Chemical Research in Chinese Universities ›› 2026, Vol. 42 ›› Issue (1): 18-32.doi: 10.1007/s40242-026-5263-5
• Review Articles • Previous Articles Next Articles
ZHOU Hexun, XUE Qiangqiang, HUANG Jun
Received:2025-10-31
Online:2026-02-01
Published:2026-01-28
Contact:
HUANG Jun,E-mail:jun.huang@sydney.edu.au
E-mail:jun.huang@sydney.edu.au
Supported by:ZHOU Hexun, XUE Qiangqiang, HUANG Jun. Solid-state NMR Investigation of Zeolite Catalysts[J]. Chemical Research in Chinese Universities, 2026, 42(1): 18-32.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] Cundy C. S., Cox P. A., Chem. Rev., 2003, 103, 663. [2] Prodinger S., Derewinski M. A., Synthetic Zeolites and Their Characterization, Elsevier, Amsterdam, 2020. [3] Chang C. D., Princeton N. J., Production of Gasoline Hydrocarbons, U.S. Patent 3928483, 1974. [4] Chang C. D., Lang W. H., Process for Manufacturing Olefins, U.S. Patent 4025576, 1977. [5] Yarulina I., Chowdhury A. D., Meirer F., Weckhuysen B. M., Gascon J., Nat. Catal., 2018, 1, 398. [6] Olsbye U., Svelle S., Lillerud K. P., Wei Z. H., Chen Y. Y., Li J. F., Wang J. G., Fan W. B., Chem. Soc. Rev., 2015, 44, 7155. [7] Ilias S., Bhan A., ACS Catal., 2013, 3, 18. [8] Tian P., Wei Y., Ye M., Liu Z., ACS Catal., 2015, 5, 1922. [9] Gong X., Çaǧlayan M., Ye Y., Liu K., Gascon J., Chowdhury A. D., Chem. Rev. 2022, 122, 14275. [10] Gong X., Ye Y., Chowdhury A. D., ACS Catal., 2022, 12, 15463. [11] Jiao F., Li J., Pan X., Xiao J., Li H., Ma H., Wei M., Pan Y., Zhou Z., Li M., Miao S., Li J., Zhu Y., Xiao D., He T., Yang J., Qi F., Fu Q., Bao X., Science, 2016, 351, 1065. [12] Weckhuysen B. M., Yu J., Chem. Soc. Rev., 2015, 44, 7022. [13] Vogt E. T. C., Weckhuysen B. M., Chem. Soc. Rev., 2015, 44, 7342. [14] Wang W., Xu J., Deng F., Nat. Sci. Rev., 2022, 9, 1265. [15] Fyfe B. C. A., Thomas J. M., Klinowski J., Gobbi G. C., 1983, 22, 259. [16] Biaglow A. I., Gorte R. J., White D., J. Phys. Chem., 1993, 97, 7135. [17] Freude D., Hunger M., Pfeifer H., Chem. Phys. Lett., 1982, 91, 307. [18] Caro J., Bülow M., Richter-Mendau J., Kärger J., Hunger M., Freude D., Rees L. V. C., J. Chem. Soc., 1987, 83, 1843. [19] Ivanova I. I., Pomakhina E. B., Borodina I. B., Rebrov A. I., Wang W., Weitkamp J., Hunger M., Stud. Surf. Sci. Catal., 2004, 154, 2221. [20] Hemelsoet K., Van Der Mynsbrugge J., De Wispelaere K., Waroquier M., Van Speybroeck V., ChemPhysChem, 2013, 14, 1526. [21] Van Speybroeck V., Hemelsoet K., Joos L., Waroquier M., Bell R. G., Catlow C. R. A., Chem. Soc. Rev., 2015, 44, 7044. [22] Olsbye U., Svelle S., Bjrgen M., Beato P., Janssens T. V. W., Joensen F., Bordiga S., Lillerud K. P., Angew. Chem., Int. Ed., 2012, 51, 5810. [23] Abrevaya H., Zeolites in Industrial Separation and Catalysis, 2010, 13, 477. [24] Vogt E. T. C., Whiting G. T., Dutta Chowdhury A., Weckhuysen B. M., Adv. Catal., 2015, 58, 143. [25] Parker S. F., Kombanal A. J., Catalysts, 2021, 11, 1204. [26] Li T., Shoinkhorova T., Gascon J., Ruiz-Martinez J., ACS Catal., 2021, 11, 7780. [27] Gounaris C. E., Floudas C. A., Wei J., Chem. Eng. Sci., 2006, 61, 7933. [28] Derouane E. G., Gabelica Z., J. Catal., 1980, 489, 486. [29] Zhai H., Bian C., Yu Y., Zhu L., Guo L., Wang X., Yu Q., Zhu J., Cao X., Crystals, 2019, 9, 338. [30] Jiang J., Xu Y., Cheng P., Sun Q., Yu J., Corma A., Xu R., Chem. Mater., 2011, 23, 4709. [31] Chen F. J., Yu J., Acc. Chem. Res., 2025, 58, 2402. [32] Yaremov P. S., Shvets A. V., Il’in V. G., Theor. Exp. Chem., 2007, 43, 306. [33] Smit B., Maesen T. L. M., Nature, 2008, 451, 671. [34] Fu D., Schmidt J. E., Ristanović Z., Chowdhury A. D., Meirer F., Weckhuysen B. M., Angew. Chem., Int. Ed., 2017, 129, 11369. [35] Fu D., van der Heijden O., Stanciakova K., Schmidt J. E., Weckhuysen B. M., Angew. Chem., Int. Ed., 2020, 132, 15632. [36] Fu D., Maris J. J. E., Stanciakova K., Nikolopoulos N., van der Heijden O., Mandemaker L. D. B., Siemons M. E., Salas Pastene D., Kapitein L. C., Rabouw F. T., Meirer F., Weckhuysen B. M., Angew. Chem., Int. Ed., 2022, 134, 12. [37] Liu X., Shi J., Yang G., Zhou J., Wang C., Teng J., Wang Y., Xie Z., Commun. Chem., 2021, 4, 1. [38] Fischer F., Lutz W., Buhl J. C., Laevemann E., Microporous Mesoporous Mater., 2018, 262, 258. [39] Zhou X., Han X., Qu Z., Zhang J., Zeng F., Tang Z., Chen R., ACS Sustain. Chem. Eng., 2024, 12, 6013. [40] Iliopoulou E. F., Stefanidis S. D., Kalogiannis K. G., Delimitis A., Lappas A. A., Triantafyllidis K. S., Appl. Catal. B: Environ., 2012, 127, 281. [41] Blomsma E., Martens J. A., Jacobs P. A., J. Catal., 1996, 159, 323. [42] Gallo J. M. R., Alonso D. M., Mellmer M. A., Yeap J. H., Wong H. C., Dumesic J. A., Top. Catal., 2013, 56, 1775. [43] Lu J., Cai X., Zhang H., Huang Y., Liu B., Chinese J. Chem. Eng., 2025, doi:10.1016/j.cjche.2025.09.013. [44] Gomes G. J., Costa M. B., Bittencourt P. R. S., Zalazar M. F., Arroyo P. A., Renew. Energy, 2021, 178, 1. [45] Zhang C., Wu X., Zhang Y., Wang L., Jin Y., Gao M., Ye M., Wei Y., Liu Z., ACS Catal., 2025, 15, 1553. [46] Khitev Y. P., Ivanova I. I., Kolyagin Y. G., Ponomareva O. A., Appl. Catal. A Gen., 2012, 124, 441. [47] Catizzone E., Aloise A., Migliori M., Giordano G., J. Energy Chem., 2017, 26, 406. [48] Tian Z. J., Liu H., Ionothermal Synthesis of Molecular Sieves, 2015, 37, 76. [49] Liu W., Liu X., Gu Y., Liu Y., Yu Z., Lyu Y., Tian Y., Compos. Part B: Eng., 2020, 200, 108317 [50] Yarulina I., Chowdhury A. D., Meirer F., Weckhuysen B. M., Gascon J., Nat. Catal., 2018, 1, 398. [51] Kamaluddin H. S., Gong X., Ma P., Narasimharao K., Chowdhury A. D., Mokhtar M., Mater. Today Chem., 2022, 26, 362. [52] Yang L., Wang C., Zhang L.,Dai W., Chu Y., Xu J., Wu G., Gao M., Liu W., Xu Z., Wang P., Guan N., Dyballa M., Ye M., Deng F., Fan W., Li L., Nat. Commun., 2021, 12, 4661. [53] Wang L., Cai K., Qu Y., Gao X., Zhou X., Zhou L., Song H., React. Kinet. Mech. Catal., 2025, 138, 2955. [54] Carlson T. R., Jae J., Lin Y. C., Tompsett G. A., Huber G. W., J. Catal., 2010, 270, 110. [55] Lee S., Park Y., Choi M., ACS Catal., 2024, 14, 2031. [56] Peng H., Dong T., Yang S., Chen H., Yang Z., Liu W., He C., Wu P., Tian J., Peng Y., Chu X., Wu D., An T., Wang Y., Dai S., Nat. Commun., 2022, 13, 1. [57] Zhao J., Wang G., Qin L., Li H., Chen Y., Liu B., Catal. Commun., 2016, 73, 98. [58] Liu S., Ren J., Zhang H., Lv E., Yang Y., Li Y. W., J. Catal., 2016, 335, 11. [59] Jin W., Wang B., Tuo P., Li C., Li L., Zhao H., Gao X., Shen B., Ind. Eng. Chem. Res., 2018, 57, 4231. [60] Ni Y., Sun A., Wu X., Hai G., Hu J., Li T., Li G., J. Nat. Gas Chem., 2011, 20, 237. [61] Demarquay J., Fraissard J., Chem. Phys. Lett., 1987, 136, 314. [62] Chen F., Deng F., Cheng M., Yue Y., Ye C., Bao X., J. Phys. Chem. B, 2001, 105, 9426. [63] Javed M. A., Komulainen S., Daigle H., Zhang B., Vaara J., Zhou B., Telkki V. V., Microporous Mesoporous Mater., 2019, 281, 66. [64] Kortunov P., Vasenkov S., Kärger J., Valiullin R., Gottschalk P., Elía M. F., Perez M., Stöcker M., Drescher B., McElhiney G., Berger C., Gläser R., Weitkamp J., J. Am. Chem. Soc., 2005, 127, 13055.J [65] Terskikh V. V., Moudrakovski I. L., Breeze S. R., Lang S., Ratcliffe C. I., Ripmeester J. A., Sayari A., Langmuir. 2002, 18, 5653. [66] Palčić A., Valtchev V., Appl. Catal. A Gen., 2020, 606, 117795. [67] Wang C., Chu Y., Xu J., Wang Q., Qi G., Gao P., Zhou X., Deng F., ACS Catal., 2020, 10, 4299. [68] Zhang Q., Gao S., Yu J., Chem. Rev., 2023, 123, 6039. [69] Huang H. W., Zhu H., Zhang S. H., Zhang Q., Li C. Y., Journal Fuel Chem. Technol., 2019, 47, 74. [70] Spagnol M., Gilbert L., Alby D., Industrial Chemistry Library, 1996, 8, 29. [71] Bellussi G., Carati A., Clerici M. G., Preparation of Synthetic Porous Crystalline Materials Containing Oxides of Silicon and Titanium, U. S. Patent 4410501, 1989. [72] Bleken F., Bjørgen M., Palumbo L., Bordiga S., Svelle S., Lillerud K. P., Olsbye U., Top. Catal., 2009, 52, 218. [73] Li S., Huang S. J., Shen W., Zhang H., Fang H., Zheng A., Liu S. B., Deng F., J. Phys. Chem. C, 2008, 112, 14486. [74] Guisnet M., Costa L., Ribeiro F. R., J. Mol. Catal. A Chem., 2009, 305, 69. [75] Wang B., Ren L., Zhang J., Peng R., Jin S., Guan Y., Xu H., Wu P., Microporous Mesoporous Mater., 2021, 314, 110894. [76] Lippmaa E., Mági M., Samoson A., Tarmak M., Engelhardt G., J. Am. Chem. Soc., 1981, 103, 4992. [77] Tzanis L., Marler B., Gies H., J. Phys. Chem. C, 2013, 117, 4098. [78] Lunsford J. H., Shen W., Rothwell W. P., J. Am. Chem. Soc., 1985, 107, 1540. [79] Zheng A., Huang S. J., Chen W. H., Wu P. H., Zhang H., Lee H. K., De Ménorval L. C., Deng F., Liu S. B., J. Phys. Chem. A, 2008, 112, 7349. [80] Pires E., Fraile J. M., Phys. Chem. Chem. Phys., 2022, 24, 16755. [81] Gunther W. R., Michaelis V. K., Griffin R. G., Roman-Leshkov Y., J. Phys. Chem. C, 2016, 120, 28533. [82] Zheng A., Zhang H., Chen L., Yue Y., Ye C., Deng F., J. Phys Chem B, 2007, 111, 3085. [83] Bornes C., Sardo M., Lin Z., Amelse J., Fernandes A., Ribeiro M. F., Geraldes C., Rocha J., Mafra L., Chem. Commun., 2019, 55, 12635. [84] Zhou H., Gong X., Abou-Hamad E., Ye Y., Zhang X., Ma P., Gascon J., Chowdhury A. D., Angew. Chem., Int. Ed., 2024, 63, e202318250. [85] Xu S., Zheng A., Wei Y., Chen J., Li J., Chu Y., Zhang M., Wang Q., Zhou Y., Wang J., Angew. Chem., Int. Ed., 2013, 52, 11564. [86] Wang C., Xu J., Deng F., ChemCatChem, 2020, 12, 965. [87] Ono Y., Mori T., J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 1981, 77, 2209. [88] Yang M., Fan D., Wei Y., Tian P., Liu Z., Adv. Mater., 2019, 31, 1. [89] Lin L., Fan M., Sheveleva A. M., Han X., Tang Z., Carter J. H., da Silva I., Parlett C. M. A., Tuna F., McInnes E. J. L., Sastre G., Rudić S., Cavaye H., Parker S. F., Cheng Y., Daemen L. L., RamirezCuesta A. J., Attfield M. P., Liu Y., Tang C. C., Han B., Yang S., Nat. Commun., 2021, 12, 1. [90] Wang C., Hu M., Chu Y., Zhou X., Wang Q., Qi G., Li S., Xu J., Deng F., Angew. Chem., Int. Ed., 2020, 59, 7198. [91] Wang C., Chu Y., Xu J., Wang Q., Qi G., Gao P., Zhou X., Deng F., Angew. Chem., Int. Ed., 2018, 57, 10197. [92] Wu X., Xu S., Zhang W., Huang J., Li J., Yu B., Wei Y., Liu Z., Angew. Chem., Int. Ed., 2017, 56, 9039. [93] Liu Y., Müller S., Berger D., Jelic J., Reuter K., Tonigold M., Sanchez-Sanchez M., Lercher J. A., Angew. Chem., Int. Ed., 2016, 55, 5723. [94] Chowdhury A. D., Paioni A. L., Houben K., Whiting G. T., Baldus M., Weckhuysen B. M., Angew. Chem., Int. Ed., 2018, 57, 8095. [95] Hill E. A., Richey H. G., Rees T. C., J. Org. Chem., 1963, 28, 2161. [96] Wang C., Yi X., Xu J., Qi G., Gao P., Wang W., Chu Y., Wang Q., Feng N., Liu X., Zheng A., Deng F., Chem.-A Eur. J., 2015, 21, 12061. [97] Sun J., Wang Y., ACS Catal., 2014, 4, 1078. [98] Zhou X., Wang C., Chu Y., Wang Q., Xu J., Deng F., Chem. Res. Chinese Universities, 2022, 38, 155. [99] Gołąbek K., Tabor E., Pashkova V., Dedecek J., Tarach K., GóraMarek K., Commun. Chem., 2020, 3, 1. [100] Wang W., Jiao J., Jiang Y., Ray S. S., Hunger M., ChemPhysChem, 2005, 6, 1467. [101] Zhou X., Wang C., Chu Y., Xu J., Wang Q., Qi G., Zhao X., Feng N., Deng F., Nat. Commun., 2019, 10, 1. [102] Zhou H., Cheng J., Zhang X., Zhou X., You X., Wang Y., Cheng K., Chowdhury A. D., ChemSusChem, 2025, 18.??? [103] Gong X., Ramirez A., Abou-Hamad E., Shoinkhorova T. B., Çağlayan M., Ye Y., Wang W., Wehbe N., Khairova R., Chowdhury A. D., Gascon J., Chem. Catal., 2022, 2, 2328. [104] Ma P., Zhou H., Li Y., Wang M., Nastase S. A. F., Zhu M., Cui J., Cavallo L., Cheng K., Chowdhury A. D., Chem. Sci., 2024, 15, 11937. |
| [1] | YANG Jiaqi, CHEN Huanhao, PAN Run, FAN Xiaolei, OU Xiaoxia, Colin SNAPE, HE Jun. Zeolites in CO2 Hydrogenation: Multifunctional Roles and Advanced Modifications [J]. Chemical Research in Chinese Universities, 2026, 42(1): 3-17. |
| [2] | CHEN Weiling, XU Li, FU Zhiming, MA Fei, JIANG Jiuxing. Zeolite, a New Intrinsic Pickering Emulsifier [J]. Chemical Research in Chinese Universities, 2026, 42(1): 33-42. |
| [3] | GONG Liangliang, GONG Xianchen, YIN Jinpeng, LI Xintong, WU Peng, XU Hao. Two-dimensional Organic-Inorganic Ti-MWW as Regenerable Catalyst for Fixed-bed Propylene Epoxidation [J]. Chemical Research in Chinese Universities, 2026, 42(1): 84-93. |
| [4] | FAN Kai, WU Zihan, LIU Shuo, WU Qinming, ZHANG Weiping, MENG Xiangju, XIAO Feng-Shou. Direct Synthesis of ITR Zeolites with Different Compositions for the Conversion of Methanol to Propylene [J]. Chemical Research in Chinese Universities, 2026, 42(1): 105-110. |
| [5] | MA Zhonglin, LI Lingyi, HE Ke, ZHANG Wenqi, PENG Fu, SONG Wanrong, HE Linwei, JIANG Zhen, LI Jie, CHEN Long, WANG Shuao. Nitrogen-functionalized Zeolites for Enhanced Cobalt Decontamination [J]. Chemical Research in Chinese Universities, 2026, 42(1): 111-117. |
| [6] | LI Junze, WANG Yongxiang, BAO Han, ZENG Shuangqin, GAO Xiuzhi, HE Xiaowu, ZHENG Mingji, FENG Ningdong, WANG Qiang, XU Jun, DENG Feng. Probing Framework Boron Speciation and Spatial Distribution in MFI Zeolites by Solid-state NMR [J]. Chemical Research in Chinese Universities, 2026, 42(1): 134-142. |
| [7] | SHENG Zhizheng, ZHOU Jian, YE Zhaoqi, WANG Tingting, WANG Weihua, WANG Yangdong, TENG Jiawei, XIE Zaiku. Surface Diffusion Regulation of NanoZSM-5 for Catalysis Promotion on Methanol-to-propene [J]. Chemical Research in Chinese Universities, 2026, 42(1): 151-157. |
| [8] | TAO Zeyu, TIAN Yuanmeng, SHANG Shanshan, BELMABKHOUT Youssef, SHANG Jin. Tailoring Cation Charge-to-Size Ratios in Zeolite Y for High-performance Methane/Nitrogen Separation [J]. Chemical Research in Chinese Universities, 2026, 42(1): 158-166. |
| [9] | CHEN Yaxin, LI Lin, WANG Jiaze, LI Yi. Impact of Al Distribution on Ethylene/Ethane Selective Separation over Aluminosilicate Zeolites: A High-throughput Theoretical Study [J]. Chemical Research in Chinese Universities, 2026, 42(1): 167-175. |
| [10] | YE Junqing, CHENG Bin, LI Xibao, LI Sixian, CHEN Shengchun, QIAN Junfeng, CHEN Qun. Enhanced Decarboxylative Sulfonylation of Cinnamic Acids to (E)-Vinyl Sulfones via Manganese-doped Mesoporous Beta Zeolite Catalyst [J]. Chemical Research in Chinese Universities, 2026, 42(1): 263-275. |
| [11] | REN Yingli, ZHU Shengli, CUI Zhenduo, LI Zhaoyang, WU Shuilin, XU Wence, GAO Zhonghui, LIANG Yanqin, JIANG Hui. Rational Insights into Metal-Organic Molecular Electrocatalysts: Functional Groups, Synthesis Strategies, and Emerging Applications [J]. Chemical Research in Chinese Universities, 2025, 41(6): 1314-1333. |
| [12] | WANG Guowei, XIONG Hao, WEI Fei, CHEN Xiao. Advanced Aberration-corrected STEM Techniques for Atomic Imaging of Zeolites-confined Single Molecules: From Ex situ toIn situ [J]. Chemical Research in Chinese Universities, 2025, 41(2): 196-210. |
| [13] | HU Miao, Jumanah ALHARBI, ZHANG Huabin, Hassan S. Al QAHTANI, FENG Chengyang. Advanced In situ Characterization Techniques for Photocatalysis [J]. Chemical Research in Chinese Universities, 2025, 41(2): 237-253. |
| [14] | XU Jing, ZHANG Rui, WANG Ke, WANG Xiao, SONG Shuyan, ZHANG Hongjie. Co-loading Pd and CeO2 on Silicalite-1 as High-performance Catalyst for Methane Dry Reforming Reaction [J]. Chemical Research in Chinese Universities, 2025, 41(1): 15-20. |
| [15] | HU Chao, FU Wenhua, YUAN Zhiqing, LIU Chuang, WANG Zhendong, YANG Weimin. Direct Synthesis of UOS Zeolite Using a Simple and Commercially Available Organic Structure-directing Agent [J]. Chemical Research in Chinese Universities, 2025, 41(1): 113-120. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

