Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1): 10-23.doi: 10.1007/s40242-020-9068-7
• Reviews • Previous Articles Next Articles
YANG Chao1,2, WANG Hao-Fan1, XU Qiang1
Received:
2019-11-27
Revised:
2019-12-26
Online:
2020-02-01
Published:
2019-12-25
Contact:
XU Qiang
E-mail:q.xu@aist.go.jp
Supported by:
YANG Chao, WANG Hao-Fan, XU Qiang. Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion[J]. Chemical Research in Chinese Universities, 2020, 36(1): 10-23.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666 |
[2] | Sakamoto R., Fukui N., Maeda H., Matsuoka R., Toyoda R., Nishi-hara H., Adv. Mater., 2019, 1804211 |
[3] | Chhowalla M., Shin H. S., Eda G., Li L. J., Loh K., Zhang H., Nat. Chem., 2013, 5, 263 |
[4] | Ghidiu M., Lukatskaya M. R., Zhao M. Q., Gogotsi Y., Barsoum M. W., Nature, 2014, 516, 78 |
[5] | Lin Y., Williams T. V., Connell J. W., J. Phys. Chem. Lett., 2010, 1, 277 |
[6] | Zhang J., Chen Y., Wang X., Energy Environ. Sci., 2015, 8, 3092 |
[7] | Wang Q., O'Hare D., Chem. Rev., 2012, 112, 4124 |
[8] | Chen Y., Fan Z., Zhang Z., Niu W., Li C., Yang N., Chen B., Zhang H., Chem. Rev., 2018, 118, 6409 |
[9] | Peng Y., Li Y., Ban Y., Jin H., Jiao W., Liu X., Yang W., Science, 2014, 346, 1356 |
[10] | Colson J. W., Woll A. R., Mukherjee A., Levendorf M. P., Spitler E. L., Shields V. B., Spencer M. G., Park J., Dichtel W. R., Science, 2011, 332, 228 |
[11] | Kory M. J., Wörle M., Weber T., Payamyar P., van de Poll S. W., Dshemuchadse J., Trapp N., Schlüter A. D., Nat. Chem., 2014, 6, 779 |
[12] | Li L., Yu Y., Ye G. J., Ge Q., Ou X., Wu H., Feng D., Chen X. H., Zhang Y., Nat. Nanotechnol., 2014, 9, 372 |
[13] | Dou L., Wong A. B., Yu Y., Lai M., Kornienko N., Eaton S. W., Fu A., Bischak C. G., Ma J., Ding T., Ginsberg N. S., Wang L. W., Alivisatos A. P., Yang P., Science, 2015, 349, 1518 |
[14] | Jin H., Guo C., Liu X., Liu J., Vasileff A., Jiao Y., Zheng Y., Qiao S. Z., Chem. Rev., 2018, 118, 6337 |
[15] | Sial M. A. Z. G., Din M. A. U., Wang X., Chem. Soc. Rev., 2018, 47, 6175 |
[16] | Wang X., Weng Q., Yang Y., Bando Y., Golberg D., Chem. Soc. Rev., 2016, 45, 4042 |
[17] | Wang X., Sun G., Lia N., Chen P., Chem. Soc. Rev., 2016, 45, 2239 |
[18] | Xue Y., Zhang Q., Wang W., Cao H., Yang Q., Fu L., Adv. Energy Mater., 2017, 7, 1602684 |
[19] | Tan C., Cao X., Wu X. J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G. H., Sindoro M., Zhang H., Chem. Rev., 2017, 117, 6225 |
[20] | Kumar A., Xu Q., Chem. Nano Mat., 2018, 4, 28 |
[21] | Nicolosi V., Chhowalla M., Kanatzidis M. G., Strano M. S., Coleman J. N., Science, 2013, 340, 1226419 |
[22] | Cai X., Luo Y., Liu B., Cheng H. M., Chem. Soc. Rev., 2018, 47, 6224 |
[23] | Zhang X., Xie Y., Chem. Soc. Rev., 2013, 42, 8187 |
[24] | Sun Y., Gao S., Xie Y., Chem. Soc. Rev., 2014, 43, 530 |
[25] | Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K., Proc. Natl. Acad. Sci., 2005, 102, 10451 |
[26] | Coleman J. N., Lotya M., O'Neill A., Bergin S. D., King P. J., Khan U., Young K., Gaucher A., De S., Smith R. J., Shvets I. V., Arora S. K., Stanton G., Kim H. Y., Lee K., Kim G. T., Duesberg G. S., Hallam T., Boland J. J., Wang J. J., Donegan J. F., Grunlan J. C., Moriarty G., Shmeliov A., Nicholls R. J., Perkins J. M., Grieveson E. M., Theuwissen K., McComb D. W., Nellist P. D., Nicolosi V., Sci-ence, 2011, 331, 568 |
[27] | Huang X., Zeng Z., Zhang H., Chem. Soc. Rev., 2013, 42, 1934 |
[28] | Dong L., Yang J., Chhowalla M., Loh K. P., Chem. Soc. Rev., 2017, 46, 7306 |
[29] | Anasori B., Lukatskaya M. R., Gogotsi Y., Nat. Rev. Mater., 2017, 2, 16098. |
[30] | Dines M. B., Mater. Res. Bull., 1975, 10, 287 |
[31] | Hummers W., Offeman R., J. Am. Chem. Soc., 1958, 80, 1339 |
[32] | Paton K. R., Varrla E., Backes C., Smith R. J., Khan U., O'Neill A., Boland C., Lotya M., Istrate O. M., King P., Higgins T., Barwich S., May P., Puczkarski P., Ahmed I., Moebius M., Pettersson H., Long E., Coelho J., O'Brien S. E., McGuire E. K., Sanchez B. M., Duesberg G. S., McEvoy N., Pennycook T. J., Downing C., Crossley A., Nicolosi V., Coleman J. N., Nat. Mater., 2014, 13, 624 |
[33] | Matsumoto M., Saito Y., Park C., Fukushima T., Aida T., Nat. Chem., 2015, 7, 730 |
[34] | Hernandez Y., Nicolosi V., Lotya M., Blighe F. M., Sun Z. Y., De S., McGovern I. T., Holland B., Byrne M., Gun'ko Y. K., Boland J. J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A. C., Coleman J. N., Nat. Nanotechnol., 2008, 3, 563 |
[35] | Yu J., Li J., Zhang W., Chang H., Chem. Sci., 2015, 6, 6705 |
[36] | Zhang Y., Zhang L., Zhou C., Acc. Chem. Res., 2013, 46, 2329 |
[37] | Ji Q., Zhang Y., Zhang Y., Liu Z., Chem. Soc. Rev., 2015, 44, 2587 |
[38] | Shi Y., Li H., Li L. J., Chem. Soc. Rev., 2015, 44, 2744 |
[39] | Du X., Skachko I., Barker A., Andrei E. Y., Nat. Nanotechnol., 2008, 3, 491 |
[40] | Dawlaty J. M., Shivaraman S., Chandrashekhar M., Rana F., Spencer M. G., Appl. Phys. Lett., 2008, 92, 42116 |
[41] | Balandin A. A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C. N., Nano Lett., 2008, 8, 902 |
[42] | Lee C., Wei X. D., Kysar J. W., Hone J., Science, 2008, 321, 385 |
[43] | Novoselov K. S., ECS Transactions, 2009, 19, 3 |
[44] | Li G., Li Y., Liu H., Guo Y., Li Y., Zhu D., Chem. Commun., 2010, 46, 3256 |
[45] | Dai L., Xue Y., Qu L., Choi H. J., Baek J. B., Chem. Rev., 2015, 115, 4823 |
[46] | Yang C., Dong L., Chen Z., Lu H., J. Phys. Chem. C, 2014, 118, 18884 |
[47] | Navalon S., Dhakshinamoorthy A., Alvaro M., Antonietti M., García H., Chem. Soc. Rev., 2017, 46, 4501 |
[48] | Asefa T., Acc. Chem. Res., 2016, 49, 1873 |
[49] | Wu P., Du P., Zhang H., Cai C., Phys. Chem. Chem. Phys., 2013, 15, 6920 |
[50] | Rani P., Jindal V. K., RSC Adv., 2013, 3, 802 |
[51] | Kong X., Chen Q., Sun Z., ChemPhysChem, 2013, 14, 514 |
[52] | Liang J., Jiao Y., Jaroniec M., Qiao S. Z., Angew. Chem. Int. Ed., 2012, 51, 11496 |
[53] | Wang X., Sun G., Routh P., Kim D. H., Huang W., Chen P., Chem. Soc. Rev., 2014, 43, 7067 |
[54] | Karlicky F., Datta K. K. R., Otyepka M., Zboril R., ACS Nano, 2013, 7, 6434 |
[55] | Jeon I. Y., Choi H. J., Choi M., Seo J. M., Jung S. M., Kim M. J., Zhang S., Zhang L., Xia Z., Dai L., Park N., Baek J. B., Sci. Rep., 2013, 3, 1810 |
[56] | Zhang J., Dai L., Angew. Chem. Int. Ed., 2016, 55, 13296 |
[57] | Georgakilas V., Otyepka M., Bourlinos A. B., Chandra V., Kim N., Kemp K. C., Hobza P., Zboril R., Kim K. S., Chem. Rev., 2012, 112, 6156 |
[58] | Chua C. K., Pumera M., Chem. Soc. Rev., 2013, 42, 3222 |
[59] | Quintana M., Spyrou K., Grzelczak M., Browne W. R., Rudolf P., Prato M., ACS Nano, 2010, 4, 3527 |
[60] | Xu Y., Bai H., Lu G., Li C., Shi G. Q., J. Am. Chem. Soc., 2008, 130, 5856 |
[61] | Yan L., Zheng Y. B., Zhao F., Li S. J., Gao X. F., Xu B. Q., Weiss P. S., Zhao Y. L., Chem. Soc. Rev., 2012, 41, 97 |
[62] | Ambrosi A., Chua C. K., Latiff N. M., Loo A. H., Wong C. H. A., Eng A. Y. S., Bonanni A., Pumera M., Chem. Soc. Rev., 2016, 45, 2458 |
[63] | Gao X., Liu H., Wang D., Zhang J., Chem. Soc. Rev., 2019, 48, 908 |
[64] | Huang C., Li Y., Wang N., Xue Y., Zuo Z., Liu H., Li Y., Chem. Rev., 2018, 118, 7744 |
[65] | Kang B., Shi H., Wu S., Zhao W., Ai H., Lee J. Y., Carbon, 2017, 123, 415 |
[66] | Shang H., Zuo Z., Zheng H., Li K., Tu Z., Yi Y., Liu H., Li Y., Li Y., Nano Energy, 2018, 44, 144 |
[67] | Zhao J., Chen Z., Zhao J., J. Mater. Chem. A, 2019, 7, 4026 |
[68] | Zhang J., Chen G., Müllen K., Feng X., Adv. Mater., 2018, 30, 1800528 |
[69] | Gu J., Magagula S., Zhao J., Chen Z., Small Methods, 2019, 1800550 |
[70] | Das B. K., Sen D., Chattopadhyay K. K., Phys. Chem. Chem. Phys., 2016, 18, 2949 |
[71] | He J., Wang N., Yang Z., Shen X., Wang K., Huang C., Yi Y., Tu Z., Li Y., Energy Environ. Sci., 2018, 11, 2893 |
[72] | Wang N., He J., Tu Z., Yang Z., Zhao F., Li X., Huang C., Wang K., Jiu T., Yi Y., Li Y., Angew. Chem. Int. Ed., 2017, 56, 10740 |
[73] | Farimani A. B., Min K., Aluru N. R., ACS Nano, 2014, 8, 7914 |
[74] | Krasnozhon D., Lembke D., Nyffeler C., Leblebici Y., Kis A., Nano Lett., 2014, 14, 5905 |
[75] | Lv R., Robinson J. A., Schaak R. E., Sun D., Sun Y., Mallouk T. E., Terrones M., Acc. Chem. Res., 2014, 48, 56 |
[76] | Splendiani A., Sun L., Zhang Y. B., Li T. S., Kim J., Chim C. Y., Galli G., Wang F., Nano Lett., 2010, 10, 1271 |
[77] | Voiry D., Mohite A., Chhowalla M., Chem. Soc. Rev., 2015, 44, 2702 |
[78] | Acerce M., Voiry D., Chhowalla M., Nat. Nanotechnol., 2015, 10, 313 |
[79] | Li H., Jia X., Zhang Q., Wang X., Chem., 2018, 4, 1 |
[80] | Gutiérrez H. R., Perea-López N., Elía A. L., Berkdemir A., Wang B., Lv R., López-Urías F., Crespi V. H., Terrones H., Terrones M., Nano Lett., 2013, 13, 3447 |
[81] | Wang Z., Shen Y., Ito Y., Zhang Y., Du J., Fujita T., Hirata A., Tang Z., Chen M., ACS Nano, 2018, 12, 1571 |
[82] | Eda G., Yamaguchi H., Voiry D., Fujita T., Chen M. W., Chhowalla M., Nano Lett., 2011, 11, 5111 |
[83] | Tang H., Wang J., Yin H., Zhao H., Wang D., Tang Z., Adv. Mater., 2015, 27, 1117 |
[84] | Chou S. S., Sai N., Lu P., Coker E. N., Liu S., Artyushkova K., Luk T. S., Kaehr B., Brinker C. J., Nat. Commun., 2015, 6, 8311 |
[85] | Lauritsen J. V., Kibsgaard J., Helveg S., Topsøe H., Clausen B. S., Lægsgaard E., Besenbacher F., Nat. Nanotechnol., 2007, 2, 53 |
[86] | Hu Z., Wu Z., Han C., He J., Ni Z., Chen W., Chem. Soc. Rev., 2018, 47, 3100 |
[87] | Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M. W., Adv. Mater., 2011, 23, 4248 |
[88] | Chaudhari N. K., Jin H., Kim B., San Baek D., Joo S. H., Lee K., J. Mater. Chem. A, 2017, 5, 24564 |
[89] | Xiong D., Li X., Bai Z., Lu S., Small, 2018, 14, 1703419 |
[90] | Lukatskaya M. R., Mashtalir O., Ren C. E., Dall'Agnese Y., Rozier P., Taberna P. L., Naguib M., Simon P., Barsoum M. W., Gogotsi Y., Science, 2013, 341, 1502. |
[91] | Ng V. M. H., Huang H., Zhou K., Lee P. S., Que W., Xu J. Z., Kong L. B., J. Mater. Chem. A, 2017, 5, 3039 |
[92] | Naguib M., Mochalin V. N., Barsoum M. W., Gogotsi Y., Adv. Mater., 2014, 26, 992 |
[93] | Chen K., Xue D., Chem. Rec., 2018, 18, 282 |
[94] | Chen K., Xue D., Nanotechnology, 2017, 29, 024003. |
[95] | Chen K., Xue D., Scientia Sinica Technologica, 2018, 49, 175 |
[96] | Chen K., Xue D., Funct. Mater. Lett., 2019, 12, 1830005 |
[97] | Simon P., Gogotsi Y., Nat. Mater., 2008, 7, 845 |
[98] | Wang F., Wu X., Yuan X., Liu Z., Zhang Y., Fu L., Zhu Y., Zhou Q., Wu Y., Huang W., Chem. Soc. Rev., 2017, 46, 6816 |
[99] | Hu Y., Zhao Y., Li Y., Li H., Qu L., Xie X., Dai L. M., Chem. Res. Chinese Universities, 2012, 28(2), 302 |
[100] | Pachfule P., Shinde D., Majumder M., Xu Q., Nat. Chem., 2016, 8, 718 |
[101] | Liang Z., Zhao R., Qiu T., Zou R., Xu Q., Energy Chem., 2019, 1, 100001 |
[102] | Liang X., Chen K., Xue D., Adv. Energy Mater., 2018, 8, 1703329 |
[103] | Yu X., Yun S., Yeon J. S., Bhattacharya P., Wang L., Woo L. S., Hu X., Park H. S., Adv. Energy Mater., 2018, 8, 1702930 |
[104] | Wang Y., Song Y., Xia Y., Chem. Soc. Rev., 2016, 45, 5925 |
[105] | Yang C., Chen Z., Shakir I., Xu Y., Lu H., Nano Res., 2016, 9, 951 |
[106] | Zhang Q. F., Uchaker E., Candelaria S. L., Cao G. Z., Chem. Soc. Rev., 2013, 42, 3127 |
[107] | Yu G., Xie X., Pan L., Bao Z., Cui Y., Nano Energy, 2013, 2, 213 |
[108] | Hu C., Song L., Zhang Z., Chen N., Feng Z., Qu L., Energy Environ. Sci., 2015, 8, 31 |
[109] | Zhang C., Lv W., Tao Y., Yang Q. H., Energy Environ. Sci., 2015, 8, 1390 |
[110] | Wang H., Wu Y., Yuan X., Zeng G., Zhou J., Wang X., Chew J. W., Adv. Mater., 2018, 30, 1704561 |
[111] | Kong L. B., Zhang J., Cai J. J., Yang Z. S., Luo Y. C., Kang L., Chem. Res. Chinese Universities, 2011, 27(2), 295 |
[112] | Wang H., Shi X., Shi Y., Zhang W., Yao S., Chem. Res. Chinese Universities, 2017, 33(4), 638 |
[113] | Brezesinski T., Wang J., Tolbert S. H., Dunn B., Nat. Mater., 2010, 9, 146 |
[114] | Augustyn V., Come J., Lowe M. A., Kim J. W., Taberna P. L., Tolbert S. H., Abrua H. D., Simon P., Dunn B., Nat. Mater., 2013, 12, 518 |
[115] | Xia J., Chen F., Li J., Tao N., Nat. Nanotechnol., 2009, 4, 505 |
[116] | Xu P., Kang J., Choi J. B., Suhr J., Yu J., Li F., Byun J. H., Kim B. S., Chou T. W., ACS Nano, 2014, 8, 9437 |
[117] | Zhu Y., Murali S., Stoller M. D., Ganesh K. J., Cai W., Ferreira P. J., Pirkle A., Wallace R. M., Cychosz K. A., Thommes M., Su D., Stach E. A., Ruoff R. S., Science, 2011, 332, 1537 |
[118] | Cui C., Qian W., Yu Y., Kong C., Yu B., Xiang L., Wei F., J. Am. Chem. Soc., 2014, 136, 2256 |
[119] | Zhang W., Xu C., Ma C., Li G., Wang Y., Zhang K., Li F., Liu C., Cheng H. M., Du Y., Tang N., Ren W., Adv. Mater., 2017, 29, 1701677 |
[120] | Zhao Y., Hu C., Hu Y., Cheng H., Shi G., Qu L., Angew. Chem. Int. Ed., 2012, 51, 11371 |
[121] | Yan J., Wang Q., Wei T., Jiang L., Zhang M., Jing X., Fan Z., ACS Nano, 2014, 8, 4720 |
[122] | Wang T., Wang L. X., Wu D. L., Xia W., Jia D. Z., Sci. Rep., 2015, 5, 9591 |
[123] | Okubo M., Sugahara A., Kajiyama S., Yamada A., Acc. Chem. Res., 2018, 51, 591 |
[124] | Salanne M., Rotenberg B., Naoi K., Kaneko K., Taberna P. L., Grey C. P., Dunn B., Simon P., Nat. Energy, 2016, 1, 16070 |
[125] | Dall'Agnese Y., Lukatskaya M. R., Cook K. M., Taberna P. L., Gogotsi Y., Simon P., Electrochem. Commun., 2014, 48, 118 |
[126] | Wen Y., Rufford T. E., Chen X., Li N., Lyu M., Dai L., Wang L., Nano Energy, 2017, 38, 368 |
[127] | Yoon Y., Lee M., Kim S. K., Bae G., Song W., Myung S., Lim J., Lee S. S., Zyung T., An K. S., Adv. Energy Mater., 2018, 1703173 |
[128] | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I. B., Nørskov J. K., Jaramillo T. F., Science, 2017, 355, eaad4998 |
[129] | Borup R., Meyers J., Pivovar B., Kim Y. S., Mukundan R., Garland N., Myers D., Wilson M., Garzon F., Wood D., Zelenay P., More K., Stroh K., Zawodzinski T., Boncella J., McGrath J. E., Inaba M., Miyatake K., Hori M., Ota K., Ogumi Z., Miyata S., Nishikata A., Siroma Z., Uchimoto Y., Yasuda K., Kimijima K. I., Iwashita N., Chem. Rev., 2007, 107, 3904 |
[130] | Qu L., Liu Y., Baek J. B., Dai L., ACS Nano, 2010, 4, 1321 |
[131] | Ito Y., Qiu H. J., Fujita T., Tanabe Y., Tanigaki K., Chen M., Adv. Mater., 2014, 26, 4145 |
[132] | Yang Z., Yao Z., Li G., Fang G., Nie H., Liu Z., Zhou X., Chen X., Huang S., ACS Nano, 2012, 6, 205 |
[133] | Zhang X., Lu Z., Fu Z., Tang Y., Ma D., Yang Z., J. Power Sources, 2015, 276, 222 |
[134] | Sheng Z. H., Gao H. L., Bao W. J., Wang F. B., Xia X. H., J. Mater. Chem., 2012, 22, 390 |
[135] | Wu J., Rodrigues M. T. F., Vajtai R., Ajayan P. M., Adv. Mater., 2016, 28, 6239 |
[136] | Chai G. L., Qiu K., Qiao M., Titirici M. M., Shang C., Guo Z., Energy Environ. Sci., 2017, 10, 1186 |
[137] | Kang B., Lee J. Y., J. Phys. Chem. C, 2014, 118, 12035 |
[138] | Kang B., Wu S., Ma J., Ai H., Lee, J. Y., Nanoscale, 2019, 11, 16599 |
[139] | Wang N., He J., Wang K., Zhao Y., Jiu T., Huang C., Li Y., Adv. Mater., 2019, 1803202 |
[140] | Lv Q., Si W., Yang Z., Wang N., Tu Z., Yi Y., Huang C., Jiang L., Zhang M., He J., Long Y., ACS Appl. Mater. Interfaces, 2017, 9, 29744 |
[141] | Zhao Y., Tang H., Yang N., Wang D., Adv. Sci., 2018, 5, 1800959 |
[142] | Yu H., Xue Y., Li Y., Adv. Mater., 2019, 1803101 |
[143] | Zhao Y., Wan J., Yao H., Zhang L., Lin K., Wang L., Yang N., Liu D., Song L., Zhu J., Gu L., Liu L., Zhao H., Li Y., Wang D., Nat. Chem., 2018, 10, 924 |
[144] | Feng Z., Ma Y., Li Y., Li R., Liu J., Li H., Tang Y., Dai X., J. Phys.:Condens. Matter, 2019, 31, 465201 |
[145] | Lv Q., Si W., He J., Sun L., Zhang C., Wang N.,Yang Z., Li X., Wang X., Deng W., Long Y., Huang C., Li Y., Nat. Commun., 2018, 9, 3376 |
[146] | Zhang S., Cai Y., He H., Zhang Y., Liu R., Cao H., Wang M., Liu J., Zhang G., Li Y., Liu H., Li B., J. Mater. Chem. A, 2016, 4, 4738 |
[147] | Zhang X., Shi S., Gu T., Li L., Yu S., Phys. Chem. Chem. Phys., 2018, 20, 18184 |
[148] | Huang H., Feng X., Du C., Song W., Chem. Commun., 2015, 51, 7903 |
[149] | Huang H., Feng X., Du C., Song W., J. Mater. Chem. A, 2015, 3, 16050 |
[150] | Zhang H., Tian Y., Zhao J., Cai Q., Chen Z., Electrochim. Acta, 2017, 225, 543 |
[151] | Chua X. J., Luxa J., Eng A. Y. S., Tan S. M., Sofer Z., Pumera M., ACS Catal., 2016, 6, 5724 |
[152] | Eng A. Y. S., Ambrosi A., Sofer Z., Simek P., Pumera M., ACS Nano, 2014, 8, 12185 |
[153] | Jiao Y., Zheng Y., Jaroniec M., Qiao S. Z., Chem. Soc. Rev., 2015, 44, 2060 |
[154] | Nørskov J. K., Bligaard T., Logadottir A., Kitchin J. R., Chen J. G., Pandelov S., Stimming U., J. Electrochem. Soc., 2005, 152, J23 |
[155] | Strmcnik D., Uchimura M., Wang C., Subbaraman R., Danilovic N., van der Vliet D., Paulikas A. P., Stamenkovic V. R., Markovic N. M., Nat. Chem., 2013, 5, 300 |
[156] | Zheng Y., Jiao Y., Li L. H., Xing T., Chen Y., Jaroniec M., Qiao S. Z., ACS Nano, 2014, 8, 5290 |
[157] | Jiao Y., Zheng Y., Davey K., Qiao S. Z., Nat. Energy, 2016, 1, 16130 |
[158] | Ito Y., Cong W., Fujita T., Tang Z., Chen M., Angew. Chem. Int. Ed., 2014, 54, 2131 |
[159] | Hinnemann B., Moses P. G., Bonde J., Jørgensen K. P., Nielsen J. H., Horch S., Chorkendorff I., Nørskov J. K., J. Am. Chem. Soc., 2005, 127, 5308 |
[160] | Tsai C., Chan K., Abild-Pedersen F., Norskov J. K., Phys. Chem. Chem. Phys., 2014, 16, 13156 |
[161] | Fan X. L., Yang Y., Xiao P., Lau W. M., J. Mater. Chem. A, 2014, 2, 20545 |
[162] | Voiry D., Salehi M., Silva R., Fujita T., Chen M., Asefa T., Shenoy V. B., Eda G., Chhowalla M., Nano Lett., 2013, 13, 6222 |
[163] | Yin Y., Han J., Zhang Y., Zhang X., Xu P., Yuan Q., Samad L., Wang X., Wang Y., Zhang Z., Zhang P., Cao X., Song B., Jin S., J. Am. Chem. Soc., 2016, 138, 7965 |
[164] | Yu Y. F., Nam G. H., Wu X. J., Zhang K., Yang Z. Z., Chen J. Z., Ma Q. L., Ran F. R., Wang X. Z., Li H., Huang X., Xiong Q. H., Zhang Q., Gu L., Huang W., Zhang H., Nat. Chem., 2018, 10, 638 |
[1] | ZHENG Xuelian, LIU Ling, YANG Cuicui, HE Yuanyuan, CHEN Jiu, TIAN Wei Quan. Modulation of the Second Order Nonlinear Optical Properties of Helical Graphene Nanoribbons Through Introducing Azulene Defects or/and BN Units [J]. Chemical Research in Chinese Universities, 2022, 38(4): 974-984. |
[2] | ZHU Junlun, CUI Qian, WEN Wei, ZHANG Xiuhua, WANG Shengfu. Cu/CuO-Graphene Foam with Laccase-like Activity for Identification of Phenolic Compounds and Detection of Epinephrine [J]. Chemical Research in Chinese Universities, 2022, 38(4): 919-927. |
[3] | GAO Wei, LI Yufeng, ZHAO Jitao, ZHANG Zhe, TANG Weiwei, WANG Jun, WU Zhenyu, LI Zhenyu. Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1097-1104. |
[4] | LAN Weifei, HU Ruifeng, HUANG Danrong, DONG Xu, SHEN Gangyi, CHANG Shan, DAI Dongsheng. Palladium Nanoparticles/Graphdiyne Oxide Nanocomposite with Excellent Peroxidase-like Activity and Its Application for Glutathione Detection [J]. Chemical Research in Chinese Universities, 2022, 38(2): 529-534. |
[5] | Hakan, AHAL, Gülben TORĞUT, Erdal CANPOLAT. Optimization of Electrical Conductivity of SA-graphene Nanocomposites Using Response Surface Methodology [J]. Chemical Research in Chinese Universities, 2022, 38(2): 596-602. |
[6] | CHEN Kaichun, ZHENG Xuelian, YANG Cuicui, TIAN Wei Quan, LI Weiqi, YANG Ling. Theoretical Studies on the Electronic Structure of Nano-graphenes for Applications in Nonlinear Optics [J]. Chemical Research in Chinese Universities, 2022, 38(2): 579-587. |
[7] | ZHENG Zhiqiang, HE Feng, XUE Yurui, LI Yuliang. Loading Nickel Atoms on GDY for Efficient CO2 Fixation and Conversion [J]. Chemical Research in Chinese Universities, 2022, 38(1): 92-98. |
[8] | LI Xiaodan, GUO Mengyu, CHEN Chunying. Graphdiyne: from Preparation to Biomedical Applications [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1176-1194. |
[9] | HU Guilin, HE Jingyi, LI Yongjun. Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1195-1212. |
[10] | MAN Yixiao, ZHAO Jinyu, LIU Shipeng, PAN Qingyan, ZHAO Yingjie. Heteroatom Doped Graphdiyne and Analogues: Synthesis, Structures and Applications [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1213-1223. |
[11] | SONG Congying, LI Guoxing. Graphdiyne: A Versatile Material in Electrochemical Energy Conversion and Storage [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1224-1241. |
[12] | WONG Hon Ho, SUN Mingzi, HUANG Bolong. Synergistic Effect of Graphdiyne-based Electrocatalysts [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1242-1256. |
[13] | LI Ru, ZHANG Mingjia, LI Xiaodong, MA Xiaodi, HUANG Changshui. Study of Graphdiyne-based Magnetic Materials [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1257-1267. |
[14] | LI Liang, ZUO Zicheng, HE Feng, JIANG Zhongqing, LI Yuliang. Nitrogen-rich Graphdiyne Film for Efficiently Suppressing the Methanol Crossover in Direct Methanol Fuel Cells [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1275-1282. |
[15] | LI Meiping, WANG Kaihang, LV Qing. N,P-co-Doped Graphdiyne as Efficient Metal-free Catalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1283-1288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||