Chemical Research in Chinese Universities ›› 2026, Vol. 42 ›› Issue (1): 3-17.doi: 10.1007/s40242-026-5198-x
• Review Articles • Previous Articles Next Articles
YANG Jiaqi1,2, CHEN Huanhao3, PAN Run1,2, FAN Xiaolei1,4, OU Xiaoxia1,2, Colin SNAPE5, HE Jun1,2
Received:2025-09-10
Online:2026-02-01
Published:2026-01-28
Contact:
FAN Xiaolei,E-mail:xiaolei.fan@manchester.ac.uk;OU Xiaoxia,E-mail:xiaoxia.ou@nottingham.edu.cn
E-mail:xiaolei.fan@manchester.ac.uk;xiaoxia.ou@nottingham.edu.cn
Supported by:YANG Jiaqi, CHEN Huanhao, PAN Run, FAN Xiaolei, OU Xiaoxia, Colin SNAPE, HE Jun. Zeolites in CO2 Hydrogenation: Multifunctional Roles and Advanced Modifications[J]. Chemical Research in Chinese Universities, 2026, 42(1): 3-17.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] ALOthman Z., Materials (Basel)., 2012, 5, 2874. [2] Dhakshinamoorthy A., Alvaro M., Corma A., Garcia H., Dalt. Trans., 2011, 40, 6344. [3] Wu S. H., Hao C. J., Cao Y., Pan W. P., Shu C. M., Res. J. Chem. Environ., 2011, 15, 406. [4] Kordala N., Wyszkowski M., Molecules, 2024, 29, 1069. [5] Chen H. R., Zhou X. X., Shi J. L., J. Inorg. Mater., 2018, 33, 113. [6] Firouzjaee M. H., Taghizadeh M., Mini. Rev. Org. Chem., 2020, 17, 795. [7] Singh M. P., Baghel G. S., Titinchi S. J. J., Abbo H. S., Advaned Catalytic Materials, Scrivener, Beverly, 2015. [8] Mancinelli M., Martucci A., Sustain. Chem., 2025, 6, 9. [9] Zhang L., Sun N., Wang M., Wu T., Wei W., Pang C. H., Int. J. Energy Res., 2021, 45, 19789. [10] Bique A. O., Nguyen T. B. H., Leonzio G., Galanopoulos C., Zondervan E., Comput. Aided Chem. Eng., 2018, 43, 1413. [11] Asare Bediako B. B., Qian Q., Han B., Acc. Chem. Res., 2021, 54, 2467. [12] Nahra F., Cazin C. S. J., Sci. Synth., 2018, 2017, 289. [13] Gorbunov D. N., Nenasheva M. V., Terenina M. V., Kardasheva Y. S., Kardashev S. V., Naranov E. R., Bugaev A. L., Soldatov A. V., Maximov A.L., Karakhanov E. A., Pet. Chem., 2022, 62, 1. [14] Ehmann K. R., Nisters A., Vorholt A. J., Leitner W., ChemCatChem, 2022, 14. [15] Hafeez S., Harkou E., Al-Salem S. M., Goula M. A., Dimitratos N., Charisiou N. D., Villa A., Bansode A., Leeke G., Manos G., Constantinou A., React. Chem. Eng., 2022, 7, 795. [16] Ronda-Lloret M., Rothenberg G., Shiju N. R., ChemSusChem, 2019, 12, 3896. [17] Tan L., Zhang P., Cui Y., Suzuki Y., Li H., Guo L., Yang G., Tsubaki N., Fuel Process. Technol., 2019, 196, 106174. [18] Dang S., Gao P., Liu Z., Chen X., Yang C., Wang H., Zhong L., Li S., Sun Y., J. Catal., 2018, 364, 382. [19] Li Y., He D., Ge S., Zhang R., Zhu Q., Appl. Catal. B: Environ., 2008, 80, 72. [20] Si Z., Amoo C. C., Han Y., Wei J., Yu J., Ge Q., Sun J., J. Energy Chem., 2022, 70, 162. [21] Ni Y., Chen Z., Fu Y., Liu Y., Zhu W., Liu Z., Nat. Commun., 2018, 9, 3457. [22] Tian H., He H., Jiao J., Zha F., Guo X., Tang X., Chang Y., Fuel, 2022, 314, 123119. [23] Wen C., Xu X., Song X., Lu L., Zhuang X., Jin K., Jiang Q., Zhang X., Chen L., Wang C., Ma L., Energy and Fuels, 2023, 37, 518. [24] Wang X., Zeng C. Y., Gong N., Zhang T., Wu Y., Zhang J., Song F., Yang G., Tan Y., ACS Catal., 2021, 11, 1528. [25] Zhang L., Dang Y., Zhou X., Gao P., Petrus van Bavel A., Wang H., Li S., Shi L., Yang Y., Vovk E. I., Gao Y., Sun Y., Innovation, 2021, 2, 100170. [26] Gao X., Atchimarungsri T., Ma Q., Zhao T. S., Tsubaki N., EnergyChem, 2020, 2, 100038. [27] Li X., Ke J., Li R., Li P., Ma Q., Zhao T. S., Chem. Eng. Sci., 2023, 282, 119226. [28] Álvarez A., Bansode A., Urakawa A., Bavykina A. V., Wezendonk T. A., Makkee M., Gascon J., Kapteijn F., Chem. Rev., 2017, 117, 9804. [29] Bonura G., Cannilla C., Frusteri L., Mezzapica A., Frusteri F., Catal. Today, 2017, 281, 337. [30] Sagar T. V., Kumar P., Žener B., Šuligoj A., Kočí K., Štangar U. L., Mol. Catal., 2023, 545, 113238. [31] Xu D., Wang Y., Ding M., Hong X., Liu G., Tsang S. C. E., Chem, 2021, 7, 849. [32] Ma Y., Liu J., Chu M., Yue J., Cui Y., Xu G., Catal. Lett., 2022, 152, 872. [33] Ma L. P., Xu W. J., Adv. Mater. Res., 2013, 781–784, 227. [34] He J., Chang S., Du H., Jiang B., Yu W., Wang Z., Chu W., Han L., Zhu J., Li H., J. CO2 Util., 2021, 54, 101751. [35] Wang W., Wang S., Ma X., Gong J., Chem. Soc. Rev., 2011, 40, 3703. [36] Yang H., Zhang C., Gao P., Wang H., Li X., Zhong L., Wei W., Sun Y., Catal. Sci. Technol., 2017, 7, 4580. [37] Sun C., Da Costa P., Heterogeneous Catalysis: Materials and Applications, Elsevier, Amsterdam, 2022, 59. [38] Kostyniuk A., Likozar B., Chem. Eng. J., 2025, 503, 158467. [39] Brix F., Desbuis V., Piccolo L., Gaudry É., J. Phys. Chem. Lett., 2020, 11, 7672. [40] Len T., Luque R., Green Chem., 2023, 25, 490. [41] Yang W., Yasuda S., Balu S., Wang Y., Kondo J. N., Yang T. C. K., Yokoi T., Chem. Eng. J., 2023, 471, 144762. [42] Wang Y., Liu S., Liu F., Yao M., Ma J., Geng S., Cao J., Wang X., Chem. Eng. J., 2024, 500, 157398. [43] Arora S. S., Bhan A., J. Catal., 2020, 383, 24. [44] Ding H., Li H., Zhang M., Yang X., Wang Y., Zhao J., Wu L., Han L., Feng J., Chem. Eng. J., 2025, 521, 166465. [45] Shi Y., Gao W., Liu G., Tsubaki N., ChemSusChem, 2025, 18, e202402756. [46] Venezia A. M., La Parola V., Liotta L.F., Catal. Today, 2017, 285, 114. [47] Solymosi F., Catal. Rev., 1968, 1, 233. [48] Sun Q., Wang N., Yu J., Adv. Mater., 2021, 33, 2104442. [49] Graça I., González L. V., Bacariza M. C., Fernandes A., Henriques C., Lopes J. M., Ribeiro M. F., Appl. Catal. B: Environ., 2014, 147, 101. [50] Wei L., Grénman H., Haije W., Kumar N., Aho A., Eränen K., Wei L., de Jong W., Appl. Catal. A: Gen., 2021, 612. [51] Sholeha N. A., Mohamad S., Bahruji H., Prasetyoko D., Widiastuti N., Abdul Fatah N. A., Jalil A. A., Taufiq-Yap Y. H., RSC Adv., 2021, 11, 16376. [52] Ma S., Li X., Yang Z., Li H., J. Catal., 2023, 417, 368. [53] Sun Q., Chen B. W. J., Wang N., He Q., Chang A., Yang C. M., Asakura H., Tanaka T., Hülsey M. J., Wang C. H., Yu J., Yan N., Angew. Chem. Int. Ed., 2020, 59, 20183. [54] Cui W. G., Li Y. T., Yu L., Zhang H., Hu T. L., ACS Appl. Mater. Interfaces, 2021, 13, 18693. [55] Li Y., Du T., Chen C., Jia H., Liu J., Zheng Z., Wang Y., Fang X., Microporous Mesoporous Mater., 2024, 366, 112937. [56] Christensen C. H., Johannsen K., Törnqvist E., Schmidt I., Topsøe H., Christensen C. H., Catal. Today, 2007, 128, 117. [57] Etim U. J., Chen Y., Zhong Z., Chem. Eng. J., 2024, 498, 155783. [58] Wang C., Guan E., Wang L., Chu X., Wu Z., Zhang J., Yang Z., Jiang Y., Zhang L., Meng X., Gates B. C., Xiao F. S., J. Am. Chem. Soc., 2019, 141, 8482. [59] Shao G., Zhang Y., Zhang Z., Zhang J., Su J., Liu D., He C., Xu J., Han Y., CIESC J., 2017, 68, 670. [60] Wei J., Ge Q., Yao R., Wen Z., Fang C., Guo L., Xu H., Sun J., Nat. Commun., 2017, 8, 15174. [61] Gao P., Zhang L., Li S., Zhou Z., Sun Y., ACS Cent. Sci., 2020, 6, 1657. [62] Chen Y., Xu Y., Cheng D. G., Chen Y., Chen F., Lu, X., Huang Y., Ni S., J. Chem. Technol. Biotechnol., 2015, 90, 415. [63] Wang C. M., Wang Y. D., Xie Z. K., Catal. Sci. Technol., 2016, 6, 6644. [64] Chernyak S. A., Corda M., Marinova M., Safonova O. V., Kondratenko V. A., Kondratenko E. V., Kolyagin Y. G., Cheng K., Ordomsky V. V., Khodakov A. Y., ACS Catal., 2023, 13, 14627. [65] Sun Z., Gao Z., Ma R., Xu Q., Shao B., Liu H., Hu J., Appl. Catal. B: Environ., 2024, 358, 124358. [66] Zhao Y., Shi P., Wang X., Guo X., Yao R., Li Y., Jia Q., Ban H., Li L., Li C., Chem. Eng. J., 2025, 503, 158350. [67] Zhang P., Ma L., Meng F., Wang L., Zhang R., Yang G., Li Z., Appl. Catal. B: Environ., 2022, 305, 121042. [68] Ra E. C., Kim K. H., Lee J. H., Jang S., Kim H. E., Lee J. H., Kim E. H., Kim H., Kwak J. H., Lee J. S., ACS Catal., 2024, 14, 3492. [69] Di W., Ho P.H., Achour A., Pajalic O., Josefsson L., Olsson L., Creaser D., J. CO2 Util., 2023, 72, 102512. [70] Wang S., Zhang L., Wang P., Jiao W., Qin Z., Dong M., Wang J., Olsbye U., Fan W., Nat. Catal., 2022, 5, 1038. [71] Lu S. Y., Yang H. Y., Yang C. G., Gao P., Sun Y. H., J. Fuel Chem. Technol., 2021, 49, 1132. [72] Amoo C. C., Orege J. I., Ge Q., Sun J., Appl. Catal. B: Environ., 2024, 340, 123193. [73] Ramirez A., Gong X., Caglayan M., Nastase S. A. F., Abou-Hamad E., Gevers L., Cavallo L., Dutta Chowdhury A., Gascon J., Nat. Commun., 2021, 12, 5914. [74] Shi Y., Gao W., Wang G., Fan J., Wang C., Wang F., He Y., Guo X., Yasuda S., Yang G., Tsubaki N., Mater. Today Chem., 2023, 32, 101654. [75] Cui Z. M., Liu Q., Ma Z., Bian S. W., Song W. G., J. Catal., 2008, 258, 83. [76] Wang S., Li Z., Qin Z., Dong M., Li J., Fan W., Wang J., Chinese J. Catal., 2021, 42, 1126. [77] Cui X., Gao P., Li S., Yang C., Liu Z., Wang H., Zhong L., Sun Y., ACS Catal., 2019, 9, 3866. [78] Li Y., Zeng L., Pang G., Wei X., Wang M., Cheng K., Kang J., Serra J. M., Zhang Q., Wang Y., Appl. Catal. B: Environ., 2023, 324, 122299. [79] Gao P., Li S., Bu X., Dang S., Liu Z., Wang H., Zhong L., Qiu M., Yang C., Cai J., Wei W., Sun Y., Nat. Chem., 2017, 9, 1019. [80] Li Z., Qu Y., Wang J., Liu H., Li M., Miao S., Li C., Joule, 2019, 3, 570. [81] García-Hurtado E., Rodríguez-Fernández A., Moliner M., Martínez C., Catal. Sci. Technol., 2020, 10, 5648. [82] Wang H., Fan S., Guo S., Wang S., Qin Z., Dong M., Zhu H., Fan W., Wang J., Nat. Commun., 2023, 14, 2627. [83] Yan P., Peng H., Vogrin J., Rabiee H., Zhu Z., J. Mater. Chem. A, 2023, 11, 17938. [84] Yang S., Song J., Yue Y., Chen B., Ali S., Tan K. B., Tian J., Huang J., Li Q., Zhan G., Chem. Eng. Sci., 2026, 320, 122468. [85] Wang T., Yang C., Gao P., Zhou S., Li S., Wang H., Sun Y., Appl. Catal. B: Environ., 2021, 286, 119929. [86] Li W., Zhang J., Jiang X., Mu M., Zhang A., Song C., Guo X., Ind. Eng. Chem. Res., 2022, 61, 6322. [87] Deng L., Zhang J., Yang Y., Wang T., Zhu M., Yang Z., Xu J., J. Colloid Interface Sci., 2025, 700, 138540. [88] Zhao B., Zhai P., Wang P., Li J., Li T., Peng M., Zhao M., Hu G., Yang Y., Li Y. W., Zhang Q., Fan W., Ma D., Chem, 2017, 3, 323. [89] Wei J., Yao R., Ge Q., Xu D., Fang C., Zhang J., Xu H., Sun J., Appl. Catal. B: Environ., 2021, 283, 119648. [90] Murciano R., Serra J. M., Martínez A., Catal. Today, 2024, 427, 114404. [91] Wang Y., Gao W., Wang K., Gao X., Zhang B., Zhao H., Ma Q., Zhang P., Yang G., Wu M., Tsubaki N., Chem. Sci., 2021, 12, 7786. [92] Wang Y., Kazumi S., Gao W., Gao X., Li H., Guo X., Yoneyama Y., Yang G., Tsubaki N., Appl. Catal. B: Environ., 2020, 269, 118792. [93] Shang X., Liu G., Su X., Huang Y., Zhang T., ACS Catal., 2022, 12, 13741. [94] Liu X., Wang M., Yin H., Hu J., Cheng K., Kang J., Zhang Q., Wang Y., ACS Catal., 2020, 10, 8303. [95] Bonura G., Cannilla C., Frusteri L., Catizzone E., Todaro S., Migliori M., Giordano G., Frusteri F., Catal. Today, 2020, 345, 175. [96] Fan X., Jiao Y., Sustainable Nanoscale Engineering: from Materials Design to Chemical Processing, Elsevier, Amsterdam, 2020. [97] Chen L. H., Sun M. H., Wang Z., Yang W., Xie Z., Su B. L., Chem. Rev., 2020, 120, 11194. [98] Abdulridha S., Jiang J., Xu S., Zhou Z., Liang H., Mao B., Zhou Y., Garforth A. A., Jiao Y., Fan X., Green Chem., 2020, 22, 5115. [99] Song G., Li M., Yan P., Nawaz M. A., Liu D., ACS Catal., 2020, 10, 11268. [100] Li W., Wang K., Zhan G., Huang J., Li Q., ACS Sustain. Chem. Eng., 2020, 8, 14058. [101] Jiao Y., Forster L., Xu S., Chen H., Han J., Liu X., Zhou Y., Liu J., Zhang J., Yu J., D’Agostino C., Fan X., Angew. Chem. Int. Ed., 2020, 59, 19478. [102] Hu H., Qu Y., Feng Z., Chen S., Xu T., Wang H., Wang J., Li C., Appl. Catal. A Gen., 2023, 666, 119410. [103] van Bokhoven J. A., Lamberti C., Coord. Chem. Rev., 2014, 277, 275. [104] Zhang C., Hu K., Chen X., Xu L., Deng C., Wang Q., Gao R., Jun K. W., Kim S. K., Zhao T., Wan H., Guan G., Fuel Process. Technol., 2023, 248, 107824. [105] Tada S., Li D., Okazaki M., Kinoshita H., Nishijima M., Yamauchi N., Kobayashi Y., Iyoki K., Catal. Today, 2023, 411/412, 113828. [106] Xu B., Bordiga S., Prins R., van Bokhoven J. A., Appl. Catal. A: Gen., 2007, 333, 245. [107] Batool S. R., Sushkevich V. L., van Bokhoven J. A., ACS Catal., 2024, 14, 678. [108] Zhao L., Wang Y., Xiao P., Toyoda H., Li Q., Sun Y., Samya B., Gies H., Yokoi T., Microporous Mesoporous Mater., 2025, 384, 113456. [109] Zhang H., Samsudin I. B., Jaenicke S., Chuah G. K., Catal. Sci. Technol., 2022, 12, 6024. [110] Gu Y., Liang J., Wang Y., Huo K., Li M., Wang W., He R., Yasuda S., Gao X., Yang G., Wu M., Tsubaki N., Appl. Catal. B: Environ., 2024, 349, 123842. [111] Shah D. R., Nezam I., Zhou W., Proaño L., Jones C. W., Energy and Fuels, 2023, 38, 2224. [112] Liu J., Yang C., Li S., Zhang J., Bu X., Wang H., Ji T., Li J., Chang C. R., Shi Y., Liu J., Xu Z., Gao P., Appl. Catal. B: Environ., 2025, 377, 125523. [113] Dai C., Zhao X., Hu B., Zhang J., Hao Q., Chen H., Guo X., Ma X., Ind. Eng. Chem. Res., 2020, 59, 19194. [114] Cordero-Lanzac T., Capel Berdiell I., Airi A., Chung S. H., Mancuso J. L., Redekop E. A., Fabris C., Figueroa-Quintero L., Navarro de Miguel J. C., Narciso J., Ramos-Fernandez E. V., Svelle S., Van Speybroeck V., Ruiz-Martínez J., Bordiga, S., Olsbye U., JACS Au, 2024, 4, 744. [115] Lee B. J., Lee J. H., Kim D. H., Hur Y. G., Lee K. Y., Microporous Mesoporous Mater., 2021, 323, 111243. [116] Yaripour F., Shariatinia Z., Sahebdelfar S., Irandoukht A., Microporous Mesoporous Mater., 2015, 203, 41. [117] Zhan J., Zhang C., Zhang Y., Jia M., Molecules, 2025, 30, 3670. [118] Fujiwara M., Satake T., Shiokawa K., Sakurai H., Appl. Catal. B: Environ., 2015, 179, 37. [119] Tian H., Chen Z., Huang H., Zha F., Chang Y., Chen H., J. Energy Chem., 2024, 99, 725. [120] Song G., Jiang Q., Zhai Y., Liu D., Chem. Eng. Sci., 2023, 280, 119037. [121] Gao W., Guo L., Wu Q., Wang C., Guo X., He Y., Zhang P., Yang G., Liu G., Wu J., Tsubaki N., Appl. Catal. B: Environ., 2022, 303, 120906. [122] Liu Y., Fu T., Guo Y., Guo Y., Wang R., Cao R., Li Z., J. Environ. Chem. Eng., 2025, 13, 116704. [123] De Vos Y., Koekkoek A. J. J., Bonura G., Todaro S., Kus M., Vansant A., Gerritsen G., Cannilla C., Abbenhuis H. C. L., Middelkoop V., Mater. Sci. Eng. B, 2024, 310, 117759. [124] D’Agostino C., Bräuer P., Zheng J., Robinson N., York A. P. E., Song L., Fan X., Mater. Today Chem., 2023, 29, 101443. [125] Ojelade O. A., Chempluschem, 2023, 88, e202300301. [126] Yang Q., Fan Y., Rong D., Bao R., Zhang D., AIChE J., 2024, 70, e18437. [127] https://www.cas.cn/sygz/202203/t20220304_4827046.shtml, accessed on 2025-08-07 [128] Chen J. J., China Petro Chemical Industry Observer, 2022, 3, 16. [129] Ding X., Duan J., Jia M., Fan H., Lyu Y., Fu J., Liu X., Chem.-An Asian J., 2025, 20, e202401703. |
| [1] | ZHOU Hexun, XUE Qiangqiang, HUANG Jun. Solid-state NMR Investigation of Zeolite Catalysts [J]. Chemical Research in Chinese Universities, 2026, 42(1): 18-32. |
| [2] | CHEN Weiling, XU Li, FU Zhiming, MA Fei, JIANG Jiuxing. Zeolite, a New Intrinsic Pickering Emulsifier [J]. Chemical Research in Chinese Universities, 2026, 42(1): 33-42. |
| [3] | GONG Liangliang, GONG Xianchen, YIN Jinpeng, LI Xintong, WU Peng, XU Hao. Two-dimensional Organic-Inorganic Ti-MWW as Regenerable Catalyst for Fixed-bed Propylene Epoxidation [J]. Chemical Research in Chinese Universities, 2026, 42(1): 84-93. |
| [4] | FAN Kai, WU Zihan, LIU Shuo, WU Qinming, ZHANG Weiping, MENG Xiangju, XIAO Feng-Shou. Direct Synthesis of ITR Zeolites with Different Compositions for the Conversion of Methanol to Propylene [J]. Chemical Research in Chinese Universities, 2026, 42(1): 105-110. |
| [5] | MA Zhonglin, LI Lingyi, HE Ke, ZHANG Wenqi, PENG Fu, SONG Wanrong, HE Linwei, JIANG Zhen, LI Jie, CHEN Long, WANG Shuao. Nitrogen-functionalized Zeolites for Enhanced Cobalt Decontamination [J]. Chemical Research in Chinese Universities, 2026, 42(1): 111-117. |
| [6] | LI Junze, WANG Yongxiang, BAO Han, ZENG Shuangqin, GAO Xiuzhi, HE Xiaowu, ZHENG Mingji, FENG Ningdong, WANG Qiang, XU Jun, DENG Feng. Probing Framework Boron Speciation and Spatial Distribution in MFI Zeolites by Solid-state NMR [J]. Chemical Research in Chinese Universities, 2026, 42(1): 134-142. |
| [7] | SHENG Zhizheng, ZHOU Jian, YE Zhaoqi, WANG Tingting, WANG Weihua, WANG Yangdong, TENG Jiawei, XIE Zaiku. Surface Diffusion Regulation of NanoZSM-5 for Catalysis Promotion on Methanol-to-propene [J]. Chemical Research in Chinese Universities, 2026, 42(1): 151-157. |
| [8] | TAO Zeyu, TIAN Yuanmeng, SHANG Shanshan, BELMABKHOUT Youssef, SHANG Jin. Tailoring Cation Charge-to-Size Ratios in Zeolite Y for High-performance Methane/Nitrogen Separation [J]. Chemical Research in Chinese Universities, 2026, 42(1): 158-166. |
| [9] | CHEN Yaxin, LI Lin, WANG Jiaze, LI Yi. Impact of Al Distribution on Ethylene/Ethane Selective Separation over Aluminosilicate Zeolites: A High-throughput Theoretical Study [J]. Chemical Research in Chinese Universities, 2026, 42(1): 167-175. |
| [10] | YE Junqing, CHENG Bin, LI Xibao, LI Sixian, CHEN Shengchun, QIAN Junfeng, CHEN Qun. Enhanced Decarboxylative Sulfonylation of Cinnamic Acids to (E)-Vinyl Sulfones via Manganese-doped Mesoporous Beta Zeolite Catalyst [J]. Chemical Research in Chinese Universities, 2026, 42(1): 263-275. |
| [11] | LI Mengwei, WANG Sen, DONG Mei, WANG Jianguo, FAN Weibin. Effect of Metal-support Interaction on Catalytic Performance of Pd/ZrOx in CO2 Hydrogenation to Formate [J]. Chemical Research in Chinese Universities, 2025, 41(3): 529-538. |
| [12] | Ansor YASHINOV, ZOU Xiangman, HANG Jiayin, LIU Zhi, SONG Fengnan, ZENG Yue, YANG Yang, XIA Fei, TANG Feng, SHI Wei, HUANG Wei. Strategic Amino Acid Mutations in CPD Cleavage Motif: Impacts on Hydrolysis and C-Terminal Modification Efficiency [J]. Chemical Research in Chinese Universities, 2025, 41(3): 592-600. |
| [13] | WANG Guowei, XIONG Hao, WEI Fei, CHEN Xiao. Advanced Aberration-corrected STEM Techniques for Atomic Imaging of Zeolites-confined Single Molecules: From Ex situ toIn situ [J]. Chemical Research in Chinese Universities, 2025, 41(2): 196-210. |
| [14] | TAO Wanbing, GU Shuyi, XIONG Jun, YUAN Bifeng. Quantitative and Site-specific Analysis of Adenosine-to-inosine RNA Editing by Ligation-assisted qPCR [J]. Chemical Research in Chinese Universities, 2025, 41(2): 288-295. |
| [15] | SUN Huangyijia, LI Xiaohui, ZENG Xiaoling, LIU Jian, RAKHMATULLIN Aydar, LOU Chenjie, TANG Mingxue, FERNáNDEZ-CARRIóN Alberto Jose, KUANG Xiaojun. Na Nonstoichiometric Modifications Unraveling the Sodium Ion Mobility and Transport Mechanism in Sodium Solid Electrolyte NaxZn2TeO6 [J]. Chemical Research in Chinese Universities, 2025, 41(2): 296-304. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

