Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4): 666-686.doi: 10.1007/s40242-025-5082-0
• Reviews • Previous Articles Next Articles
SUN Jingru, WANG Zhenlu GUAN Jingqi
Received:
2025-04-29
Accepted:
2025-05-23
Online:
2025-08-01
Published:
2025-07-24
Supported by:
SUN Jingru, WANG Zhenlu GUAN Jingqi. Optimization Strategies of Smartphone-integrated Intelligent Electrochemical Sensors for Food and Health Monitoring[J]. Chemical Research in Chinese Universities, 2025, 41(4): 666-686.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Cardenas-Riojas A. A., Cornejo-Herrera A. F., Muedas-Taipe G., La Rosa-Toro A., Sotomayor M. D. P. T., Ponce-Vargas M., Baena-Moncada A. M., J. Electroanal. Chem., 2021, 880, 114909. [2] Zhu J., Shao D., Wen W., Tian Z., Zhang X., Wang S., Coord. Chem. Rev., 2024, 518, 216095. [3] Xiao L., Wang Z., Guan J., Adv. Funct. Mater., 2023, 34, 2310195. [4] Liu L., Feng S., Han L., Chem. Res. Chinese Universities, 2025, 41, 222. [5] Zhang Q., Guan J., Nano Res., 2022, 15, 38. [6] Zhu J., Xiao Y., Hu W., Cui Q., Yuan Y., Peng X., Wen W., Zhang X., Wang S., Anal. Chem., 2024, 96, 1852. [7] Fu H., Du Y., Chem. Res. Chinese Universities, 2023, 39, 568. [8] Xue J., Mao K., Cao H., Feng R., Chen Z., Du W., Zhang H., Food Chem., 2024, 434, 137456. [9] Liu X., Huang L., Qian K., Adv. NanoBiomed Res., 2021, 1, 2000104. [10] Xu J., Yan Z., Liu Q., Sensors (Basel), 2022, 22, 5670. [11] Zhao J., Nyein H. Y. Y., Hou L., Lin Y., Bariya M., Ahn C. H., Ji W., Fan Z., Javey A., Adv. Mater., 2021, 33, 2006444. [12] Ali M. A., Hu C., Jahan S., Yuan B., Saleh M. S., Ju E., Gao S.-J., Panat R., Adv. Mater., 2021, 33, 2006647. [13] Wu T., Zhou Q., Chen G., Huang S., Ouyang G., Anal. Sens., 2023, 4, e202300084. [14] Gu Y., Li Y., Ren D., Sun L., Zhuang Y., Yi L., Wang S., Food Front., 2022, 3, 453. [15] Geng L., Liu J., Zhang W., Wang H., Huang J., Wang G., Hu M., Dong H., Sun J., Fang M., Guo Y., Sun X., J. Hazard. Mater., 2024, 476, 135112. [16] Geng L., Sun J., Liu M., Huang J., Dong J., Guo Z., Guo Y., Sun X., Food Chem., 2024, 437, 137933. [17] Hu X., Mao N., Yan X., Huang L., Liu X., Yang H., Sun Q., Liu X., Jia H., Chem. Res. Chinese Universities, 2024, 40, 824. [18] Ye J., Yin Y., Ouyang J., Na N., Chem. Res. Chinese Universities, 2025, 41, 181. [19] Han J., Guan J., Chin. J. Catal., 2023, 47, 1. [20] Geng L., Huang J., Fang M., Wang H., Liu J., Wang G., Hu M., Sun J., Guo Y., Sun X., Food Chem., 2024, 458, 140330. [21] Han J., Bai X., Xu X., Bai X., Husile A., Zhang S., Qi L., Guan J., Chem. Sci., 2024, 15, 7870. [22] Han J., Guan J., Coord. Chem. Rev., 2023, 490, 215209. [23] Lin T., Shen Y., Ge M., Li Y., Jiang Z., Lyu Z.-H., Liu J., Gu L., Liu X., Chem. Res. Chinese Universities, 2025, 41, 281. [24] Khan M. A., Ramzan F., Ali M., Zubair M., Mehmood M. Q., Massoud Y., Nanomaterials, 2023, 13, 780. [25] Saputra H. A., Monatshefte für Chemie-Chemical Monthly, 2023, 154, 1083. [26] Kirazoğlu M., Benli B., ChemistrySelect, 2023, 8, e202301600. [27] Ayerdurai V., Cieplak M., Kutner W., TrAC, Trends Anal. Chem., 2023, 158, 116830. [28] Zhao Z., Huang C., Huang Z., Lin F., He Q., Tao D., Jaffrezic-Renault N., Guo Z., TrAC, Trends Anal. Chem., 2021, 139, 116253. [29] Upadhyay S., Kumar A., Srivastava M., Srivastava A., Dwivedi A., Singh R. K., Srivastava S. K., Talanta, 2024, 275, 126080. [30] Cheng C., Li X., Xu G., Lu Y., Low S. S., Liu G., Zhu L., Li C., Liu Q., Biosens. Bioelectron., 2021, 172, 112782. [31] Desagani D., Ben-Yoav H., TrAC, Trends Anal. Chem., 2023, 164, 117089. [32] Xu G., Zhang Q., Lu Y., Liu L., Ji D., Li S., Liu Q., Sens. Actuators, B, 2017, 246, 748. [33] Kim K. R., Lee K. W., Chun H. J., Lee D., Kim J.-H., Yoon H. C., Biosens. Bioelectron., 2022, 196, 113722. [34] Guo J., Anal. Chem., 2017, 89, 8609. [35] Fan Y., Liu J., Wang Y., Luo J., Xu H., Xu S., Cai X., Biosens. Bioelectron., 2017, 95, 60. [36] Sun A. C., Yao C., Venkatesh A. G., Hall D. A., Sens. Actuators, B, 2016, 235, 126. [37] Sun A. C., Hall D. A., Electroanalysis, 2019, 31, 2. [38] Li B., Ou H., Chen S., Su Y.-Q., Wang D., Chem. Res. Chinese Universities, 2023, 39, 527. [39] Gil B., Anastasova S., Yang G. Z., Sensors, 2019, 19, 1616. [40] Jeong H., Wang L., Ha T., Mitbander R., Yang X., Dai Z., Qiao S., Shen L., Sun N., Lu N., Adv. Mater. Technol., 2019, 4, 1900117. [41] Tang T., Wang Z., Guan J., Coord. Chem. Rev., 2023, 492, 215288. [42] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666. [43] Krishnan S. K., Singh E., Singh P., Meyyappan M., Nalwa H. S., RSC Adv., 2019, 9, 8778. [44] Zhang W., Chai Y., Yuan R., Chen S., Han J., Yuan D., Anal. Chim. Acta, 2012, 756, 7. [45] Sebastian N., Yu W.-C., Balram D., Inorg. Chem. Front., 2019, 6, 82. [46] Camilli L., Passacantando M., Chemosensors, 2018, 6, 62. [47] Appaturi J. N., Pulingam T., Thong K. L., Muniandy S., Ahmad N., Leo B. F., Anal. Biochem., 2020, 589, 113489. [48] Viet N. X., Hoan N. X., Takamura Y., Mater. Chem. Phys., 2019, 227, 123. [49] Arman A., Sağlam Ş., Üzer A., Apak R., Anal. Chem., 2021, 93, 11451. [50] Liu H., Weng L., Yang C., Microchim. Acta, 2017, 184, 1267. [51] Song S., Hu X., Li H., Zhao J., Koh K., Chen H., Sens. Actuators, B, 2018, 274, 54. [52] Sehit E., Drzazgowska J., Buchenau D., Yesildag C., Lensen M., Altintas Z., Biosens. Bioelectron., 2020, 165, 112432. [53] Wu H., Shi C., Zhu Q., Li Y., Xu Z., Wei C., Chen D., Huang X., Biosens. Bioelectron., 2021, 171, 112722. [54] Florea A., Cowen T., Piletsky S., De Wael K., Analyst, 2019, 144, 4639. [55] Ren E., Zhang C., Li D., Pang X., Liu G., VIEW, 2020, 1, 20200052. [56] Manikandan V. S., Adhikari B., Chen A., Analyst, 2018, 143, 4537. [57] Li Y., Jiang C., Biosens. Bioelectron., 2018, 119, 18. [58] Ilager D., Seo H., Shetti N. P., Kalanur S. S., Aminabhavi T. M., Sci. Total Environ., 2020, 743, 140691. [59] Zeng L., Li X., Fan S., Zhang M., Yin Z., Tadé M., Liu S., J. Power Sources, 2019, 413, 310. [60] Vishnu N., Badhulika S., Biosens. Bioelectron., 2019, 124, 122. [61] Arivazhagan M., Shankar A., Maduraiveeran G., Microchim. Acta, 2020, 187, 468. [62] Shukla S., Haldorai Y., Bajpai V. K., Rengaraj A., Hwang S. K., Song X., Kim M., Huh Y. S., Han Y.-K., Biosens. Bioelectron., 2018, 109, 139. [63] Dong X., Zhang C., Du X., Zhang Z., Nanomaterials, 2022, 12, 1913. [64] Cho D., Park J., Kim J., Kim T., Kim J., Park I., Jeon S., ACS Appl. Mater. Interfaces, 2017, 9, 17369. [65] Wang B., Hong J., Liu C., Zhu L., Jiang L., Sensors, 2021, 21, 8240. [66] Zhang Z., Chen S., Ren J., Han F., Yu X., Tang F., Xue F., Chen W., Yang J., Jiang Y., Jiang H., Lv B., Xu J., Dai J., Microchim. Acta, 2020, 187, 642. [67] Tang T., Wang Z., Guan J., Adv. Funct. Mater., 2022, 32, 2111504. [68] Tomboc G. M., Kim T., Jung S., Yoon H. J., Lee K., Small, 2022, 18, e2105680. [69] Lin C.-H., Yang M., Li P.-H., Huang X.-J., Current Opinion in Electrochemistry, 2021, 25, 100646. [70] Tang T., Wang Z., Guan J., Adv. Funct. Mater., 2022, 32, 2111504. [71] Promphet N., Thanawattano C., Buekban C., Laochai T., Lormaneenopparat P., Sukmas W., Rattanawaleedirojn P., Puthongkham P., Potiyaraj P., Leewattanakit W., Rodthongkum N., Anal. Chim. Acta, 2024, 1312, 342761. [72] Ko J.-K., Park I.-H., Hong K., Kwon K. C., Nanomaterials, 2024, 14, 1397. [73] Jiang W., Zhuo Z., Zhang X., Luo H., He L., Yang Y., Wen Y., Huang Z., Wang P., Food Chem., 2024, 431, 137165. [74] Xu J., Liu Y., Li Y., Liu Y., Huang K.-J., Anal. Chem., 2023, 95, 13305. [75] Feng Z.-Y., Jiang J.-C., Meng L.-Y., Dalton Trans., 2024, 53, 11192. [76] Yadav A., Talreja N., Chauhan D., Khan S., Ashfaq M., Microchem. J., 2025, 209, 112712. [77] Jiao S., Jin J., Wang L., Talanta, 2014, 122, 140. [78] Drdanová A. P., Krajčovičová T. E., Gál M., Nemčeková K., Imreová Z., Ryba J., Naumowicz M., Homola T., Mackuľak T., Svitková V., Int. J. Mol. Sci., 2024, 25, 7634. [79] Mohammadzadeh Jahani P., Aflatoonian M. R., Abbasi Rayeni R., Di Bartolomeo A., Mohammadi S. Z., Food and Chemical Toxicology, 2022, 163, 112962. [80] Chaghazardi M., Kashanian S., Nazari M., Omidfar K., Joseph Y., Rahimi P., Photonics, 2024, 11, 841. [81] Ahmad K., Khan M. Q., Alsalme A., Kim H., Synth. Met., 2022, 288, 117100. [82] Guo T., Qu Y., Ning B., Song Q., Wan J., Lin X., Zhuang S., Lin P., Yang J., Huang G., Microchem. J., 2025, 209, 112642. [83] Revabhai P. M., Singhal R. K., Basu H., Kailasa S. K., Journal of Nanostructure in Chemistry, 2022, 13, 1. [84] Nair J. S. A., Sandhya K. Y., Mater. Adv., 2024, 5, 3177. [85] Yin J., Ouyang H., Li W., Long Y., Biosensors, 2023, 13, 116. [86] Jampasa S., Jikul B., Kreangkaiwal C., Khamcharoen W., Jesadabundit W., Waiwinya W., Saelim P., Phanbunmee T., Patarakul K., Chailapakul O., Sens. Actuators, B, 2024, 406, 135411. [87] Du Y., Guo M., Chen Y., Mo X., Cao J., Hu F., Anal. Chim. Acta, 2024, 1303, 342462. [88] Wang Z., Zhang Y., Int. J. Electrochem. Sci., 2022, 17, 220769. [89] Mondal S., Sharma P. K., Appl. Phys. A, 2023, 130, 41. [90] Yang Y.-X., Zhang T., Zhang J., Yang J.-H., Ionics, 2023, 29, 3853. [91] Radhakrishnan S., Krishnamoorthy K., Sekar C., Wilson J., Kim S. J., Appl. Catal., B, 2014, 148/149, 22. [92] Yang K., Yang H., Zheng Y., Chen H., Liu W., Yang X., Microchem. J., 2024, 203, 110874. [93] Karakuş S., Özbaş F., Baytemir G., Taşaltın N., Food Chem., 2023, 417, 135918. [94] Li M., Peng X., Liu Z., Dai Y., Han Y., Fan L., Guo Y., the Analyst, 2023, 148, 2709. [95] Li P., Peng Y., Cai J., Bai Y., Li Q., Pang H., Bioengineering, 2023, 10, 733. [96] Hu Y., Wang X., Li W., Lai Y., Chen Y., Wei Z., Yang H., Int. J. Electrochem. Sci., 2024, 19, 100466. [97] Liu J., Sun G., Sun W., Zha X., Wang N., Wang Y., J. Colloid Interface Sci., 2024, 671, 423. [98] Pan W., Zheng Z., Wu X., Gao J., Liu Y., Yuan Q., Gan W., Microchem. J., 2021, 170, 106652. [99] Chen Y., Lin J., Jia B., Wang X., Jiang S., Ma T., Adv. Mater., 2022, 34, e2201796. [100] Hayat A., Sohail M., Alzahrani A. Y. A., Ali H., Abu-Dief A. M., Amin M. S., Alenad A. M., Al-Mhyawi S. R., Al-Hadeethi Y., Ajmal Z., Guo S.-R., Orooji Y., Prog. Mater Sci., 2025, 150, 101408. [101] Li X., Rong H., Zhang J., Wang D., Li Y., Nano Res., 2020, 13, 1842. [102] Jayaraman S., Rajarathinam T., Chakravarthi Nagarajan D., Kandasamy P., Jeon S., Kim C.-S., Won Hong S., Paik H.-j., Chang S.-C., Chem. Eng. J., 2024, 497, 154811. [103] Liu Z., Cao X., Han L., Li X., Xia J., Wang Z., Microchem. J., 2025, 208, 112324. [104] Li Y., Liu X., Zheng J., Microchem. J., 2023, 189, 108556. [105] Kalambate P. K., Thirabowonkitphithan P., Kaewarsa P., Permpoka K., Radwan A. B., Shakoor R. A., Kalambate R. P., Khosropour H., Huang Y., Laiwattanapaisal W., Materials Today Chemistry, 2022, 26, 101235. [106] Zhao H., Qu K., Yin H., Wang L., Zheng Y., Zhao S., Wu S., Journal of Electrochemical Science and Technology, 2023, 14, 252. [107] Shen Y., Ouyang H., Li W., Long Y., Microchim. Acta, 2021, 188, 40. [108] Liu X., Liu X., Li C., Yang B., Wang L., Chin. J. Catal., 2023, 45, 27. [109] Qi C., Zhang C., Yang Z., Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 654, 130096. [110] Luo Y., Wu Y., Braun A., Huang C., Li X.-Y., Menon C., Chu P. K., ACS Nano, 2022, 16, 20820. [111] Mihret Y., Sisay G., Diro A., Hailemariam S., Kitte S. A., ACS Omega, 2023, 8, 46869. [112] Zhu X., Zhang X., Li Y., Liu Y., J. Energy Storage, 2024, 80, 110350. [113] Lu Z., Gong Y., Shen C., Chen H., Zhu W., Liu T., Wu C., Sun M., Su G., Wang X., Wang Y., Ye J., Liu X., Rao H., Food Chem., 2024, 444, 138656. [114] Wang L., Wu J., Wang X., Fu S., J. Alloys Compd., 2023, 959, 170548. [115] Wang Y., Dai S., Liu T., Wu C., Sun M., Su G., Ye J., Wang X., He J., Rao H., Lu Z., Biosens. Bioelectron., 2024, 248, 115941. [116] Tonelli D., Scavetta E., Gualandi I., Sensors (Basel), 2019, 19, 1186. [117] Zhao J., Kan Y., Chen Z., Li H., Zhang W., Biosensors (Basel), 2023, 13, 284. [118] Wang R., Wang Z., Yin Q., Liu H., Liu T., Cao R., Chem. Res. Chinese Universities, 2024, 40, 964. [119] Sharma A., Singh A., Gupta V., Sundramoorthy A. K., Arya S., Trends Environ. Anal. Chem., 2023, 38, e00200. [120] Deng L., Rao L., Lu X., Wang Y., Zhang W., Duan X., Wen Y., Kong Z., Xu J., J. Electroanal. Chem., 2024, 973, 118681. [121] Liang Q., Zhou D., Zhang K., Camarada M. B., Xiong J., Liao X., Microchem. J., 2025, 209, 112895. [122] Lu Z., Wang Y., Li G., Biosensors, 2023, 13, 291. [123] Cao Y., Wu R., Gao Y.-Y., Zhou Y., Zhu J.-J., Nano-Micro Lett., 2023, 16, 37. [124] Zhu J., Wen W., Tian Z., Zhang X., Wang S., Talanta, 2023, 260, 124613. [125] Tang X., Zhang Q., Chen D., Deng L., He Y., Wang J., Pan C., Tang J., Yu G., Chemical Communications, 2023, 59, 8731. [126] Tan X., Gou Q., Yu Z., Pu Y., Huang J., Huang H., Dai S., Zhao G., Langmuir, 2020, 36, 14676. [127] Solangi N. H., Mubarak N. M., Karri R. R., Mazari S. A., Jatoi A. S., Environ. Res., 2023, 222, 115279. [128] Ji H., Liu Y., Du G., Huang T., Zhu Y., Sun Y., Pang H., Chem. Res. Chinese Universities, 2024, 40, 943. [129] Yang Y., Yang S., Xia X., Hui S., Wang B., Zou B., Zhang Y., Sun J., Xin J. H., ACS Nano, 2024, 18, 24705. [130] Yang M., Wang L., Lu H., Dong Q., Micromachines, 2023, 14, 1088. [131] Wang Q., Xiao X., Hu X., Huang L., Li T., Yang M., Mater. Lett., 2021, 285, 129158. [132] Zhu F., Wang X., Yang X., Zhao C., Zhang Y., Qu S., Wu S., Ji W., Anal. Methods, 2021, 13, 2512. [133] Zheng W., Analysis Sensing, 2023, 3, e202200070. [134] Ding S., Lyu Z., Fang L., Li T., Zhu W., Li S., Li X., Li J. C., Du D., Lin Y., Small, 2021, 17, 2100664. [135] Huang Z., Sun X., Wang P., Wan H., VIEW, 2023, 4, 20220058. [136] Hu F. X., Hu G., Wang D. P., Duan X., Feng L., Chen B., Liu Y., Ding J., Guo C., Yang H. B., ACS Nano, 2023, 17, 8575. [137] Cai X., Ma F., Jiang J., Yang X., Zhang Z., Jian Z., Liang M., Li P., Yu L., J. Hazard. Mater., 2023, 441, 129853. [138] Ji D., Liu Z., Liu L., Low S. S., Lu Y., Yu X., Zhu L., Li C., Liu Q., Biosens. Bioelectron., 2018, 119, 55. [139] Li Z., Paul R., Ba Tis T., Saville A. C., Hansel J. C., Yu T., Ristaino J. B., Wei Q., Nat. Plants, 2019, 5, 856. [140] Karakuş S., Baytemir G., Özeroğlu C., Taşaltın N., Inorg. Chem. Commun., 2022, 143, 109733. [141] Doğan V., Evliya M., Nesrin Kahyaoglu L., Kılıç V., Talanta, 2024, 266, 125021. [142] Guo R., Wang S., Huang F., Chen Q., Li Y., Liao M., Lin J., Sens. Actuators, B, 2019, 284, 134. [143] Xing G., Shang Y., Wang X., Lin H., Chen S., Pu Q., Lin L., Biosens. Bioelectron., 2023, 220, 114885. [144] Lu L., Yu R., Zhang L., Food Chem., 2023, 421, 136205. [145] Zhang L., Chen J., Lu L., Yu R., Zhang D., Food Chem.:X, 2023, 19, 100792. [146] Deng C. C., Xu Z. Y., Sun Z., Xie J. H., Luo H. Q., Li N. B., Food Chem., 2023, 405, 134961. [147] Guo L., Zhao D.-M., Chen S., Yu Y.-L., Wang J.-H., Anal. Chem., 2022, 94, 14004. [148] Xiao C., Ross G., Nielen M. W. F., Eriksson J., Salentijn G. I. J., Mak W. C., Talanta, 2023, 257, 124366. [149] Zhang X., Shi Y., Wu D., Fan L., Liu J., Wu Y., Li G., Food Chem., 2024, 434, 137455. [150] Teengam P., Siangproh W., Tontisirin S., Jiraseree-amornkun A., Chuaypen N., Tangkijvanich P., Henry C. S., Ngamrojanavanich N., Chailapakul O., Sens. Actuators, B, 2021, 326, 128825. [151] Akarapipad P., Kaarj K., Breshears L. E., Sosnowski K., Baker J., Nguyen B. T., Eades C., Uhrlaub J. L., Quirk G., Nikolich-Žugich J., Worobey M., Yoon J.-Y., Biosens. Bioelectron., 2022, 207, 114192. [152] Xu G., Cheng C., Yuan W., Liu Z., Zhu L., Li X., Lu Y., Chen Z., Liu J., Cui Z., Liu J., Men H., Liu Q., Sens. Actuators, B, 2019, 297, 126743. [153] Ozer T., Anal. Sci., 2022, 38, 1233. [154] Yang J., Gong X., Chen S., Zheng Y., Peng L., Liu B., Chen Z., Xie X., Yi C., Jiang L., ACS Sens., 2023, 8, 1241. [155] Promsuwan K., Soleh A., Samoson K., Saisahas K., Wangchuk S., Saichanapan J., Kanatharana P., Thavarungkul P., Limbut W., Talanta, 2023, 256, 124266. [156] Yang T., Luo Z., Bewal T., Li L., Xu Y., Mahdi Jafari S., Lin X., Food Chem., 2022, 394, 133534. [157] Zhang J., Huang H., Song G., Huang K., Luo Y., Liu Q., He X., Cheng N., Biosens. Bioelectron., 2022, 202, 114003. [158] Frankish E. J., Phan-Thien K.-Y., Ross T., McConchie R., Luning P. A., Bozkurt H., Food Control, 2022, 133, 108642. [159] Guo L., Azam S. M. R., Guo Y., Liu D., Ma H., Food Control, 2022, 136, 108496. [160] Cai G., Wang Y., Zhang Y., Zheng L., Lin J., Chin. Chem. Lett., 2023, 34, 108059. [161] Wang S., Zheng L., Cai G., Liu N., Liao M., Li Y., Zhang X., Lin J., Biosens. Bioelectron., 2019, 140, 69. [162] Tian Y., Hu X., Jiang J., Tang X., Tian Z., Zhang Z., Li P., Foods, 2023, 12, 431. [163] Khalaf E. M., Sanaan Jabbar H., Mireya Romero-Parra R., Raheem Lateef Al-Awsi G., Setia Budi H., Altamimi A. S., Abdulfadhil Gatea M., Falih K. T., Singh K., Alkhuzai K. A., Microchem. J., 2023, 190, 108692. [164] Hu J., Chen R., Xu Z., Li M., Ma Y., He Y., Liu Y., Sensors, 2021, 21, 3238. [165] Tan L., Ding H., Chanmungkalakul S., Peng L., Yuan G., Yang Q., Liu X., Zhou L., Sens. Actuators, B, 2021, 345, 130331. [166] Zhu J., Shen J., Hu B., Yang L., Jiang C., Anal. Chem., 2022, 94, 1126. [167] Xu J., Ye Y., Ji J., Sun J., Sun X., Crit. Rev. Food Sci. Nutr., 2022, 62, 6887. [168] Suo Z., Niu X., Wei M., Jin H., He B., Anal. Chim. Acta, 2023, 1246, 340888. [169] Kholafazad-Kordasht H., Hasanzadeh M., Seidi F., TrAC, Trends Anal. Chem., 2021, 145, 116455. [170] Das R., Nag S., Banerjee P., Molecules, 2023, 28, 1259. [171] Purohit B., Kumar A., Mahato K., Chandra P., Curr. Opin. Biomed. Eng., 2020, 13, 42. [172] Dou Y., Su J., Chen S., Li T., Wang L., Ding X., Song S., Fan C., Chemical Communications, 2022, 58, 6108. [173] Yu M., Fu S., Li J., Yi X., Qu Z., Li Y., Miao J., Miao P., Xu Y., Sens. Actuators, B, 2023, 396, 134617. [174] Wang Y., Ma S., Hu L., Fan Z., Lin Y., Nano Futures, 2023, 7, 032002. [175] Jiang N., Yetisen A. K., Linhart N., Flisikowski K., Dong J., Dong X., Butt H., Jakobi M., Schnieke A., Koch A. W., Sens. Actuators, B, 2020, 320, 128378. [176] Ghaderinezhad F., Ceylan Koydemir H., Tseng D., Karinca D., Liang K., Ozcan A., Tasoglu S., Sci. Rep., 2020, 10, 13620. [177] Lee I., Probst D., Klonoff D., Sode K., Biosens. Bioelectron., 2021, 181, 113054. [178] Sun J., Wang Z., Guan J., Food Chem., 2023, 425, 136518. [179] Fei J., Yang W., Dai Y., Xu W., Fan H., Zheng Y., Zhang J., Zhu W., Hong J., Zhou X., Microchim. Acta, 2023, 190, 336. [180] Shen X., Ju F., Li G., Ma L., Sensors (Basel), 2020, 20, 2781. [181] Tian H., Jiao L., Wang K., Zhao X., Cao F., Dong D., Chem. Eng. J., 2022, 448, 137583. [182] Meng G., Long F., Zeng Z., Kong L., Zhao B., Yan J., Yang L., Yang Y., Liu X.-Y., Yan Z., Lin N., Biosens. Bioelectron., 2023, 228, 115198. [183] Zhavoronok M. F., Pochivalov A., Nugbienyo L., Bulatov A., Journal of Food Composition and Analysis, 2023, 124, 105700. [184] Zou Y., Chu Z., Guo J., Liu S., Ma X., Guo J., Biosens. Bioelectron., 2023, 225, 115103. |
[1] | WU Zhifang, LIANG Zhishan, HE Ziqian, WANG Tianqi, XIAO Ren, HAN Fangjie, ZHAO Zhengzheng, HAN Dongfang, HAN Dongxue, NIU Li. A Label-free Photoelectrochemical Sensor Based on Bi2S3@Nitrogen Doped Graphene Quantum Dots for Ascorbic Acid Determination [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1387-1393. |
[2] | LI Duo, WU Chao, TANG Xuehui, ZHANG Yue, WANG Tie. Electrochemical Sensors Applied for In vitro Diagnosis [J]. Chemical Research in Chinese Universities, 2021, 37(4): 803-822. |
[3] | CUI Min, REN Jujie, WEN Xiaofang, LI Na, XING Yifei, ZHANG Cong, HAN Yuanyuan, JI Xueping. Electrochemical Detection of Superoxide Anion Released by Living Cells by Manganese(III) Tetraphenyl Porphine as Superoxide Dismutase Mimic [J]. Chemical Research in Chinese Universities, 2020, 36(5): 774-780. |
[4] | GU Yanan, LIU Jingju, ZHOU Ming. Amperometric Ascorbic Acid Sensor Based on Disposable Facial Tissues Derived Carbon Aerogels [J]. Chemical Research in Chinese Universities, 2020, 36(1): 139-144. |
[5] | DONG Pengfei, LI Na, ZHAO Haiyan, CUI Min, ZHANG Cong, HAN Hongyan, REN Jujie. POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol A and Acetaminophen [J]. Chemical Research in Chinese Universities, 2019, 35(4): 592-597. |
[6] | NIE Jing, HE Bin, CHENG Yanmei, YIN Wei, HOU Changjun, HUO Danqun, QIAN Linlin, QIN Yunan, FA Huanbao. Design of L-Cysteine Functionalized Au@SiO2@Fe3O4/Nitrogen-doped Graphene Nanocomposite and Its Application in Electrochemical Detection of Pb2+ [J]. Chemical Research in Chinese Universities, 2017, 33(6): 951-957. |
[7] | LIU Lihong, WANG Chunfeng, ZHUO Kelei. Cetyltrimethylammonium Bromide(CTAB)-Ionic Liquid Composite Modified Electrode for Sensitive Cyclic Voltammetric Determination of Bisphenol A [J]. Chemical Research in Chinese Universities, 2016, 32(6): 992-995. |
[8] | FAN Wei, MIAO Yue'e, LIU Tianxi. Graphene/γ-AlOOH Hybrids as an Enhanced Sensing Platform for Ultrasensitive Stripping Voltammetric Detection of Pb(II) [J]. Chemical Research in Chinese Universities, 2015, 31(4): 590-596. |
[9] | AN Jing, LI Ji-ping, CHEN Wen-xia, YANG Chun-xia, HU Fang-di, WANG Chun-ming. Electrochemical Study and Application on Shikonin at Poly(diallyldimethylammonium chloride) Functionalized Graphene Sheets Modified Glass Carbon Electrode [J]. Chemical Research in Chinese Universities, 2013, 29(4): 798-805. |
[10] | LIU Li, TAN Xue-cai, ZHAO Dan-dan, WANG Lin, LEI Fu-hou, HUANG Zai-yin. Development and Characterization of an Electrochemical Sensor for Cinchonidine Detection Based on Molecularly Imprinted Polymer with Modified Rosin as Cross-linker [J]. Chemical Research in Chinese Universities, 2012, 28(3): 410-414. |
[11] | HUANG Yong-xing, LIAN Hui-ting, SUN Xiang-ying and LIU Bin*. Preparation and Electrochemical Characters of Parathion Molecule Imprinted Polymeric Sensors [J]. Chemical Research in Chinese Universities, 2011, 27(1): 28-33. |
[12] | HAN Yi-ping , LUO Peng , CAI Chen-xin , XIE Lei , LU Tian-hong . Electrochemical Oxidation of Ammonia on Ir Anode in Potential Fixed Electrochemical Sensor [J]. Chemical Research in Chinese Universities, 2008, 24(6): 782-785. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||