Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5): 733-747.doi: 10.1007/s40242-020-0150-y
• Review • Previous Articles Next Articles
ZHANG Baochang, LI Yulei, SHI Weiwei, WANG Tongyue, ZHANG Feng, LIU Lei
Received:
2020-05-12
Revised:
2020-06-02
Online:
2020-10-01
Published:
2020-10-01
Contact:
LIU Lei
E-mail:lliu@mail.tsinghua.edu.cn
Supported by:
ZHANG Baochang, LI Yulei, SHI Weiwei, WANG Tongyue, ZHANG Feng, LIU Lei. Chemical Synthesis of Proteins Containing 300 Amino Acids[J]. Chemical Research in Chinese Universities, 2020, 36(5): 733-747.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Kulkarni S. S., Sayers J., Premdjee B., Payne R. J., Nat. Rev. Chem., 2018, 2, 0122 |
[2] | Conibear A. C., Watson E. E., Payne R. J., Becker C. F. W., Chem. Soc. Rev., 2018, 47, 9046 |
[3] | Sun H., Brik A., Acc. Chem. Res., 2019, 52, 3361 |
[4] | Bondalapati S., Jbara M., Brik A., Nat. Chem., 2016, 8, 407 |
[5] | Kent S. B. H., Bioorg. Med. Chem., 2017, 25, 4926 |
[6] | Yang J., Zhao J., Sci. China Chem, 2018, 61, 97 |
[7] | Kent S. B. H., Chem. Soc. Rev., 2009, 38, 338 |
[8] | Kumar K. S. A., Bavikar S. N., Spasser L., Moyal T., Ohayon S., Brik A., Angew. Chem. Int. Ed., 2011, 50, 6137 |
[9] | Weinstock M. T., Jacobsen M. T., Kay M. S., Proc. Natl. Acad. Sci. USA, 2014, 111, 11679 |
[10] | Pech A., Achenbach J., Jahnz M., Schülzchen S., Jarosch F., Bordusa F., Klussmann S., Nucleic Acids Res., 2017, 45, 3997 |
[11] | Xu W., Jiang W., Wang J., Yu L., Chen J., Liu X., Liu L., Zhu T. F., Cell Discovery, 2017, 3, 17008 |
[12] | Jiang W., Zhang B., Fan C., Wang M., Wang J., Deng Q., Liu X., Chen J., Zheng J., Liu L., Zhu T. F., Cell Discovery, 2017, 3, 17037 |
[13] | Hojo H., Org. Biomol. Chem., 2016, 14, 6368 |
[14] | Bode J. W., Acc. Chem. Res., 2017, 50, 2104 |
[15] | Liu H., Li X., Acc. Chem. Res., 2018, 51, 1643 |
[16] | Xu S., Zhao Z., Zhao J., Chin. Chem. Lett., 2018, 29, 1009 |
[17] | Agouridas V., El Mahdi O., Diemer V., Cargoët M., Monbaliu J. C. M., Melnyk O., Chem. Rev., 2019, 119, 7328 |
[18] | Olschewski D., Becker C. F. W., Mol. Biosyst., 2008, 4, 733 |
[19] | Li J. B., Tang S., Zheng J. S., Tian C. L., Liu L., Acc. Chem. Res., 2017, 50, 1143 |
[20] | Yoshiya T., Tsuda S., Masuda S., ChemBioChem, 2019, 20, 1906 |
[21] | Wang S., Thopate Y. A., Zhou Q., Wang P. Chin. J. Chem., 2019, 37, 1181 |
[22] | Pedersen S. L., Tofteng A. P., Malik L., Jensen K. J., Chem. Soc. Rev., 2012, 41, 1826 |
[23] | Coantic S., Subra G., Martinez J., Int. J. Pept. Res. Ther., 2008, 14, 143 |
[24] | Palasek S. A., Cox Z. J., Collins J. M., J. Pept. Sci., 2007, 13, 143 |
[25] | Rodríguez H., Suarez M., Albericio F., J. Pept. Sci., 2010, 16, 136 |
[26] | Ben Haj Salah K., Inguimbert N., Org. Lett., 2014, 16, 1783 |
[27] | Malik L., Tofteng A. P., Pedersen S. L., Sørensen K. K., Jensen K. J., J. Pept. Sci., 2010, 16, 506 |
[28] | Singer D., Zauner T., Genz M., Hoffmann R., Zuchner T., J. Pept. Sci., 2010, 16, 358 |
[29] | Qu Q., Pan M., Gao S., Zheng Q. Y., Yu Y. Y., Su J. C., Li X., Hu H. G., Adv. Sci., 2018, 5, 1800234 |
[30] | Lu L., Guo Y., Wang T., Liang L., Zhao S., Wang F., Liu L., Sci. China Chem., 2020, 63, 237 |
[31] | Huang Y. C., Fang G. M., Liu L., Natl. Sci. Rev., 2016, 3, 107 |
[32] | Gordon C. P., Org. Biomol. Chem., 2018, 16, 180 |
[33] | Lücke D., Dalton T., Ley S. V., Wilson Z. E., Chem. Eur. J., 2016, 22, 4206 |
[34] | Mijalis A. J., Thomas D. A., Simon M. D., Adamo A., Beaumont R., Jensen K. F., Pentelute B. L., Nat. Chem. Biol., 2017, 13, 464 |
[35] | Mándity I. M., Olasz B., Ötvös S. B., Fülöp F., ChemSusChem, 2014, 7, 3172 |
[36] | Dawson P. E., Muir T. W., Clark-Lewis I., Kent S. B., Science, 1994, 266, 776 |
[37] | Yan L. Z., Dawson P. E., J. Am. Chem. Soc., 2001, 123, 526 |
[38] | Wan Q., Danishefsky S. J., Angew. Chem. Int. Ed., 2007, 46, 9248 |
[39] | Jin K., Li T., Chow H. Y., Liu H., Li X., Angew. Chem. Int. Ed., 2017, 56, 14607 |
[40] | Huang Y., Liu L., Sci. China Chem., 2015, 58, 1779 |
[41] | Botti P., Villain M., Manganiello S., Gaertner H., Org. Lett., 2004, 6, 4861 |
[42] | Warren J. D., Miller J. S., Keding S. J., Danishefsky S. J., J. Am. Chem. Soc., 2004, 126, 6576 |
[43] | Zheng J. S., Chang H. N., Shi J., Liu L., Sci. China Chem., 2012, 55, 64 |
[44] | Zheng J. S., Cui H. K., Fang G. M., Xi W. X., Liu L., ChemBioChem, 2010, 11, 511 |
[45] | Tsuda S., Shigenaga A., Bando K., Otaka A., Org. Lett., 2009, 11, 823 |
[46] | Ollivier N., Dheur J., Mhidia R., Blanpain A., Melnyk O., Org. Lett., 2010, 12, 5238 |
[47] | Dheur J., Ollivier N., Vallin A., Melnyk O., J. Org. Chem., 2011, 76, 3194 |
[48] | Zheng J. S., Chang H. N., Wang F. L., Liu L., J. Am. Chem. Soc., 2011, 133, 11080 |
[49] | Ingenito R., Bianchi E., Fattori D., Pessi A., J. Am. Chem. Soc., 1999, 121, 11369 |
[50] | Shin Y., Winans K. A., Backes B. J., Kent S. B. H., Ellman J. A., Bertozzi C. R., J. Am. Chem. Soc., 1999, 121, 11684 |
[51] | Blanco-Canosa J. B., Dawson P. E., Angew. Chem. Int. Ed., 2008, 47, 6851 |
[52] | Siman P., Karthikeyan S. V., Nikolov M., Fischle W., Brik A., Angew. Chem. Int. Ed., 2013, 52, 8059 |
[53] | Ansaloni A., Wang Z. M., Jeong J. S., Ruggeri F. S., Dietler G., Lashuel H. A., Angew. Chem. Int. Ed., 2014, 53, 1928 |
[54] | Wang J. X., Fang G. M., He Y., Qu D. L., Yu M., Hong Z. Y., Liu L., Angew. Chem. Int. Ed., 2015, 54, 2194 |
[55] | Tofteng A. P., Sørensen K. K., Conde-Frieboes K. W., Hoeg-Jensen T., Jensen K. J., Angew. Chem. Int. Ed., 2009, 48, 7411 |
[56] | Nilsson B. L., Kiessling L. L., Raines R. T., Org. Lett., 2000, 2, 1939 |
[57] | Zhang Y., Xu C., Lam H. Y., Lee C. L., Li X., Proc. Natl. Acad. Sci. USA, 2013, 110, 6657 |
[58] | Li T., Liu H., Li X., Org. Lett., 2016, 18, 5944 |
[59] | Xu C., Xu J., Liu H., Li X., Chin. Chem. Lett., 2018, 29, 1119 |
[60] | Huang D. L., Montigny C., Zheng Y., Beswick V., Li Y., Cao X. X., Barbot T., Jaxel C., Liang J., Xue M., Tian C. L., Jamin N., Zheng J. S., Angew. Chem. Int. Ed., 2020, 59, 5178 |
[61] | Pusterla I., Bode J. W., Nat. Chem., 2015, 7, 668 |
[62] | Pattabiraman V. R., Ogunkoya A. O., Bode J. W., Angew. Chem. Int. Ed., 2012, 51, 5114 |
[63] | Baldauf S., Schauenburg D., Bode J. W., Angew. Chem. Int. Ed., 2019, 58, 12599 |
[64] | Wucherpfennig T. G., Pattabiraman V. R., Limberg F. R. P., Ruiz-Rodríguez J., Bode J. W., Angew. Chem. Int. Ed., 2014, 53, 12248 |
[65] | Mitchell N. J., Malins L. R., Liu X., Thompson R. E., Chan B., Radom L., Payne R. J., J. Am. Chem. Soc., 2015, 137, 14011 |
[66] | Mitchell N. J., Sayers J., Kulkarni S. S., Clayton D., Goldys A. M., Ripoll-Rozada J., Pereira P. J. B., Chan B., Radom L., Payne R. J., Chem., 2017, 2, 703 |
[67] | Sayers J., Karpati P. M. T., Mitchell N. J., Goldys A. M., Kwong S. M., Firth N., Chan B., Payne R. J., J. Am. Chem. Soc., 2018, 140, 13327 |
[68] | Kulkarni S. S., Watson E. E., Premdjee B., Conde-Frieboes K. W., Payne R. J., Nat. Protoc., 2019, 14, 2229 |
[69] | Chisholm T. S., Kulkarni S. S., Hossain K. R., Cornelius F., Clarke R. J., Payne R. J., J. Am. Chem. Soc., 2020, 142, 1090 |
[70] | Fang G. M., Li Y. M., Shen F., Huang Y. C., Li J. B., Lin Y., Cui H. K., Liu L., Angew. Chem. Int. Ed., 2011, 50, 7645 |
[71] | Flood D. T., Hintzen J. C. J., Bird M. J., Cistrone P. A., Chen J. S., Dawson P. E., Angew. Chem. Int. Ed., 2018, 57, 11634 |
[72] | Zheng J. S., Tang S., Qi Y. K., Wang Z. P., Liu L., Nat. Protoc., 2013, 8, 2483 |
[73] | Fang G. M., Wang J. X., Liu L., Angew. Chem. Int. Ed., 2012, 51, 10347 |
[74] | Chu G. C., Pan M., Li J., Liu S., Zuo C., Tong Z. B., Bai J. S., Gong Q., Ai H., Fan J., Meng X., Huang Y. C., Shi J., Deng H., Tian C., Li Y. M., Liu L., J. Am. Chem. Soc., 2019, 141, 3654 |
[75] | Zhang B., Deng Q., Zuo C., Yan B., Zuo C., Cao X. X., Zhu T. F., Zheng J. S., Liu L., Angew. Chem. Int. Ed., 2019, 58, 12231 |
[76] | Li Y. M., Yang M. Y., Huang Y. C., Li Y. T., Chen P. R., Liu L., ACS Chem. Biol., 2012, 7, 1015 |
[77] | Adams A. L., Cowper B., Morgan R. E., Premdjee B., Caddick S., Macmillan D., Angew. Chem. Int. Ed., 2013, 52, 13062 |
[78] | Liang J., Fang G., Huang X., Mei Z., Li J., Tian C., Liu L., Sci. China Chem., 2013, 56, 1301 |
[79] | Casadio F., Lu X., Pollock S. B., LeRoy G., Garcia B. A., Muir T. W., Roeder R. G., Allis C. D., Proc. Natl. Acad. Sci. USA, 2013, 110, 14894 |
[80] | Li J., Li Y., He Q., Li Y., Li H., Liu L., Org. Biomol. Chem., 2014, 12, 5435 |
[81] | Li Y. M., Li Y. T., Pan M., Kong X. Q., Huang Y. C., Hong Z. Y., Liu L., Angew. Chem. Int. Ed., 2014, 53, 2198 |
[82] | Mong S. K., Vinogradov A. A., Simon M. D., Pentelute B. L., ChemBioChem, 2014, 15, 721 |
[83] | Pan M., He Y., Wen M., Wu F., Sun D., Li S., Zhang L., Li Y., Tian C., Chem. Commun., 2014, 50, 5837 |
[84] | Reif A., Siebenhaar S., Tröster A., Schmälzlein M., Lechner C., Velisetty P., Gottwald K., Pöhner C., Boos I., Schubert V., Rose-John S., Unverzagt C., Angew. Chem. Int. Ed., 2014, 53, 12125 |
[85] | Simon M. D., Heider P. L., Adamo A., Vinogradov A. A., Mong S. K., Li X., Berger T., Policarpo R. L., Zhang C., Zou Y., Liao X., Spokoyny A. M., Jensen K. F., Pentelute B. L., ChemBioChem, 2014, 15, 713 |
[86] | Murakami M., Kiuchi T., Nishihara M., Tezuka K., Okamoto R., Izumi M., Kajihara Y., Sci. Adv., 2016, 2, e1500678 |
[87] | Pan M., Gao S., Zheng Y., Tan X., Lan H., Tan X., Sun D., Lu L., Wang T., Zheng Q., Huang Y., Wang J., Liu L., J. Am. Chem. Soc., 2016, 138, 7429 |
[88] | Pedersen S. W., Moran G. E., Sereikaitė V., Haugaard-Kedström L. M., Strømgaard K., ChemBioChem, 2016, 17, 1936 |
[89] | Petersen M. E., Jacobsen M. T., Kay M. S., Org. Biomol. Chem., 2016, 14, 5298 |
[90] | Qi Y. K., Tang S., Huang Y. C., Pan M., Zheng J. S., Liu L., Org. Biomol. Chem., 2016, 14, 4194 |
[91] | Tailhades J., Sethi A., Petrie E. J., Gooley P. R., Bathgate R. A., Wade J. D., Hossain M. A., Chem. Eur. J., 2016, 22, 1146 |
[92] | Tang S., Wan Z., Gao Y., Zheng J. S., Wang J., Si Y. Y., Chen X., Qi H., Liu L., Liu W., Chem. Sci., 2016, 7, 1891 |
[93] | Gao S., Pan M., Zheng Y., Huang Y., Zheng Q., Sun D., Lu L., Tan X., Tan X., Lan H., Wang J., Wang T., Wang J., Liu L., J. Am. Chem. Soc., 2016, 138, 14497 |
[94] | Fang G. M., Chen X. X., Yang Q. Q., Zhu L. J., Li N. N., Yu H. Z., Meng X. M., Chin. Chem. Lett., 2018, 29, 1033 |
[95] | Wang Y. J., Szantai-Kis D. M., Petersson E. J., Org. Biomol. Chem., 2016, 14, 6262 |
[96] | Wang Z., Xu W., Liu L., Zhu T. F., Nat. Chem., 2016, 8, 698 |
[97] | Weller C. E., Dhall A., Ding F., Linares E., Whedon S. D., Senger N. A., Tyson E. L., Bagert J. D., Li X., Augusto O., Chatterjee C., Nat. Commun., 2016, 7, 12979 |
[98] | Xie R. L., Xu L., Li J. B., Chu G. C., Wang T., Huang Y. C., Li Y. M., Eur. J. Org. Chem., 2016, 2016, 2665 |
[99] | Xu L., Xu Y., Qu Q., Guan C. J., Chu G. C., Shi J., Li Y. M., RSC Adv., 2016, 6, 47926 |
[100] | Zheng J. S., He Y., Zuo C., Cai X. Y., Tang S., Wang Z. A., Zhang L. H., Tian C. L., Liu L., J. Am. Chem. Soc., 2016, 138, 3553 |
[101] | Zhou L., Holt M. T., Ohashi N., Zhao A., Müller M. M., Wang B., Muir T. W., Nat. Commun., 2016, 7, 10589 |
[102] | Tornøe C. W., Johansson E., Wahlund P. O., Synlett, 2017, 28, 1901 |
[103] | Tang S., Zuo C., Huang D. L., Cai X. Y., Zhang L. H., Tian C. L., Zheng J. S., Liu L., Nat. Protoc., 2017, 12, 2554 |
[104] | Tang S., Liang L. J., Si Y. Y., Gao S., Wang J. X., Liang J., Mei Z., Zheng J. S., Liu L., Angew. Chem. Int. Ed., 2017, 56, 13333 |
[105] | Tan X. L., Pan M., Zheng Y., Gao S., Liang L. J., Li Y. M., Chem. Sci., 2017, 8, 6881 |
[106] | Tan X. D., Pan M., Gao S., Zheng Y., Shi J., Li Y. M., Chem. Commun., 2017, 53, 10208 |
[107] | Shi L., Chen H., Zhang S. Y., Chu T. T., Zhao Y. F., Chen Y. X., Li Y. M., J. Pept. Sci., 2017, 23, 438 |
[108] | Schmidtgall B., Chaloin O., Bauer V., Sumyk M., Birck C., Torbeev V., Chem. Commun., 2017, 53, 7369 |
[109] | Qu Q., Gao S., Li Y. M., J. Pept. Sci., 2018, 24, 3112 |
[110] | Sato K., Tanaka S., Yamamoto K., Tashiro Y., Narumi T., Mase N., Chem. Commun., 2018, 54, 9127 |
[111] | Si Y. Y., Liang L. J., Tang S., Qi Y. K., Huang Y., Zheng J. S., Tetrahedron Lett., 2018, 59, 268 |
[112] | Sun D., Yu Y., Xue X., Pan M., Wen M., Li S., Qu Q., Li X., Zhang L., Li X., Liu L., Yang M., Tian C., Cell Discovery, 2018, 4, 27 |
[113] | Sun H., Meledin R., Mali S. M., Brik A., Chem. Sci., 2018, 9, 1661 |
[114] | Zuo C., Zhang B., Wu M., Bierer D., Shi J., Fang G. M., Chin. Chem. Lett., 2020, 31, 693 |
[115] | Zuo C., Shi W. W., Chen X. X., Glatz M., Riedl B., Flamme I., Pook E., Wang J., Fang G. M., Bierer D., Liu L., Sci. China Chem., 2019, 62, 1371 |
[116] | Zoukimian C., Meudal H., De Waard S., Ouares K. A., Nicolas S., Canepari M., Beroud R., Landon C., De Waard M., Boturyn D., Bioorg. Med. Chem., 2019, 27, 247 |
[117] | Zheng Y., Wu F., Ling S., Li J. B., Tian C., Chin. Chem. Lett., 2020, 31, 1267 |
[118] | Zhao Z., Metanis N., Angew. Chem. Int. Ed., 2019, 58, 14610 |
[119] | Zhang Y., Hirota T., Kuwata K., Oishi S., Gramani S. G., Bode J. W., J. Am. Chem. Soc., 2019, 141, 14742 |
[120] | Zhang L., Shen H., Gong Y., Pang X., Yi M., Guo L., Li J., Arroyo S., Lu X., Ovchinnikov S., Cheng G., Liu X., Jiang X., Feng S., Deng H., Chem. Sci., 2019, 10, 3271 |
[121] | Xu L., Fan J., Wang Y., Zhang Z., Fu Y., Li Y. M., Shi J., Chem. Commun., 2019, 55, 7109 |
[122] | Shu K., Iwamoto N., Honda K., Kondoh Y., Hirano H., Osada H., Ohno H., Fujii N., Oishi S., Bioconjug. Chem., 2019, 30, 1395 |
[123] | Pan M., Zheng Q., Ding S., Zhang L., Qu Q., Wang T., Hong D., Ren Y., Liang L., Chen C., Mei Z., Liu L., Angew. Chem. Int. Ed., 2019, 58, 2627 |
[124] | Mannuthodikayil J., Singh S., Biswas A., Kar A., Tabassum W., Vydyam P., Bhattacharyya M. K., Mandal K., Org. Lett., 2019, 21, 9040 |
[125] | Lu D., Yin H., Wang S., Tang F., Huang W., Wang P., J. Org. Chem., 2020, 85, 1652 |
[126] | Hemantha H. P., Bavikar S. N., Herman-Bachinsky Y., Haj-Yahya N., Bondalapati S., Ciechanover A., Brik A., J. Am. Chem. Soc., 2014, 136, 2665 |
[127] | Wang M., Jiang W., Liu X., Wang J., Zhang B., Fan C., Liu L., Pena-Alcantara G., Ling J. J., Chen J., Zhu T. F., Chem, 2019, 5, 848 |
[128] | Zheng J. S., Yu M., Qi Y. K., Tang S., Shen F., Wang Z. P., Xiao L., Zhang L., Tian C. L., Liu L., J. Am. Chem. Soc., 2014, 136, 3695 |
[129] | Vinogradov A. A., Evans E. D., Pentelute B. L., Chem. Sci., 2015, 6, 2997 |
[130] | Tsuda Y., Shigenaga A., Tsuji K., Denda M., Sato K., Kitakaze K., Nakamura T., Inokuma T., Itoh K., Otaka A., ChemistryOpen, 2015, 4, 448 |
[131] | Sun H., Mali S. M., Singh S. K., Meledin R., Brik A., Kwon Y. T., Kravtsova-Ivantsiv Y., Bercovich B., Ciechanover A., Proc. Natl. Acad. Sci. USA, 2019, 116, 7805 |
[132] | Seenaiah M., Jbara M., Mali S. M., Brik A., Angew. Chem. Int. Ed., 2015, 54, 12374 |
[133] | Qi Y. K., Chang H. N., Pan K. M., Tian C. L., Zheng J. S., Chem. Commun., 2015, 51, 14632 |
[134] | Liu L., Isr. J. Chem., 2019, 59, 64 |
[135] | Chen X., Tang S., Zheng J. S., Zhao R., Wang Z. P., Shao W., Chang H. N., Cheng J. Y., Zhao H., Liu L., Qi H., Nat. Commun., 2015, 6, 7220 |
[136] | Jacobsen M. T., Petersen M. E., Ye X., Galibert M., Lorimer G. H., Aucagne V., Kay M. S., J. Am. Chem. Soc., 2016, 138, 11775 |
[137] | Lan H., Wu K., Zheng Y., Pan M., Huang Y. C., Gao S., Zheng Q. Y., Zheng J. S., Li Y. M., Xiao B., Liu L., J. Pept. Sci., 2016, 22, 320 |
[138] | Li Y. T., Huang Y. C., Xu Y., Pan M., Li Y. M., Tetrahedron, 2016, 72, 4085 |
[139] | Lühmann T., Mong S. K., Simon M. D., Meinel L., Pentelute B. L., Org. Biomol. Chem., 2016, 14, 3345 |
[140] | Maity S. K., Jbara M., Brik A., J. Pept. Sci., 2016, 22, 252 |
[141] | Qi Y. K., He Q. Q., Ai H. S., Li J. B., Zheng J. S., Synlett, 2017, 28, 1907 |
[142] | Noguchi T., Ishiba H., Honda K., Kondoh Y., Osada H., Ohno H., Fujii N., Oishi S., Bioconjug. Chem., 2017, 28, 609 |
[143] | Qi Y. K., He Q. Q., Ai H. S., Guo J., Li J. B., Chem. Commun., 2017, 53, 4148 |
[144] | Liang J., Zhang L., Tan X. L., Qi Y. K., Feng S., Deng H., Yan Y., Zheng J. S., Liu L., Tian C. L., Angew. Chem. Int. Ed., 2017, 56, 2744 |
[145] | He Q., Li J., Qi Y., Wang Z., Huang Y., Liu L., Sci. China Chem., 2017, 60, 621 |
[146] | Li J., He Q., Liu Y., Liu S., Tang S., Li C., Sun D., Li X., Zhou M., Zhu P., Bi G., Zhou Z., Zheng J. S., Tian C., ChemBioChem, 2017, 18, 176 |
[147] | Jbara M., Guttmann-Raviv N., Maity S. K., Ayoub N., Brik A., Bioorg. Med. Chem., 2017, 25, 4966 |
[148] | Buhler S., Akkerdaas J. H., Pertinhez T. A., Van Ree R., Dossena A., Sforza S., Tedeschi T., J. Pept. Sci., 2017, 23, 282 |
[149] | Chu G. C., Bai J. S., Kong Y. F., Fan J., Sun S. S., Xu H. J., Shi J., Li Y. M., Tetrahedron, 2018, 74, 3931 |
[150] | Dhall A., Weller C. E., Chu A., Shelton P. M. M., Chatterjee C., ACS Chem. Biol., 2017, 12, 2275 |
[151] | de Araujo A. D., Wu C., Wu K. C., Reid R. C., Durek T., Lim J., Fairlie D. P., Bioconjug. Chem., 2017, 28, 1669 |
[152] | Hayashi G., Kamo N., Okamoto A., Chem. Commun., 2017, 53, 5918 |
[153] | Kamo N., Hayashi G., Okamoto A., Chem. Commun., 2018, 54, 4337 |
[154] | Chen C. C., Gao S., Ai H. S., Qu Q., Tian C. L., Li Y. M., Sci. China Chem., 2018, 61, 702 |
[155] | Dhayalan B., Mandal K., Rege N., Weiss M. A., Eitel S. H., Meier T., Schoenleber R. O., Kent S. B. H., Chem. Eur. J., 2017, 23, 1709 |
[156] | Haj-Yahya M., Lashuel H. A., J. Am. Chem. Soc., 2018, 140, 6611 |
[157] | Guo X. Q., Liang J., Li Y., Zhang Y., Huang D., Tian C., Chin. Chem. Lett., 2018, 29, 1139 |
[158] | He W., Yan J., Sui F., Wang S., Su X., Qu Y., Yang Q., Guo H., Ji M., Lu W., Shao Y., Hou P., ACS Nano, 2018, 12, 11664 |
[159] | Kilic S., Boichenko I., Lechner C. C., Fierz B., Chem. Sci., 2018, 9, 3704 |
[160] | Liang L. J., Si Y., Tang S., Huang D., Wang Z. A., Tian C., Zheng J. S., Chin. Chem. Lett., 2018, 29, 1155 |
[161] | Li J. B., Qi Y. K., He Q. Q., Ai H. S., Liu S. l., Wang J. X., Zheng J. S., Liu L., Tian C., Cell Res., 2018, 28, 257 |
[162] | Liu J., Dong S., Chin. Chem. Lett., 2018, 29, 1131 |
[163] | Hua X., Bai J. S., Kong Y. F., Chu G. C., Shi J., Li Y. M., Tetrahedron Lett., 2019, 60, 151123 |
[164] | Liang J., Gong Q., Li Y., Zheng Y., Zheng J. S., Tian C., Li J. B., Chem. Commun., 2019, 55, 12639 |
[165] | Guidotti N., Lechner C. C., Bachmann A. L., Fierz B., ChemBioChem, 2019, 20, 1124 |
[166] | Hartmann L., Botzanowski T., Galibert M., Jullian M., Chabrol E., Zeder-Lutz G., Kugler V., Stojko J., Strub J. M., Ferry G., Frankiewicz L., Puget K., Wagner R., Cianferani S., Boutin J. A., Protein Sci., 2019, 28, 1865 |
[167] | Guo Q. Y., Zhang L. H., Zuo C., Huang D. L., Wang Z. A., Zheng J. S., Tian C. L., Protein & Cell, 2019, 10, 211 |
[168] | Fulcher J. M., Petersen M. E., Giesler R. J., Cruz Z. S., Eckert D. M., Francis J. N., Kawamoto E. M., Jacobsen M. T., Kay M. S., Org. Biomol. Chem., 2019, 17, 10237 |
[169] | Dao Y., Han L., Wang H., Dong S., Org. Lett., 2019, 21, 3265 |
[170] | De Rosa L., Di Stasi R., D'Andrea L. D., Tetrahedron, 2019, 75, 894 |
[171] | Chu G. C., Hua X., Zuo C., Chen C. C., Meng X. B., Zhang Z., Fu Y., Shi J., Li Y. M., Chem. Eur. J., 2019, 25, 16668 |
[172] | Ai H., Guo Y., Sun D., Liu S., Qi Y., Guo J., Qu Q., Gong Q., Zhao S., Li J., Liu L., ChemBioChem, 2019, 20, 221 |
[173] | Baral A., Asokan A., Bauer V., Kieffer B., Torbeev V., Tetrahedron, 2019, 75, 703 |
[174] | Cai Z., Wei Q., Li X., Luan Y., Dong S., J. Org. Chem., 2020, 85, 1740 |
[175] | Brown Z. Z., Mapelli C., Farasat I., Shoultz A. V., Johnson S. A., Orvieto F., Santoprete A., Bianchi E., McCracken A. B., Chen K., Zhu X., Demma M. J., Lacey B. M., Canada K. A., Garbaccio R. M., O'Neil J., Walji A., J. Org. Chem., 2020, 85, 1466 |
[176] | Lin Q., Hopper D., Zhang H., Qoon J. S., Shen Z., Karas J. A., Hughes R. A., Northfield S. E., ACS Omega, 2020, 5, 1840 |
[177] | Ling J. J., Fan C., Qin H., Wang M., Chen J., Wittung-Stafshede P., Zhu T. F., Angew. Chem. Int. Ed., 2020, 59, 3724 |
[178] | Mivelaz M., Fierz B., Methods, 2020, https://doi.org/10.1016/j.ymeth.2020.01.018 |
[179] | Wu Y., Li Y., Cong W., Zou Y., Li X., Hu H., Chin. Chem. Lett., 2020, 31, 107 |
[180] | Tang S., Si Y. Y., Wang Z. P., Mei K. R., Chen X., Cheng J. Y., Zheng J. S., Liu L., Angew. Chem. Int. Ed., 2015, 54, 5713 |
[181] | Pan M., Zheng Q., Gao S., Qu Q., Yu Y., Wu M., Lan H., Li Y., Liu S., Li J., Sun D., Lu L., Wang T., Zhang W., Wang J., Li Y., Hu H. G., Tian C., Liu L., CCS Chemistry, 2019, 1, 476 |
[182] | Bang D., Pentelute B. L., Kent S. B. H., Angew. Chem. Int. Ed., 2006, 45, 3985 |
[183] | Hojo H., Onuma Y., Akimoto Y., Nakahara Y., Nakahara Y., Tetrahedron Lett., 2007, 48, 25 |
[184] | Erlich L. A., Kumar K. S. A., Haj-Yahya M., Dawson P. E., Brik A., Org. Biomol. Chem., 2010, 8, 2392 |
[185] | Bang D., Kent S. B. H., Angew. Chem. Int. Ed., 2004, 43, 2534 |
[186] | Huang Y. C., Chen C. C., Gao S., Wang Y. H., Xiao H., Wang F., Tian C. L., Li Y. M., Chem. Eur. J., 2016, 22, 7623 |
[187] | Veber D., Milkowski J., Varga S., Denkewalter R., Hirschmann R., J. Am. Chem. Soc., 1972, 94, 5456 |
[188] | Jbara M., Maity S. K., Seenaiah M., Brik A., J. Am. Chem. Soc., 2016, 138, 5069 |
[189] | Sakamoto I., Tezuka K., Fukae K., Ishii K., Taduru K., Maeda M., Ouchi M., Yoshida K., Nambu Y., Igarashi J., Hayashi N., Tsuji T., Kajihara Y., J. Am. Chem. Soc., 2012, 134, 5428 |
[190] | Liu S., Pentelute B. L., Kent S. B. H., Angew. Chem. Int. Ed., 2012, 51, 993 |
[191] | Zuo C., Zhang B., Yan B., Zheng J. S., Org. Biomol. Chem., 2019, 17, 727 |
[192] | Raibaut L., Cargoët M., Ollivier N., Chang Y. M., Drobecq H., Boll E., Desmet R., Monbaliu J. C. M., Melnyk O., Chem. Sci., 2016, 7, 2657 |
[193] | Aihara K., Yamaoka K., Naruse N., Inokuma T., Shigenaga A., Otaka A., Org. Lett., 2016, 18, 596 |
[194] | GL Biochem(Shanghai) Ltd. Peptides & Reagents for Peptides Synthesis and Combichem, 2020, http://www.glbiochem.com/image/product/catalogue%202020.pdf |
[195] | Thompson R. E., Muir T. W., Chem. Rev., 2020, 120, 3051 |
[196] | Masuda S., Tsuda S., Yoshiya T., Org. Biomol. Chem., 2019, 17, 10228 |
[197] | Jacobsen M. T., Erickson P. W., Kay M. S., Bioorg. Med. Chem., 2017, 25, 4946 |
[198] | Disotuar M. M., Petersen M. E., Nogueira J. M., Kay M. S., Chou D. H. C., Org. Biomol. Chem., 2019, 17, 1703 |
[199] | Zuo C., Tang S., Zheng J. S., J. Pept. Sci., 2015, 21, 540 |
[200] | Paradís-Bas M., Tulla-Puche J., Albericio F., Chem. Soc. Rev., 2016, 45, 631 |
[201] | Kochendoerfer G. G., Salom D., Lear J. D., Wilk-Orescan R., Kent S. B. H., DeGrado W. F., Biochemistry, 1999, 38, 11905 |
[202] | Rohrbacher F., Zwicky A., Bode J. W., Chem. Sci., 2017, 8, 4051 |
[203] | Valiyaveetil F. I., MacKinnon R., Muir T. W., J. Am. Chem. Soc., 2002, 124, 9113 |
[204] | Bianchi E., Ingenito R., Simon R. J., Pessi A., J. Am. Chem. Soc., 1999, 121, 7698 |
[205] | Harmand T. J., Pattabiraman V. R., Bode J. W., Angew. Chem. Int. Ed., 2017, 56, 12639 |
[206] | Sato T., Saito Y., Aimoto S., J. Pept. Sci. 2005, 11, 410 |
[207] | Maity S. K., Mann G., Jbara M., Laps S., Kamnesky G., Brik A., Org. Lett., 2016, 18, 3026 |
[208] | Tsuda S., Mochizuki M., Ishiba H., Yoshizawa-Kumagaye K., Nishio H., Oishi S., Yoshiya T., Angew. Chem. Int. Ed., 2018, 57, 2105 |
[209] | Tan Z., Shang S., Danishefsky S. J., Proc. Natl. Acad. Sci. USA, 2011, 108, 4297 |
[210] | Asahina Y., Komiya S., Ohagi A., Fujimoto R., Tamagaki H., Nakagawa K., Sato T., Akira S., Takao T., Ishii A., Nakahara Y., Hojo H., Angew. Chem. Int. Ed., 2015, 54, 8226 |
[211] | Huang Y. C., Li Y. M., Chen Y., Pan M., Li Y. T., Yu L., Guo Q. X., Liu L., Angew. Chem. Int. Ed., 2013, 52, 4858 |
[212] | Tailhades J., Patil N. A., Hossain M. A., Wade J. D., J. Pept. Sci., 2015, 21, 139 |
[213] | Sohma Y., Sasaki M., Hayashi Y., Kimura T., Kiso Y., Chem. Commun., 2004, 124 |
[214] | Sohma Y., Chiyomori Y., Kimura M., Fukao F., Taniguchi A., Hayashi Y., Kimura T., Kiso Y., Bioorg. Med. Chem., 2005, 13, 6167 |
[215] | Liu F., Luo E. Y., Flora D. B., Mezo A. R., Angew. Chem. Int. Ed., 2014, 53, 3983 |
[216] | Johnson E. C. B., Kent S. B. H., J. Am. Chem. Soc., 2006, 128, 7140 |
[217] | Hartrampf N., Saebi A., Poskus M., Gates Z. P., Callahan A. J., Cowfer A. E., Hanna S., Antilla S., Schissel C. K., Quartararo A. J., Ye X., Mijalis A. J., Simon M. D., Loas A., Liu S., Jessen C., Nielsen T. E., Pentelute B. L., Science, 2020, 368, 980 |
[218] | Kent S. B. H., Curr. Opin. Chem. Biol., 2018, 46, 1 |
[219] | Chang H. N., Liu B. Y., Qi Y. K., Zhou Y., Chen Y. P., Pan K. M., Li W. W., Zhou X. M., Ma W. W., Fu C. Y., Qi Y. M., Liu L., Gao Y. F. Angew. Chem. Int. Ed. 2015, 54, 11760 |
[220] | Schumacher T. N. M., Mayr L. M., Minor D. L., Milhollen M. A., Burgess M. W., Kim P. S., Science, 1996, 271, 1854 |
[221] | Uppalapati M., Lee D. J., Mandal K., Li H., Miranda L. P., Lowitz J., Kenney J., Adams J. J., Ault-Riché D., Kent S. B. H., Sidhu S. S., ACS Chem. Biol., 2016, 11, 1058 |
[222] | Dang B. B., Chhabra S., Pennington M. W., Norton R. S., Kent S. B. H., J. Biol. Chem., 2017, 292, 12599 |
[223] | Li Z., Zhang B., Zuo C., Liu L., Chin. J. Org. Chem., 2018, 38, 2412 |
[224] | Mulder M. P. C., Witting K. F., Ovaa H., Curr. Issues Mol. Biol., 2020, 37, 1 |
[225] | Baumann A. L., Hackenberger C. P. R., Chimia 2018, 72, 802 |
[226] | Hu J., Zhu P., Li Y., Chen Y. Chin. Chem. Lett., 2018, 29, 1043 |
[227] | Lin J., Li X. D., Chin. Chem. Lett., 2018, 29, 1051 |
[228] | Bi X., Pasunooti K. K., Liu C. F., Sci. China Chem., 2018, 61, 251 |
[229] | Tam J. P., Chan N. Y., Liew H. T., Tan S. J., Chen Y., Sci. China Chem., 2020, 63, 296 |
[230] | Si Y., Liang L., Tang S., Qi Y., Huang Y., Liu L., Sci. China Chem., 2018, 61, 412 |
[231] | Qi Y. K., Si Y. Y., Du S. S., Liang J., Wang K. W., Zheng J. S., Sci. China Chem., 2019, 62, 299 |
[232] | Wu Y., Ye X. S., Acta Chim. Sinica, 2019, 77, 581 |
[233] | Zhang Y. F., Hirota T., Kuwata K., Oishi S., Gramani S. G., Bode J. W., J. Am. Chem. Soc., 2019, 141, 14742 |
[234] | Xin B. T., Gan J., Fernandez D. J., Knobeloch K. P., Geurink P. P., Ovaa, H. Org. Biomol. Chem., 2019, 17, 10148 |
[235] | Unverzagt C., Kajihara Y., Curr. Opin. Chem. Biol., 2018, 46, 130 |
[236] | Jbara M., Sun H., Kamnesky G., Brik A. Curr. Opin. Chem. Biol., 2018, 46, 18 |
[1] | XU Min, ZHOU Baomei, DING Yan, DU Shanshan, SU Mengke, LIU Honglin. Programmable Oligonucleotide-Peptide Complexes:Synthesis and Applications [J]. Chemical Research in Chinese Universities, 2022, 38(4): 856-865. |
[2] | ZHANG Mengqian, HE Peiyang, LI Yanmei. Contemporary Approaches to α,β-Dehydroamino Acid Chemical Modifications [J]. Chemical Research in Chinese Universities, 2021, 37(5): 1044-1054. |
[3] | YANG Jia, ZHENG Rui, AN Hongwei, WANG Hao. In vivo Self-assembled Peptide Nanoprobes for Disease Diagnosis [J]. Chemical Research in Chinese Universities, 2021, 37(4): 855-869. |
[4] | LIU Zhiyu, LIANG Gaolin, ZHAN Wenjun. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging [J]. Chemical Research in Chinese Universities, 2021, 37(4): 889-899. |
[5] | MENG Feihong, WANG Yajie, LU Tong, WANG Chunyu, LI Fei. Effect of a Short Peptide with Alternating L- and D-Amino Acid on the Aggregation and Membrane Damage of hIAPP [J]. Chemical Research in Chinese Universities, 2021, 37(3): 787-794. |
[6] | YU Wenting, XUE Bin, ZHU Zhenshu, SHEN Ziqin, QIN Meng, WANG Wei, CAO Yi. Strong and Injectable Hydrogels Based on Multivalent Metal Ion-Peptide Cross-linking [J]. Chemical Research in Chinese Universities, 2020, 36(5): 962-969. |
[7] | WANG Ruijue, SHENG Kai, HOU Yingqin, SUN Jialing, LU Hua. Tailoring Cationic Helical Polypeptides for Efficient Cytosolic Protein Delivery [J]. Chemical Research in Chinese Universities, 2020, 36(1): 134-138. |
[8] | CAI Qing, QIAO Chunyan, NING Jun, DING Xinxin, WANG Haoyang, ZHOU Yanmin. A Polysaccharide-based Hydrogel and PLGA Microspheres for Sustained P24 Peptide Delivery: An In vitro and In vivo Study Based on Osteogenic Capability [J]. Chemical Research in Chinese Universities, 2019, 35(5): 908-915. |
[9] | XU Jia, YU Xiaoxuan, ZHANG Yue, LIU Naizhang, GUAN Shuwen, WANG Liping. Extending Lifespan of Alzheimer's Mode Nematode CL4176 Using a Novel Bifunctional Peptide with Inhibition of β-Amyloid Aggregation and Anti-oxidation [J]. Chemical Research in Chinese Universities, 2019, 35(2): 245-250. |
[10] | LIU Guifeng, CHEN Hongda, YU Shaonan, LI Xiaodong, WANG Zhenxin. CXCR4 Peptide Conjugated Au-Fe2O3Nanoparticles for Tumor-targeting Magnetic Resonance Imaging [J]. Chemical Research in Chinese Universities, 2018, 34(4): 584-589. |
[11] | FENG Huiyun, GAO Lei, YE Xinhui, WANG Lei, XUE Zechun, KONG Jinming, LI Lianzhi. Synthesis of a Heptapeptide and Its Application in the Detection of Mercury(II) Ion [J]. Chemical Research in Chinese Universities, 2017, 33(2): 155-159. |
[12] | ZONG Qianying, GENG Huimin, YE Lin, ZHANG Aiying, SHAO Ziqiang, FENG Zengguo. Synthesis and Gelation Capability of Fmoc and Boc Mono-substituted Cyclo(L-Lys-L-Lys)s [J]. Chemical Research in Chinese Universities, 2016, 32(3): 484-492. |
[13] | ZHANG Yonghong, LI Liangchun, YUAN Weicheng, ZHANG Xiaomei. Synthesis and Secondary Conformations of Homochiral β-Oligopeptides Containing Aryl Side Chains [J]. Chemical Research in Chinese Universities, 2015, 31(3): 381-387. |
[14] | ZHAO Yanyan, WANG Liheng, GUO Zhimou, CHI Xiaofei, MA Xiaochi, QI Yan, FANG Shinong, LI Xiuling, LIANG Xinmiao. Enhanced Multi-phosphopeptide Enrichment and Nano LC-ESI-qTOF-MS Detection Strategy Using Click OEG-CD Matrix [J]. Chemical Research in Chinese Universities, 2015, 31(1): 44-52. |
[15] | XU Baofeng, YANG Sen, ZHU Jinming, MA Yudan, ZHAO Gang, GUO Yi, XU Li. Novel Chemical Strategy for the Synthesis of RGDCySS Tetrapeptide [J]. Chemical Research in Chinese Universities, 2014, 30(1): 103-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||