe M., Yaghi O. M., Science, 2007, 316, 268. [45] Wan S., Guo J., Kim J., Ihee H., Jiang D., Angew. Chem. Int. Ed., 2008, 47, 8826. [46] Jin E., Lan Z., Jiang Q., Geng K., Li G., Wang X., Jiang D., Chem., 2019, 5, 1632. [47] Yang J., Acharjya A., Ye M.-Y., Rabeah J., Li S., Kochovski Z., Youk S., Roeser J., Grüneberg J., Penschke C., Schwarze M., Wang T., Lu Y., van de Krol R., Oschatz M., Schomäcker R., Saalfrank P., Thomas A., Angew. Chem. Int. Ed., 2021, 60, 19797. [48] Yang S., Lv H., Zhong H., Yuan D., Wang X., Wang R., Angew. Chem. Int. Ed., 2022, e202115655. [49] Mo C., Yang M., Sun F., Jian J., Zhong L., Fang Z., Feng J., Yu D., Adv. Sci., 2020, 7, 1902988. [50] Wang Y., Hao W., Liu H., Chen R., Pan Q., Li Z., Zhao Y., Nat. Commun., 2022, 13, 100. [51] Bi S., Yang C., Zhang W., Xu J., Liu L., Wu D., Wang X., Han Y., Liang Q., Zhang F., Nat. Commun., 2019, 10, 2467. [52] Xu J., Yang C., Bi S., Wang W., He Y. F., Wu D., Liang Q., Wang X., Zhang F., Angew. Chem. Int. Ed., 2020, 59, 23845. [53] Pachfule P., Acharjya A., Roeser J., Langenhahn T., Schwarze M., Schomacker R., Thomas A., Schmidt J., J. Am. Chem. Soc., 2018, 140, 1423. [54] Li W., Huang X., Zeng T., Liu Y. A., Hu W., Yang H., Zhang Y.-B., Wen K., Angew. Chem. Int. Ed., 2021, 60, 1869. [55] Cheng Y.-J., Wang R., Wang S., Xi X.-J., Ma L.-F., Zang S.-Q., Chem. Commun., 2018, 54, 13563. [56] Zhou T., Wang L., Huang X., Unruangsri J., Zhang H., Wang R., Song Q., Yang Q., Li W., Wang C., Takahashi K., Xu H., Guo J., Nat. Commun., 2021, 12, 3934. [57] Ghosh S., Nakada A., Springer M. A., Kawaguchi T., Suzuki K., Kaji H., Baburin I., Kuc A., Heine T., Suzuki H., Abe R., Seki S., J. Am. Chem. Soc., 2020, 142, 9752. [58] Mi Z., Zhou T., Weng W., Unruangsri J., Hu K., Yang W., Wang C., Zhang K. A. I., Guo J., Angew. Chem. Int. Ed., 2021,60, 9642. [59] Gottschling K., Savasci G., Vignolo-Gonzalez H., Schmidt S., Mauker P., Banerjee T., Rovo P., Ochsenfeld C., Lotsch B. V., J. Am. Chem. Soc., 2020, 142, 12146. [60] Thote J., Aiyappa H. B., Deshpande A., Díaz D., Kurungot S., Banerjee R., Chem. Eur. J., 2014, 20, 15961. [61] Yao Y. H., Li J., Zhang H., Tang H. L., Fang L., Niu G. D., Sun X. J., Zhang F. M., J. Mater. Chem. A, 2020, 8, 8949. [62] Wang H., Qian C., Liu J., Zeng Y. F., Wang D. D., Zhou W. Q., Gu L., Wu H. W., Liu G. F., Zhao Y. L., J. Am. Chem. Soc., 2020, 142, 4862. [63] Lin C. C., Han C. Z., Gong L., Chen X., Deng J. X., Qi D. D., Bian Y. Z., Wang K., Jiang J. Z., Catal. Sci. Technol., 2021, 11, 2616. [64] Li C. C., Gao M. Y., Sun X. J., Tang H. L., Dong H., Zhang F. M., Appl. Catal. B, 2020, 266, 118586. [65] Zhang F. M., Sheng J. L., Yang Z. D., Sun X. J., Tang H. L., Lu M., Dong H., Shen F. C., Liu J., Lan Y. Q., Angew. Chem. Int. Ed., 2018, 57, 12106. |
| [1] | XU Guangyuan, LIU Qin, YAN Huan. Recent Advances of Single-atom Catalysts for Electro-catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1146-1150. |
| [2] | BU Ran, LU Yingying, ZHANG Bing. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1151-1162. |
| [3] | SONG Weiyu, LV Xintong, GAO Yang, WANG Lu. Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation:A DFT Study [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1025-1031. |
| [4] | JI Yuancheng, XU Jiayun, SUN Hongcheng, and LIU Junqiu. Artificial Photosynthesis(AP): from Molecular Catalysts to Heterogeneous Materials [J]. Chemical Research in Chinese Universities, 2022, 38(3): 688-697. |
| [5] | DU Shihao, BIAN Xuanang, ZHAO Yunxuan, SHI Run, and ZHANG Tierui. Progress and Prospect of Photothermal Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(3): 723-734. |
| [6] | SONG Jialong, WANG Zitao, LIU Yaozu, TUO Chao, WANG Yujie, FANG Qianrong, and QIU Shilun. A Three-dimensional Covalent Organic Framework for CO2 Uptake and Dyes Adsorption [J]. Chemical Research in Chinese Universities, 2022, 38(3): 834-837. |
| [7] | CAO Xiaohao, HE Yanjing, ZHANG Zhengqing, SUN Yuxiu, HAN Qi, GUO Yandong, ZHONG Chongli. Predicting of Covalent Organic Frameworks for Membrane-based Isobutene/1,3-Butadiene Separation: Combining Molecular Simulation and Machine Learning [J]. Chemical Research in Chinese Universities, 2022, 38(2): 421-427. |
| [8] | CUI Yumeng, MIAO Zhuang, LIU Qi, JIN Fenchun, ZHAI Yufeng, ZHANG Lingyan, WANG Wenli, WANG Ke, LIU Guiyan, ZENG Yongfei. Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy [J]. Chemical Research in Chinese Universities, 2022, 38(2): 402-408. |
| [9] | WANG Guangbo, XIE Kehui, ZHU Fucheng, KAN Jinglan, LI Sha, GENG Yan, DONG Yubin. Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture [J]. Chemical Research in Chinese Universities, 2022, 38(2): 409-414. |
| [10] | MENG Weijia, LI Yang, ZHAO Ziqiang, SONG Xiaoyu, LU Fanli, CHEN Long. Ultrathin 2D Covalent Organic Framework Film Fabricated via Langmuir-Blodgett Method with a “Two-in-One” Type Monomer [J]. Chemical Research in Chinese Universities, 2022, 38(2): 440-445. |
| [11] | HOU Bang, LI Ziping, KANG Xing, JIANG Hong, CUI Yong. Recent Advances of Covalent Organic Frameworks for Chiral Separation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 350-355. |
| [12] | JIA Shuping, ZHAO Peng, LIU Qi, CHEN Yao, CHENG Peng, YANG Yi, ZHANG Zhenjie. Stepwise Fabrication of Proton-conducting Covalent Organic Frameworks for Hydrogen Fuel Cell Applications [J]. Chemical Research in Chinese Universities, 2022, 38(2): 461-467. |
| [13] | WANG Lu, WANG Dong. Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art [J]. Chemical Research in Chinese Universities, 2022, 38(2): 265-274. |
| [14] | LI Jiali, ZHANG Zhenwei, JIA Ji, LIU Xiaoming. Covalent Organic Frameworks for Photocatalytic Organic Transformation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 275-289. |
| [15] | DI Zhengyi, MAO Yining, YUAN Heng, ZHOU Yan, JIN Jun, LI Cheng-Peng. Covalent Organic Frameworks(COFs) for Sequestration of99TcO4– [J]. Chemical Research in Chinese Universities, 2022, 38(2): 290-295. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

