Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2): 310-324.doi: 10.1007/s40242-022-1468-4
• Reviews • Previous Articles Next Articles
SUN Ruixue, TAN Bien
Received:
2021-12-01
Revised:
2021-12-24
Online:
2022-04-01
Published:
2022-05-18
Contact:
TAN Bien
E-mail:bien.tan@mail.hust.edu.cn
Supported by:
SUN Ruixue, TAN Bien. Covalent Triazine Frameworks(CTFs) for Photocatalytic Applications[J]. Chemical Research in Chinese Universities, 2022, 38(2): 310-324.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Barber J., Chem. Soc. Rev., 2009, 38, 185. [2] Lewis N. S., Science, 2007, 315, 5813. [3] Wang Z., Li C., Domen K.,Chem. Soc. Rev., 2019, 48(7), 2109. [4] Wang H., Wang H., Wang Z., Tang L., Zeng G., Xu P., Chen M., Xiong T., Zhou C., Li X., Huang D., Zhu Y., Wang Z., Tang J., Chem. Soc. Rev., 2020, 49(12), 4135. [5] Fujishima A., Nature, 1972, 238, 37. [6] Low J., Dai B., Tong T., Jiang C., Yu J., Adv. Mater., 2019, 31(6), e1802981. [7] Cheng L., Xiang Q., Liao Y., Zhang H., Energy& Environmental Science, 2018, 11(6), 1362. [8] Ong C. B., Ng L. Y., Mohammad A. W., Renewable and Sustainable Energy Rev., 2018, 81, 536. [9] Yang X., Tian L., Zhao X., Tang H., Liu Q., Li G., Appl. Catal. B:Envir., 2019, 244, 240. [10] Cao S., Yu J., J. Phys. Chem. Lett., 2014, 5(12), 2101. [11] Xu Y., Mao N., Zhang C., Wang X., Zeng J., Chen Y., Wang F., Jiang J.-X., Appl. Catal. B:Envir., 2018, 228, 1. [12] Wang Z., Yang X., Yang T., Zhao Y., Wang F., Chen Y., Zeng J. H., Yan C., Huang F., Jiang J.-X., ACS Catal., 2018, 8(9), 8590. [13] Guo J., Jiang D., ACS Cent. Sci., 2020, 6(6), 869. [14] Banerjee T., Gottschling K., Savasci G., Ochsenfeld C., Lotsch B. V., ACS Energy Lett., 2018, 3(2), 400. [15] Li H., Wang L., Yu G., Nano Today, 2021, 40, 101247. [16] Xia C., Kirlikovali K. O., Nguyen T. H. C., Nguyen X. C., Tran Q. B., Duong M. K., Nguyen Dinh M. T., Nguyen D. L. T., Singh P., Raizada P., Nguyen V.-H., Kim S. Y., Singh L., Nguyen C. C., Shokouhimehr M., Le Q. V., Coord. Chem. Rev., 2021, 446, 214117. [17] Waller P. J., Gandara F., Yaghi O. M., Acc. Chem. Res., 2015, 48(12), 3053. [18] Li Z., He T., Gong Y., Jiang D., Acc. Chem. Res., 2020, 53(8), 1672. [19] Ding S. Y., Wang W., Chem. Soc. Rev., 2013, 42(2), 548. [20] Liu M., Guo L., Jin S., Tan B., J. Mater. Chem. A, 2019, 7(10), 5153. [21] Wang H., Jiang D., Huang D., Zeng G., Xu P., Lai C., Chen M., Cheng M., Zhang C., Wang Z., J. Mater. Chem. A, 2019, 7(40), 22848. [22] Kuhn P., Antonietti M., Thomas A., Angew. Chem. Int. Ed., 2008, 47(18), 3450. [23] Katekomol P., Roeser J., Bojdys M., Weber J., Thomas A., Chem. Mater., 2013, 25(9), 1542. [24] Bojdys M. J., Jeromenok J., Thomas A., Antonietti M., Adv. Mater., 2010, 22(19), 2202. [25] Osadchii D. Y., Olivos-Suarez A. I., Bavykina A. V., Gascon J., Langmuir, 2017, 33(50), 14278. [26] Kuhn P., Forget A. l., Su D., Thomas A., Antonietti M., J. Am. Chem. Soc., 2008, 130, 13333. [27] Abednatanzi S., Derakhshandeh P. G., Tack P., Muniz-Miranda F., Liu Y.-Y., Everaert J., Meledina M., Bussche F. V., Vincze L., Stevens C. V., Speybroeck V. V., Vrielinck H., Callens F., Leus K., Van Der Voort P., Appl. Catal. B:Envir., 2020, 269, 118769. [28] Schwinghammer K., Hug S., Mesch M. B., Senker J., Lotsch B. V., Energy Environ. Sci., 2015, 8(11), 3345. [29] Ren S., Bojdys M. J., Dawson R., Laybourn A., Khimyak Y. Z., Adams D. J., Cooper A. I., Adv. Mater., 2012, 24(17), 2357. [30] Lan Z. A., Fang Y., Zhang Y., Wang X., Angew. Chem. Int. Ed., 2018, 57(2), 470. [31] Lan X., Liu X., Zhang Y., Li Q., Wang J., Zhang Q., Bai G., ACS Catal., 2021, 11, 7429. [32] Xu T., Li Y., Zhao Z., Xing G., Chen L., Macromolecules, 2019, 52(24), 9786. [33] Hu Y., Huang W., Wang H., He Q., Zhou Y., Yang P., Li Y., Li Y., Angew. Chem. Int. Ed., 2020, 59(34), 14378. [34] Huang W., Ma B. C., Lu H., Li R., Wang L., Landfester K., Zhang K. A. I., ACS Catal., 2017, 7(8), 5438. [35] Huang W., He Q., Hu Y., Li Y., Angew. Chem. Int. Ed., 2019, 58, 8676. [36] Kim H. M., Jang H. K., Hwang T. G., Namgoong J. W., Kim J. Y., Yuk S. B., Lee J. M., Kim J. P., Dyes and Pigments, 2021, 186, 108968. [37] Hong H., Wu N., Han M., Guo Z., Zhan H., Du S., Chen B., Mater. Chem. Front., 2021, 5(17), 6568. [38] Liu J., Zan W., Li K., Yang Y., Bu F., Xu Y., J. Am. Chem. Soc., 2017, 139(34), 11666. [39] Sun T., Liang Y., Xu Y., Angew. Chem. Int. Ed., 2021, 60, 1. [40] Yang Z., Chen H., Wang S., Guo W., Wang T., Suo X., Jiang D. E., Zhu X., Popovs I., Dai S., J. Am. Chem. Soc., 2020, 142(15), 6856. [41] Zhu X., Tian C., Mahurin S. M., Chai S. H., Wang C., Brown S., Veith G. M., Luo H., Liu H., Dai S., J. Am. Chem. Soc., 2012, 134(25), 10478. [42] Yang Z., Liu T., Wang S., Chen H., Suo X., Wang T., Thapaliya B. P., Jiang D.-E., Popovs I., Dai S., Chem. Mater., 2021, 33(9), 3386. [43] Wang K., Yang L., Wang X., Guo L., Cheng G., Zhang C., Jin S., Tan B., Cooper A., Angew. Chem. Int. Ed., 2017, 56, 14149. [44] Liu M., Huang Q., Wang S., Li Z., Li B., Jin S., Tan B., Angew. Chem. Int. Ed., 2018, 57(37), 11968. [45] Liu M., Jiang K., Ding X., Wang S., Zhang C., Liu J., Zhan Z., Cheng G., Li B., Chen H., Jin S., Tan B., Adv. Mater., 2019, 31(19), e1807865. [46] Guo L., Wang X., Zhan Z., Zhao Y., Chen L., Liu T., Tan B., Jin S., Chem. Mater., 2021,33(6), 1994. [47] Wang X., Zhang S., Li X., Zhan Z., Tan B., Lang X., Jin S., J. Mater. Chem. A, 2021, 9(30), 16405. [48] Zhang S., Cheng G., Guo L., Wang N., Tan B., Jin S., Angew. Chem. Int. Ed., 2020, 59(15), 6007. [49] Guan L., Cheng G., Tan B., Jin S., Chem. Commun., 2021, 57(42), 5147. [50] Yu S. Y., Mahmood J., Noh H. J., Seo J. M., Jung S. M., Shin S. H., Im Y. K., Jeon I. Y., Baek J. B., Angew. Chem. Int. Ed., 2018, 57(28), 8438. [51] Wu S., Pan Y., Lin H., Li L., Fu X., Long J., ChemSusChem, 2021, 14, 1. [52] Jiang X., Wang P., Zhao J., J. Mater. Chem. A, 2015, 3(15), 7750. [53] Bi J., Fang W., Li L., Wang J., Liang S., He Y., Liu M., Wu L., Macromol. Rapid Commun., 2015, 36(20), 1799. [54] Kuecken S., Acharjya A., Zhi L., Schwarze M., Schomacker R., Thomas A., Chem. Commun., 2017, 53(43), 5854. [55] Li L., Fang W., Zhang P., Bi J., He Y., Wang J., Su W., J. Mater. Chem. A, 2016, 4(32), 12402. [56] Wang C., Zhang H., Luo W., Sun T., Xu Y., Angew. Chem. Int. Ed., 2021, 60, 2. [57] Guo L., Niu Y., Xu H., Li Q., Razzaque S., Huang Q., Jin S., Tan B., J. Mater. Chem. A, 2018, 6(40), 19775. [58] Wang N., Cheng G., Guo L., Tan B., Jin S., Adv. Funct. Mater ., 2019, 29(43), 1904781. [59] Guo L., Niu Y., Razzaque S., Tan B., Jin S., ACS Catal., 2019, 9(10), 9438. [60] Hu X., Zhan Z., Zhang J., Hussain I., Tan B., Nat. Commun., 2021, 12(1), 6596. [61] Qian Z., Wang Z. J., Zhang K. A. I., Chem. Mater., 2021, 33(6), 1909. [62] Xu R., Wang X.-S., Zhao H., Lin H., Huang Y.-B., Cao R., Catal. Sci.& Techn., 2018,8(8), 2224. [63] Zhang S., Wang S., Guo L., Chen H., Tan B., Jin S., J. Mater. Chem. C, 2020, 8(1), 192. [64] Huang G., Niu Q., Zhang J., Huang H., Chen Q., Bi J., Wu L., Chem. Eng. J., 2022, 427, 131018. [65] Guo S., Yang P., Zhao Y., Yu X., Wu Y., Zhang H., Yu B., Han B., George M. W., Liu Z., ChemSusChem, 2020, 13(23), 6278. [66] Yan Y.-L., Fang Q.-J., Pan J.-K., Yang J., Zhang L.-L., Zhang W., Zhuang G.-L., Zhong X., Deng S.-W., Wang J.-G., Chem. Eng. J., 2021, 408, 127358. [67] Wang Q., Wang J., Wang J. C., Hu X., Bai Y., Zhong X., Li Z., ChemSusChem, 2021, 14(4), 1131. [68] Low J., Yu J., Jaroniec M., Wageh S., Al-Ghamdi A. A., Adv. Mater., 2017, 29(20), 1601694. [69] Huang W., Byun J., Rorich I., Ramanan C., Blom P. W. M., Lu H., Wang D., Caire da Silva L., Li R., Wang L., Landfester K., Zhang K. A. I., Angew. Chem. Int. Ed., 2018, 57(27), 8316. [70] Huang W., Huber N., Jiang S., Landfester K., Zhang K. A. I., Angew. Chem. Int. Ed., 2020, 59(42), 18368. [71] Cyrine A., Wei H., Zhang K. A. I., Front. Chem. Sci. Eng., 2020, 14(3), 397. [72] Zhuang Y., Zhu Q., Li G., Wang Z., Zhan P., Ren C., Si Z., Li S., Cai D., Qin P., Mater. Res. Bull., 2022, 146, 111619 [73] Huang L., Luo Z., Zhou Y. N., Zhang Q., Zhu H., Zhu S., Mater. Today Chem., 2021, 20, 100475. |
[1] | MENG Zeshuo, ZHOU Bo, XU Jian, LI Yaxin, HU Xiaoying, TIAN Hongwei. Heterostructured Nitrogen and Sulfur co-Doped Black TiO2/g-C3N4 Photocatalyst with Enhanced Photocatalytic Activity [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1045-1052. |
[2] | WANG Yuxia, YAN Tingting, BEN Teng. Introduction of H2SO4 and H3PO4 into Crystalline Porous Organic Salts(CPOS-1) for Outstanding Proton Conductivity [J]. Chemical Research in Chinese Universities, 2020, 36(5): 976-980. |
[3] | SUN Tian, WANG Congxu, XU Yuxi. Covalent Triazine Framework Nanosheets for Efficient Energy Storage and Conversion [J]. Chemical Research in Chinese Universities, 2020, 36(4): 640-647. |
[4] | WANG Hui, WANG Jiafeng, ZHANG Lei, YU Qinqin, CHEN Zewen, WU Shengji. A New Strategy for Improving the Efficiency of Low-temperature Selective Catalytic Reduction of NOx with CH4 via the Combination of Non-thermal Plasma and Ag2O/TiO2 Photocatalyst [J]. Chemical Research in Chinese Universities, 2019, 35(6): 1062-1069. |
[5] | CUI Kai, FANG Yuxi, XU Dongdong, ZHANG Yunjuan, HAN Lu, CHE Shunai. Formation of Lamellar Mesostructured Crystalline Silica by Self-assembly of CTAB [J]. Chemical Research in Chinese Universities, 2019, 35(3): 359-362. |
[6] | WANG Junlin, YI Yongjie, LI Mengjia, CHANG Yue, ZHA Fei. Graphitic Carbon Nitride Microspheres Supported α-FeO(OH) Hybrids for Visible Light Photodegradation of MO [J]. Chemical Research in Chinese Universities, 2019, 35(2): 319-324. |
[7] | MENG Shengfei, WANG Pengyue, CHEN Liuran, GAO Guanghui, ZHANG Jidong. In situ Characterization of Phase Transition of Amorphous Poly(9,9-di-n-octyl-2,7-fluorene) Thin Film During Thermal Annealing [J]. Chemical Research in Chinese Universities, 2019, 35(1): 157-162. |
[8] | WANG Jianmin, CAO Feng, DENG Ruiping, HUANG Lijian, LI Song, CAI Jiajia, LÜ Xin, QIN Gaowu. Structural and Morphological Modulation of BiOCl Visible-light Photocatalyst Prepared via an In situ Oxidation Synthesis [J]. Chemical Research in Chinese Universities, 2016, 32(3): 338-342. |
[9] | LIU Yujun, ZHOU Feng, ZHAN Su, YANG Yifan, YIN Yanfeng. Significantly Enhanced Performance of g-C3N4/Bi2MoO6 Films for Photocatalytic Degradation of Pollutants Under Visible-light Irradiation [J]. Chemical Research in Chinese Universities, 2016, 32(2): 284-290. |
[10] | XUE Rongming, ZHAO Yue, XU Guiying, LI Yaowen, LI Yongfang. Impact of Alkoxyl Tail of Fullerene Dyad Acceptor on Crystalline Microstructure for Efficient External Treatment-free Polymer Solar Cells with Poly(3-hexylthiophene) as Donor [J]. Chemical Research in Chinese Universities, 2015, 31(5): 865-872. |
[11] | HUANG Zhiqiang, GUO Jia, WANG Xiaoling, GAO Haiyan, YU Jianguo, ZHAO Yongnan, LI Guodong. Rational Fabrication of Size Tunable SnO2 Hollow Microspheres [J]. Chemical Research in Chinese Universities, 2015, 31(5): 719-723. |
[12] | FENG Jing, WANG Yuting, ZOU Linyi, LI Bowen, HE Xiaofeng, LIU Shengna, CHEN Tingting, FAN Zhuangjun, REN Yueming, LÜ Yanzhuo. Improved Visible-light Photocatalytic Properties of ZnFe2O4 Synthesized via Sol-gel Method Combined with a Microwave Treatment [J]. Chemical Research in Chinese Universities, 2015, 31(3): 439-442. |
[13] | LI Qingsong, YANG Qingxiang, ZHANG Haiquan. Mechanical Properties of PPV Film in Thermal Elimination Process [J]. Chemical Research in Chinese Universities, 2014, 30(4): 698-701. |
[14] | XU Shi-hong, TAN Dong-dong, BI De-fu, SHI Peng-hui, LU Wei, SHANGGUAN Wen-feng, MA Chun-yan. Effect of Magnetic Carrier NiFe2O4 Nanoparticles on Physicochemical and Catalytic Properties of Magnetically Separable Photocatalyst TiO2/NiFe2O4 [J]. Chemical Research in Chinese Universities, 2013, 29(1): 121-125. |
[15] | WANG Wei, YUAN Qing, CHI Yue, SHAO Chang-lu, LI Nan, LI Xiao-tian . Preparation and Photocatalysis of Mesoporous TiO2 Nanofibers via an Electrospinning Technique [J]. Chemical Research in Chinese Universities, 2012, 28(4): 727-731. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||