Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3): 462-474.doi: 10.1007/s40242-024-4072-y
• Reviews • Previous Articles Next Articles
WANG Chengbin1, LI Ping1, CHEN Dehong2, ZHANG Ruiyong3, WANG Lei1, ZONG Lingbo1
Received:
2024-03-23
Online:
2024-06-01
Published:
2024-06-01
Contact:
ZONG Lingbo,E-mail:lingbozong@qust.edu.cn
E-mail:lingbozong@qust.edu.cn
Supported by:
WANG Chengbin, LI Ping, CHEN Dehong, ZHANG Ruiyong, WANG Lei, ZONG Lingbo. Progress and Outlook of Carbon-supported Single-atom Electrocatalyst for Oxygen Reduction Reaction[J]. Chemical Research in Chinese Universities, 2024, 40(3): 462-474.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Fei H., Dong J., Chen D., Hu T., Duan X., Shakir I., Huang Y., Duan X., Chem. Soc. Rev., 2019, 48, 5207. [2] Gielen D., Boshell F., Saygin D., Bazilian M. D., Wagner N., Gorini R., Energy Strategy Rev., 2019, 24, 38. [3] Zhang J., Xia Z., Dai L., Sci. Adv., 2015, 1, e1500564. [4] Chow J., Kopp R. J., Portney P. R., Science, 2003, 302, 1528. [5] Lee J. S., Tai Kim S., Cao R., Choi N. S., Liu M., Lee K. T., Cho J., Adv. Energy Mater., 2011, 1, 34. [6] Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Nørskov J. K., Jaramillo T. F., Science, 2017, 355, eaad4998. [7] Liu S., Wang A., Liu Y., Zhou W., Wen H., Zhang H., Sun K., Li S., Zhou J., Wang Y., Adv. Sci., 2024, 2308040. [8] Xu N., Zhang Y., Zhang T., Liu Y., Qiao J., Nano Energy, 2019, 57, 176. [9] Sun Y., Sun S., Yang H., Xi S., Gracia J., Xu Z. J., Adv. Mater., 2020, 32, 2003297. [10] Wang X., Kang Z., Wang D., Zhao Y., Xiang X., Shang H., Zhang B., Nano Energy, 2024, 109268. [11] Ji S., Chen Y., Wang X., Zhang Z., Wang D., Li Y., Chem. Rev., 2020, 120, 11900. [12] Mu Y., Wang T., Zhang J., Meng C., Zhang Y., Kou Z., Electrochem. Energy Rev., 2022, 5, 145. [13] Wang A., Li J., Zhang T., Nat. Rev. Chem., 2018, 2, 65. [14] Chen H., Liang X., Liu Y., Ai X., Asefa T., Zou X., Adv. Mater., 2020, 32, 2002435. [15] Guo W., Wang Z., Wang X., Wu Y., Adv. Mater., 2021, 33, 2004287. [16] Li H., Wang M., Luo L., Zeng J., Adv. Sci., 2019, 6, 1801471. [17] Tajik S., Dourandish Z., Nejad F. G., Beitollahi H., Afshar A. A., Jahani P. M., Di Bartolomeo A., J. Electrochem. Soc., 2022, 169, 046504. [18] Liu D., He Q., Ding S., Song L., Adv. Energy Mater., 2020, 10, 2001482. [19] Lai W. H., Miao Z., Wang Y. X., Wang J. Z., Chou S. L., Adv. Energy Mater., 2019, 9, 1900722. [20] Zhu C., Fu S., Shi Q., Du D., Lin Y., Angew. Chem. Int. Ed., 2017, 56, 13944. [21] Zhang H., Liu G., Shi L., Ye J., Adv. Energy Mater., 2018, 8, 1701343. [22] Xi J., Jung H. S., Xu Y., Xiao F., Bae J. W., Wang S., Adv. Funct. Mater., 2021, 31, 2008318. [23] Liu D., Wan X., Kong T., Han W., Xiong Y., J. Mater. Chem. A, 2022, 10, 5878. [24] Li X., Kou Z., Wang J., Small Methods, 2021, 5, 2001010. [25] Yan X., Zhuang L., Zhu Z., Yao X., Nanoscale, 2021, 13, 3327. [26] Jia Y., Jiang K., Wang H., Yao X., Chem, 2019, 5, 1371. [27] Wu Q., Liu Q., Zhou Y., Sun Y., Zhao J., Liu Y., Liu F., Nie M., Ning F., Yang N., ACS Appl. Mater. Interfaces, 2018, 10, 39735. [28] Li W., Wang D., Zhang Y., Tao L., Wang T., Zou Y., Wang Y., Chen R., Wang S., Adv. Mater., 2020, 32, 1907879. [29] Zhang J., Zhang J., He F., Chen Y., Zhu J., Wang D., Mu S., Yang H. Y., Nano-Micro Lett., 2021, 13, 1. [30] Zhang Z., Zhao X., Xi S., Zhang L., Chen Z., Zeng Z., Huang M., Yang H., Liu B., Pennycook S. J., Adv. Energy Mater., 2020, 10, 2002896. [31] Yang Z., Wang Y., Zhu M., Li Z., Chen W., Wei W., Yuan T., Qu Y., Xu Q., Zhao C., ACS Catal., 2019, 9, 2158. [32] Li J., Chen M., Cullen D. A., Hwang S., Wang M., Li B., Liu K., Karakalos S., Lucero M., Zhang H., Nat. Catal., 2018, 1, 935. [33] Fei H., Dong J., Feng Y., Allen C. S., Wan C., Volosskiy B., Li M., Zhao Z., Wang Y., Sun H., Nat. Catal., 2018, 1, 63. [34] Li W., Min C., Tan F., Li Z., Zhang B., Si R., Xu M., Liu W., Zhou L., Wei Q., ACS Nano, 2019, 13, 3177. [35] Zong L., Fan K., Wu W., Cui L., Zhang L., Johannessen B., Qi D., Yin H., Wang Y., Liu P., Adv. Funct. Mater., 2021, 31, 2104864. [36] Zong L., Fan K., Li P., Lu F., Li B., Wang L., Adv. Energy Mater., 2023, 13, 2203611. [37] Jia Y., Zhang L., Zhuang L., Liu H., Yan X., Wang X., Liu J., Wang J., Zheng Y., Xiao Z., Taran E., Chen J., Yang D., Zhu Z., Wang S., Dai L., Yao X., Nat. Catal., 2019, 2, 688. [38] Wang X., Jia Y., Mao X., Liu D., He W., Li J., Liu J., Yan X., Chen J., Song L., Du A., Yao X., Adv. Mater., 2020, 32, 2000966. [39] Chen Y., Ji S., Chen C., Peng Q., Wang D., Li Y., Joule, 2018, 2, 1242. [40] Rao P., Luo J., Wu D., Li J., Chen Q., Deng P., Shen Y., Tian X., Energy Environ. Mater., 2023, 6, e12371. [41] Yan X., Jia Y., Yao X., Chem. Soc. Rev., 2018, 47, 7628. [42] Shen M., Liu J., Li J., Duan C., Xiong C., Zhao W., Dai L., Wang Q., Yang H., Ni Y., Energy Storage Mater., 2023, 59, 102790. [43] Jiang R., Li L., Sheng T., Hu G., Chen Y., Wang L., J. Am. Chem. Soc., 2018, 140, 11594. [44] Zhang Y., Guo L., Tao L., Lu Y., Wang S., Small Methods, 2019, 3, 1800406. [45] Zhao Y., Chen H. C., Ma X., Li J., Yuan Q., Zhang P., Wang M., Li J., Li M., Wang S., Guo H., Hu R., Tu K.-H., Zhu W., Li X., Yang X., Pan Y., Adv. Mater., 2024, 36, 2308243. [46] Zhang Z., Gao X., Dou M., Ji J., Wang F., Small, 2017, 13, 1604290. [47] Mehmood A., Gong M., Jaouen F., Roy A., Zitolo A., Khan A., Sougrati M.-T., Primbs M., Bonastre A. M., Fongalland D., Nat. Catal., 2022, 5, 311. [48] Zhang L. S., Jiang X. H., Zhong Z. A., Tian L., Sun Q., Cui Y. T., Lu X., Zou J. P., Luo S. L., Angew. Chem. Int. Ed., 2021, 60, 21751. [49] Cui L., Fan K., Zong L., Lu F., Zhou M., Li B., Zhang L., Feng L., Li X., Chen Y., Energy Storage Mater., 2022, 44, 469. [50] Wu T., Zhu S., Xie Y., Ma Q., Lu C., Appl. Catal. B:Environ., 2023, 331, 122685. [51] Kang Z., Wang X., Wang D., Bai B., Zhao Y., Xiang X., Zhang B., Shang H., Nanoscale, 2023, 15, 9605. [52] Zhao X., Takao S., Yoshida Y., Kaneko T., Gunji T., Higashi K., Uruga T., Iwasawa Y., Appl. Catal. B:Environ., 2023, 324, 122268. [53] Yao X., Zhu Y., Xia T., Han Z., Du C., Yang L., Tian J., Ma X., Hou J., Cao C., Small, 2023, 2301075. [54] Yuan S., Zhang J., Hu L., Li J., Li S., Gao Y., Zhang Q., Gu L., Yang W., Feng X., Angew. Chem. Int. Ed., 2021, 60, 21685. [55] Li G., Liu J., Xu C., Chen H., Hu H., Jin R., Sun L., Chen H., Guo C., Li H., Si Y., Energy Storage Mater., 2023, 56, 394. [56] Wu Q., Jia Y., Liu Q., Mao X., Guo Q., Yan X., Zhao J., Liu F., Du A., Yao X., Adv. Mater., 2022, 8, 2715. [57] Yin L., Zhang S., Sun M., Wang S., Huang B., Du Y., Nano Res., 2024, DOI:10.1007/s12274-024-6416-9. [58] Shen Y., Pan T., Wang L., Ren Z., Zhang W., Huo F., Adv. Mater., 2021, 33, 2007442. [59] Wang T., Cao X., Jiao L., Small, 2021, 17, 2004398. [60] Liu H., Cheng M., Liu Y., Wang J., Zhang G., Li L., Du L., Wang G., Yang S., Wang X., Energy Environ. Sci., 2022, 15, 3722. [61] Li L., Zhu Q., Han M., Tu X., Shen Y., Nanoscale, 2023, 15, 13487. [62] Song Z., Zhang L., Doyle‐Davis K., Fu X., Luo J. L., Sun X., Adv. Energy Mater., 2020, 10, 2001561. [63] Wang H.-F., Chen L., Pang H., Kaskel S., Xu Q., Chem. Soc. Rev., 2020, 49, 1414. [64] Wang Q., Astruc D., Chem. Rev., 2019, 120, 1438. [65] Lu X. F., Xia B. Y., Zang S. Q., Lou X. W., Angew. Chem. Int. Ed., 2020, 132, 4662. [66] Kaneti Y. V., Tang J., Salunkhe R. R., Jiang X., Yu A., Wu K. C. W., Yamauchi Y., Adv. Mater., 2017, 29, 1604898. [67] Liu B., Shioyama H., Akita T., Xu Q. J., J. Am. Chem. Soc., 2008, 130, 5390. [68] Li J., Xia W., Xu X., Jiang D., Cai Z.-X., Tang J., Guo Y., Huang X., Wang T., He J., J. Am. Chem. Soc., 2023, 145, 27262. [69] Han A., Wang B., Kumar A., Qin Y., Jin J., Wang X., Yang C., Dong B., Jia Y., Liu J., Small Methods, 2019, 3, 1800471. [70] Lu F., Fan K., Cui L., Yang Y., Wang W., Zhang G., Wang C., Zhang Q., Li B., Zong L., Chem. Eng. J., 2022, 431, 133242. [71] Chen Y., Ji S., Wang Y., Dong J., Chen W., Li Z., Shen R., Zheng L., Zhuang Z., Wang D., Angew. Chem. Int. Ed., 2017, 56, 6937. [72] Ji S., Chen Y., Fu Q., Chen Y., Dong J., Chen W., Li Z., Wang Y., Gu L., He W. J., J. Am. Chem. Soc., 2017, 139, 9795. [73] Rong J., Gao E., Liu N., Chen W., Rong X., Zhang Y., Zheng X., Ao H., Xue S., Huang B., Energy Storage Mater., 2023, 56, 165. [74] Xie X., Shang L., Xiong X., Shi R., Zhang T., Adv. Energy Mater., 2022, 12, 2102688. [75] Jang H.-W., Kang G.-S., Lee J. Y., Lee S. Y., Lee G., Yoo S. J., Lee S., Joh H.-I., Chem. Eng. J., 2023, 474, 145464. [76] Hu Y., Li Z., Li B., Yu C., Small, 2022, 18, 2203589. [77] Pei Z., Zhang H., Guo Y., Luan D., Gu X., Lou X. W., Adv. Mater., 2023, 2306047. [78] Dey G., Jana R., Saifi S., Kumar R., Bhattacharyya D., Datta A., Sinha A., Aijaz A., ACS Nano, 2023, 17, 19155. [79] Feng R., Ruan Q.-D., Feng J.-J., Yao Y.-Q., Li L.-M., Zhang L., Wang A.-J., J. Colloid Interface Sci., 2024, 654, 1240. [80] Li W. H., Yang J., Wang D., Angew. Chem. Int. Ed., 2022, 134, e202213318. [81] Zhang W., Chao Y., Zhang W., Zhou J., Lv F., Wang K., Lin F., Luo H., Li J., Tong M., Adv. Mater., 2021, 33, 2102576. [82] Chen Y., Lin J., Jia B., Wang X., Jiang S., Ma T., Adv. Mater., 2022, 34, 2201796. [83] Pedersen A., Barrio J., Li A., Jervis R., Brett D. J., Titirici M. M., Stephens I. E., Adv. Energy Mater., 2022, 12, 2102715. [84] Zhu P., Xiong X., Wang D., Li Y., Adv. Energy Mater., 2023, 13, 2300884. [85] Li J., Zhang H., Samarakoon W., Shan W., Cullen D. A., Karakalos S., Chen M., Gu D., More K. L., Wang G., Angew. Chem. Int. Ed., 2019, 58, 18971. [86] He Y., Shi Q., Shan W., Li X., Kropf A. J., Wegener E. C., Wright J., Karakalos S., Su D., Cullen D. A., Angew. Chem., 2021, 133, 9602. [87] Zong L., Fan K., Cui L., Lu F., Liu P., Li B., Feng S., Wang L., Angew. Chem. Int. Ed., 2023, 135, e202309784. [88] Hong Y., Kim T., Jo J., Kim B., Jin H., Baik H., Lee K., ACS Nano, 2020, 14, 11205. [89] Anderson B. D., Tracy J. B., Nanoscale, 2014, 6, 12195. [90] Park J., Zheng H., Jun Y. W., Alivisatos A. P., J. Am. Chem. Soc., 2009, 131, 13943. [91] Hodges J. M., Kletetschka K., Fenton J. L., Read C. G., Schaak R. E., Angew. Chem. Int. Ed., 2015, 54, 8669. [92] Lim Y., Lee C.-H., Jun C.-H., Kim K., Cheon J., J. Am. Chem. Soc., 2020, 142, 9130. [93] Jiao L., Li J., Richard L. L., Sun Q., Stracensky T., Liu E., Sougrati M. T., Zhao Z., Yang F., Zhong S., Nat. Mater., 2021, 20, 1385. [94] Yin S.-H., Yang S.-L., Li G., Li G., Zhang B.-W., Wang C.-T., Chen M.-S., Liao H.-G., Yang J., Jiang Y.-X., Sun S.-G., Energy Environ. Sci., 2022, 15, 3033. |
[1] | LI Boyang, OU Honghui, CHEN Shenghua, SU Ya-Qiong, WANG Dingsheng. Recent Advances in CO2 Reduction Reaction to Value-added C1 Products by Single-atom Catalysts [J]. Chemical Research in Chinese Universities, 2023, 39(4): 527-544. |
[2] | LIU Zailun, SUN Like, ZHANG Qitao, TENG Zhenyuan, SUN Hongli, SU Chenliang. TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1123-1138. |
[3] | WU Fan, LIU Pengxin. Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1139-1145. |
[4] | XU Guangyuan, LIU Qin, YAN Huan. Recent Advances of Single-atom Catalysts for Electro-catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1146-1150. |
[5] | BU Ran, LU Yingying, ZHANG Bing. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1151-1162. |
[6] | WANG Guowei, KE Xiaoxing, SUI Manling. Advanced TEM Characterization for Single-atom Catalysts: from Ex-situ Towards In-situ [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1172-1184. |
[7] | FAN Kui, SUN Yining, XU Pengcheng, GUO Jian, LI Zhenhua, SHAO Mingfei. Single-atom Catalysts Based on Layered Double Hydroxides [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1185-1196. |
[8] | MIAO Tianchang, DI Xin, HAO Feini, ZHENG Gengfeng, HAN Qing. Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1197-1206. |
[9] | TENG Zhenyuan, YANG Hongbin, ZHANG Qitao, OHNO Teruhisa. Carrier Dynamics and Surface Reaction Boosted by Polymer-based Single-atom Photocatalysts [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1207-1218. |
[10] | SHU Chengyong, GAN Zhuofan, ZHOU Jia, WANG Zhen, TANG Wei. Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1268-1274. |
[11] | ZHENG Meng, WANG Jin. Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1275-1281. |
[12] | ZHENG Ruonan, ZHAI Zihui, QIU Chenxi, GAO Rui, LV Yang, SONG Yujiang. Highly Active Electrocatalyst Derived from ZIF-8 Decorated with Iron(III) and Cobalt(III) Porphyrin Toward Efficient Oxygen Reduction in Both Alkaline and Acidic Media [J]. Chemical Research in Chinese Universities, 2022, 38(4): 961-967. |
[13] | CHEN Yu, CHEN Yongting, LIAO Yuxiang, CHEN Shengli. A Chemical Dealloying Approach for Pt Surface-enriched Pt3Co Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts [J]. Chemical Research in Chinese Universities, 2022, 38(4): 991-998. |
[14] | SONG Weiyu, LV Xintong, GAO Yang, WANG Lu. Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation:A DFT Study [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1025-1031. |
[15] | CHANG Shunkai, LI Cuiyan, LI Hui, ZHU Liangkui, FANG Qianrong. Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR) [J]. Chemical Research in Chinese Universities, 2022, 38(2): 396-401. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||