Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4): 655-665.doi: 10.1007/s40242-025-5074-0
• Reviews • Previous Articles Next Articles
LU Chongjiu, GONG Yunnan, ZHONG Dichang, LU Tongbu
Received:
2025-04-21
Accepted:
2025-05-26
Online:
2025-08-01
Published:
2025-07-24
Supported by:
LU Chongjiu, GONG Yunnan, ZHONG Dichang, LU Tongbu. Syntheses and Photocatalytic Application of Porous Supramolecular Frameworks[J]. Chemical Research in Chinese Universities, 2025, 41(4): 655-665.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Zhong D. C., Gong Y.-N., Zhang C., Lu T.-B., Chem. Soc. Rev., 2023, 52, 3170. [2] Qin W.-K., Tung C.-H., Wu L.-Z., J. Mater. Chem. A, 2023, 11, 12521. [3] Gong Y.-N., Guan X., Jiang H.-L., Coord. Chem. Rev., 2023, 475, 214889. [4] Zhou Z., Ma T., Zhang H., Chheda S., Li H., Wang K., Ehrling S., Giovine R., Li C., Alawadhi A. H., Abduljawad M. M., Alawad M. O., Gagliardi L., Sauer J., Yaghi O. M., Nature, 2024, 635, 96. [5] Wang X. Y., Zhao Z. W., Zahra K., Li J. J., Zhang Z. C., Chem. Res. Chinese Universities, 2023, 39, 580. [6] Ciamician G., Silber P., Eur. J. Inorg. Chem., 1901, 34, 2040. [7] Fujishima A., Honda K., Nature, 1972, 238, 37. [8] Xu C., Ravi Anusuyadevi P., Aymonier C., Luque R., Marre S., Chem. Soc. Rev., 2019, 48, 3868. [9] Yang L., Peng Y., Luo X. D., Dan Y., Ye J. H., Zhou Y., Zou Z. G., Chem. Soc. Rev., 2021, 50, 2147. [10] Furukawa H., Cordova K. E., O'Keeffe M., Yaghi O. M., Science, 2013, 341, 1230444. [11] Qian Y. Y., Jiang H. L., Acc. Chem. Res., 2024, 57, 1214. [12] Gao J. K., Huang Q., Wu Y. H., Lan Y. Q., Chen B. L., Adv. Energy. Sustain. Res., 2021, 2, 2100033. [13] Xu Y. B., Huang A. L., Yi W., Chen G. S., Huang S. M., Ouyang G. F., Coord. Chem. Rev., 2024, 500, 215517. [14] Sun K., Qian Y. Y., Jiang H. L., Angew. Chem. Int. Ed., 2023, 62, e202217565. [15] Zhang C. M., Lin Z. Y., Jiao L., Jiang H. L., Angew. Chem. Int. Ed., 2024, e202414506. [16] Ji H. Q., Liu Y. X., Du G. Y., Huang T. Y., Zhu Y., Sun Y. Y., Pang H., Chem. Res. Chinese Universities, 2024, 40, 943. [17] Yang J. Y., Wang J. K., Hou B. H., Huang X., Wang T., Bao Y., Hao H. X., Chem. Eng. J., 2020, 399, 125873. [18] Wang B., Lv X. L., Lv J., Ma L., Lin R. B., Cui H., Zhang J., Zhang Z. J., Xiang S. C., Chen B. L., Chem. Commun., 2020, 56, 66. [19] Mastalerz M., Oppel I. M., Angew. Chem. Int. Ed., 2012, 51, 5252. [20] Duchamp D. J., Marsh R. E., Acta Crystallogr. Sect. B, 1969, 25, 5. [21] Simard M., Su D., Wuest J. D., J. Am. Chem. Soc., 1991, 113, 4696. [22] Brunet P., Simard M., Wuest J. D., J. Am. Chem. Soc., 1997, 119, 2737. [23] He Y. B., Xiang S. C., Chen B. L., J. Am. Chem. Soc., 2011, 133, 14570. [24] Luo X. Z., Jia X. J., Deng J. H., Zhong J. L., Liu H. J., Wang K. J., Zhong D. C., J. Am. Chem. Soc., 2013, 135, 11684. [25] Li P., He Y. B., Guang J., Weng L. H., Zhao J. C. G., Xiang S. C., Chen B. L., J. Am. Chem. Soc., 2014, 136, 547. [26] Li P., He Y. F., Zhao Y. F., Weng L. H., Wang H. L., Krishna R., Wu H., Zhou W., O'Keeffe M. Han, Y., Chen B. L., Angew. Chem. Int. Ed., 2015, 54, 574. [27] Wang H. L., Li B., Wu H., Hu T. L., Yao Z. Z., Zhou W., Xiang S. C., Chen B. L., J. Am. Chem. Soc., 2015, 137, 9963. [28] Wang B., He R., L. H., Lin Z.-J., Zhang X., Wang J., Huang H.-L, Zhang Z.-J., Schanze K. S., Zhang J., Xiang S.-C., Chen B.-L., J. Am. Chem. Soc., 2020, 142, 12478. [29] Li T., Liu B. T., Fang Z. B., Yin Q., Wang R., Liu T. F., J. Mater. Chem. A, 2021, 9, 4687. [30] Zhang J. H., Ge Z. M., Wang J., Zhong D. C., Lu T. B., Nat. Commun., 2025, 16, 2448. [31] Gong L. S., Ye Y. X., Liu Y., Li Y. B., Bao Z. B., Xiang S. C., Zhang Z. J., Chen B. L., ACS. Appl. Mater. Interfaces, 2022, 14, 19623. [32] Song X. Y., Wang Y., Wang C., Wang D., Zhuang G. W., Kirlikovali K. O., Li P., Farha O. K., J. Am. Chem. Soc., 2022, 144, 10663. [33] Yu B. Q., Li L. J., Liu S. S., Wang H. L., Liu H. Y., Lin C. X., Liu C., Wu H., Zhou W., Li X. Y., Wang T. Y., Chen B. L., Jiang J. Z., Angew. Chem. Int. Ed., 2021, 60, 8983. [34] Yin Q., Alexandrov E. V., Si D. H., Huang Q. Q., Fang Z. B., Zhang Y., Zhang A. A., Qin W. K., Li Y. L., Liu T. F., Proserpio D. M., Angew. Chem. Int. Ed., 2022, 61, e202115854. [35] Zhang Y. Q., Li P., Cui P., Hu X. L., Shu C., Sun R. X., Peng M. J., Tan B., Wang X. Y., Angew. Chem. Int. Ed., 2024, 63, e202413131. [36] Zhang A. A., Si D., Huang H. B., Xie L., Fang Z. B., Liu T. F., Cao R., Angew. Chem. Int. Ed., 2022, 61, e202203955. [37] Wang Z. X., Zou Y., Fang Z. B., Li J. L., Li Y. F., Zhang A. A., Liu T. F., Sci. China Mater., 2024, 67, 1846. [38] Yu B. Q., Meng T., Ding X., Liu X. L., Wang H. L., Chen B. T., Zheng T. Y., Li W., Zeng Q. D., Jiang J. Z., Angew. Chem. Int. Ed., 2022, 61, e202211482. [39] Zhang A. A., Li Y. L., Fang Z. B., Xie L., Cao R., Liu Y. Y., Liu T. F., ACS Appl. Mater. Interfaces, 2022, 14, 21050. [40] Zhang N., Yin Q., Guo S., Chen K. K., Liu T. F., Wang P., Zhang Z. M., Lu T. B., Appl. Catal. B:Environ., 2021, 296, 120337. [41] Zhou Q. X., Guo Y., Zhu Y. F., Nat. Catal., 2023, 6, 574. [42] Mei J. H., Lai S., Gong Y. N., Shi W. J., Deng J. H., Lu T. B., Zhong D. C., Angew. Chem. Int. Ed., 2025, 64, e202413413. [43] Lu C. J., Shi W. J., Gong Y. N., Zhang J. H., Wang Y. C., Mei J. H., Ge Z. M., Lu T. B., Zhong D. C., Angew. Chem. Int. Ed., 2024, 63, e202405451. [44] Yang L. J., Yuan J. W., Wang G., Cao Q., Zhang C., Li M. M., Shao J. X., Xu Y., Li H., Lu J. M., Adv. Funct. Mater., 2023, 33, 2300954. [45] Shi H. X., Feng D. C., Li H. M., Yu D. S., Chen X. D., J. Photochem. Photobiol. A Chem., 2023, 435, 114292. [46] Hu M. K., Wu C. X., Feng S. F., Hua J. L., Molecules, 2023, 28, 6850. [47] Zhang Y. N., Pan C. S., Bian G. M., Xu J., Dong Y. M., Zhang Y., Lou Y., Liu W. X., Zhu Y. F., Nat. Energy, 2023, 8, 361. [48] Yan S. R., Zhang L., Shi S. H., Ren Y. Y., Liu W. H., Li Y. J., Duan F., Lu S. L., Du M. L., Chen M. Q., Chem. Res. Chinese Universities, 2025, 41, 121. [49] Xiao M. J., Li D., Wei Y. Z., He Y. L., Wang Z. M., Yu R. B., Chem. Res. Chinese Universities, 2024, 40, 513. [50] Das R., Kumar Verma P., Nagaraja C. M., Coord. Chem. Rev., 2024, 514, 215944. [51] Lee J. H., Kim Y. H., Oh S. Y., Jang W. D., Appl. Phys. Rev., 2024, 11, 031319. [52] Liu S. J., Guo J., Chem. Res. Chinese Universities, 2022, 38, 373. [53] Wu S., Yu H. T., Chen S., Quan, X., ACS Catal., 2020, 10, 14380. [54] Sun P. Z., Tyree C., Huang C. H., Environ. Sci. Technol., 2016, 50, 4448. [55] Liu R. Y., Chen Y. Z., Yu H. D., Položij M., Guo Y. Y., Sum T. C., Heine T., Jiang D. L., Nat. Catal., 2024, 7, 195. [56] Liu F. Y., Zhou P., Hou Y. H., Tan H., Liang Y., Liang J. L., Zhang Q., Guo S. J., Tong M. P., Ni J. R., Nat. Com. 2023, 14, 4344. [57] Zhi Q. J., Liu W. P., Jiang R., Zhan X. N., Jin Y. C., Chen X., Yang X. Y., Wang K., Cao W., Qi D. D., Jiang J. Z., J. Am. Chem. Soc., 2022, 144, 21328. [58] Liu Y. X., Li L., Sang Z. Y., Tan H., Ye N., Sun C. L., Sun Z. Q., Luo M. C., Guo S. J., Nat. Synth., 2024, 4, 134. [59] Zhang X. C., Cheng S. L., Chen C., Wen X., Miao J., Zhou B. X., Long M. C., Zhang L. Z., Nat. Commun., 2024, 15, 2649. [60] Chen Y. Z., Liu R. Y., Guo Y. Y., Wu G., Sum T. C., Yang S. W., Jiang D. L., Nat. Synth., 2024, 3, 998. [61] Luo J., Wang J. W., Zhang J. H., Lai S., Zhong D. C., CrystEngComm, 2018, 20, 5884. [62] Gong Y. N., Zhong D. C., Lu T. B., Angew. Chem. Int. Ed., 2025, e202424452. [63] Cheng X. Y., Zhang J. L., Sha Y. F., Xu M. Z., Duan R., Su Z. Z., Li J. L., Wang Y. Y., Hu J. Y., Guan B., Han B. X., Nanoscale, 2022, 14, 9762. [64] Li J. J., Yin Q., Gao S. Y., Feng Y., Ye S. H., Li H. F., Cao R., ACS Sustainable Chem. Eng., 2023, 11, 4389. [65] Zhu R. X., Yu S. S., Yang X. Z., Zhu R. Y., Liu H., Niu K. K., Xing L. B., Chin. Chem. Lett., 2024, 35, 109539. [66] Li G. L., Niu K. K., Yang X. Z., Liu H., Yu S. S., Xing L. B., Inorg. Chem., 2024, 63, 16533. [67] Zhao H. F., Zhao Z. W., Xue X. N., Liu C., Wu H., Zhou W., Wang H. L., Nano Res., 2023, 16, 8809. |
[1] | ZHOU Yu, WANG Weikang, LI Jinhe, REN Wei, WANG Lele, LIU Qinqin. Transition Metal Sulfide Cocatalysts: Applications and Challenges in Photocatalytic Hydrogen Production [J]. Chemical Research in Chinese Universities, 2025, 41(4): 687-703. |
[2] | LIU Chuang, GAO Tengyuan, WANG Guohong, CHENG Qiang WANG Kai. Efficient CO2 Photoreduction into Solar Fuels over MoO3-x/COF S-Scheme Photocatalyst [J]. Chemical Research in Chinese Universities, 2025, 41(4): 726-733. |
[3] | YU Hong, ZHANG Xuening, CHEN Qian, ZHOU Pan-Ke, XU Fei, WANG Hongqiang, CHEN Xiong. Linkage Conversion in Pyrene-based Covalent Organic Frameworks for Promoted Photocatalytic Hydrogen Peroxide Generation in a Biphasic System [J]. Chemical Research in Chinese Universities, 2025, 41(4): 734-740. |
[4] | WANG Yufan, ZHOU Guosheng, XU Yangrui, CHENG Yu, SONG Minshan, JIN Jie, LIU Xinlin, LU Ziyang. Hydrothermal Synthesis of Inorganic Imprinted Bi4Ti3O12 Nanosheets for Efficient Selective Photocatalytic Degradation of Ciprofloxacin [J]. Chemical Research in Chinese Universities, 2025, 41(4): 741-750. |
[5] | CHENG Shuilian, FANG Yuxuan, YANG Siyuan, GAO Qiongzhi, CAI Xin ZHANG Shengsen. Synergistic Dual-cocatalyst Modified TiO2/g-C3N4 Heterojunctions for Efficient Photocatalytic Overall Water Splitting [J]. Chemical Research in Chinese Universities, 2025, 41(4): 751-759. |
[6] | LU Junyu, LU Yunshu, Pitcheri ROSAIAH, LIN Shu, Zada AMIR, QI Kezhen. ZnCo2O4-ZnO S-Scheme Heterojunction for Photocatalytic Degradation of Cefalexin and Antimicrobial Properties [J]. Chemical Research in Chinese Universities, 2025, 41(4): 799-811. |
[7] | WU Jingyao, ZHAO Qiang, LV Yujing, WANG Shuo, WANG Pengzhao, LONG Jinlin, WANG Ying. Pyridine Nitrogen-modified Covalent Organic Frameworks for Photocatalytic One-step 2e-H2O2 Production [J]. Chemical Research in Chinese Universities, 2025, 41(4): 822-830. |
[8] | LI Xiaofang, LI Fang, WU Yetong, YANG Heng, WANG Chunlei, CHAI Bo, GUO Xiaoliang, YAN Juntao. Oxygen Vacancy-rich BiOBr for Enhanced Photocatalytic NO Removal and Bacterial Inactivation [J]. Chemical Research in Chinese Universities, 2025, 41(4): 839-849. |
[9] | GAO Juanfeng, LIN Xiao, JIANG Bowen, TANG Senpei, ZHANG Haiyan, CHEN Feitai, JIN Zhiliang, LI Youji, Noritatsu Tsubaki. Epitaxial Vertical Growth of Carbon Nitride-based Homojunction Composites for Enhanced Photocatalytic Degradation of Tetracycline Hydrochloride [J]. Chemical Research in Chinese Universities, 2025, 41(4): 868-879. |
[10] | LI Dan. Frontiers in Catalytic Technologies for Carbon Neutrality: Advances and Prospects [J]. Chemical Research in Chinese Universities, 2025, 41(3): 472-483. |
[11] | SUN Zhihui, YIN Peipei, HE Shiyang, ZHANG Kaige, PAN Xiangrong, WANG Jiayi, HAO Peinan, ZHOU Zhan, YANG Xiaogang, MA Lufang, TAN Chaoliang. Low Thermal Quenching of an AIE-based Hydrogen-bonded Organic Framework for Phosphor-converted Light-emitting Diodes [J]. Chemical Research in Chinese Universities, 2025, 41(3): 519-524. |
[12] | HU Miao, Jumanah ALHARBI, ZHANG Huabin, Hassan S. Al QAHTANI, FENG Chengyang. Advanced In situ Characterization Techniques for Photocatalysis [J]. Chemical Research in Chinese Universities, 2025, 41(2): 237-253. |
[13] | ZHENG Mingdan, CHEN Ya, LIU Zhan, LYU Jiamin, YE Bo, SUN Ming-Hui, CHEN Li-Hua, SU Bao-Lian. Hierarchically Macroporous Zeolite ZSM-5 Microspheres for Efficient Catalysis [J]. Chemical Research in Chinese Universities, 2024, 40(4): 704-711. |
[14] | YANG Xiaodan, GUO Ziqi, XU Yichen, LI Ziliang, ZHOU Yangtao, YANG Zhenming, ZHOU Zishuai, GAO Yong, ZHANG Jinsong. In situ Preparation and Visible-light-driven Photocatalytic Degradation Performance of Nano 3C-SiC@Multilayer Graphene Oxide Heterostructure [J]. Chemical Research in Chinese Universities, 2024, 40(3): 536-547. |
[15] | WANG Xinyi, ZHAO Zhenwei, ZAHRA Kiran, LI Junjun, ZHANG Zhicheng. Sub-nanomaterials for Photo/Electro-catalytic CO2 Reduction: Achievements, Challenges, and Opportunities [J]. Chemical Research in Chinese Universities, 2023, 39(4): 580-598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||