Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2): 168-180.doi: 10.1007/s40242-025-4235-5
• Reviews • Previous Articles Next Articles
WEN Xin1, ZHOU Wangxin1, HUANG Zhehao1,2, ZHANG Hui1,2,3,4, HAN Yu1,2,3,4
Received:
2024-12-09
Accepted:
2024-12-31
Online:
2025-04-01
Published:
2025-03-31
Contact:
ZHANG Hui,huizhang2023@scut.edu.cn
E-mail:huizhang2023@scut.edu.cn
Supported by:
WEN Xin, ZHOU Wangxin, HUANG Zhehao, ZHANG Hui, HAN Yu. Imaging Chemical Compositions in Three Dimensions[J]. Chemical Research in Chinese Universities, 2025, 41(2): 168-180.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Zhang Q., Gao S., Yu J., Chem. Rev., 2022, 123, 6039. [2] Su D. S., Zhang B., Schlögl R., Chem. Rev., 2015, 115, 2818. [3] Liu Q., Ranocchiari M., van Bokhoven J. A., Chem. Soc. Rev., 2022, 51, 188. [4] Lin L., Liu J., Liu X., Gao Z., Rui N., Yao S., Zhang F., Wang M., Liu C., Han L., Yang F., Zhang S., Wen X. D., Senanayake S. D., Wu Y., Li X., Rodriguez J. A., Ma D., Nat. Commun., 2021, 12, 6978. [5] He Y., Jiang L., Xu Y., Wang C., Microsc. Microanal., 2023, 29, 1718. [6] Vanpeene V., Villanova J., King A., Lestriez B., Maire E., Roué L., Adv. Energy Mater., 2019, 9, 1803947. [7] Pietsch P., Wood V., Annu. Rev. Mater. Res., 2017, 47, 451. [8] Bals S., Goris B., Liz-Marzán L. M., van Tendeloo G., Angew. Chem. Int. Ed., 2014, 53, 10600. [9] Bosman M., Keast V. J., García-Muñoz J. L., D’Alfonso A. J., Findlay S. D., Allen L. J., Phys. Rev. Lett., 2007, 99, 086102. [10] Muller D. A., Kourkoutis L. F., Murfitt M., Song J. H., Hwang H. Y., Silcox J., Dellby N., Krivanek O. L., Science, 2008, 319, 1073. [11] Browning N. D., Chisholm M. F., Pennycook S. J., Nature, 1993, 366, 143. [12] Srinivasan R., Banerjee R., Hwang J. Y., Viswanathan G. B., Tiley J., Dimiduk D. M., Fraser H. L., Phys. Rev. Lett., 2009, 102, 086101. [13] Sohlberg K., Pennycook T. J., Zhou W., Pennycook S. J., Phys. Chem. Chem. Phys., 2015, 17, 3982. [14] Egerton R. F., Micron, 2019, 119, 72. [15] Browning R., Appl. Phys. Lett., 1991, 58, 2845. [16] Bote D., Salvat F., Jablonski A., Powell C. J., At. Data Nucl. Data Tables, 2009, 95, 871. [17] Perkins S., Cullen D., Chen M., Rathkopf J., Scofield J., Hubbell J., Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z=1‒100, Lawrence Livermore National Lab., Livermore, 1991. [18] MacArthur K. E., Slater T. J. A., Haigh S. J., Ozkaya D., Nellist P. D., Lozano-Perez S., Microsc. Microanal., 2016, 22, 71. [19] Schlossmacher P., Klenov D. O., Freitag B., von Harrach H. S., Micros. Today, 2010, 18, 14. [20] Krivanek O. L., Dellby N., Hachtel J. A., Idrobo J. C., Hotz M. T., Plotkin-Swing B., Bacon N. J., Bleloch A. L., Corbin G. J., Hoffman M. V., Meyer C. E., Lovejoy T. C., Ultramicroscopy, 2019, 203, 60. [21] von Harrach H. S., Klenov D., Freitag B., Schlossmacher P., Collins P. C., Fraser H. L., Microsc. Microanal., 2010, 16, 1312. [22] Haruta M., Fujiyoshi Y., Nemoto T., Ishizuka A., Ishizuka K., Kurata H., Phys. Rev. B, 2018, 97, 205139. [23] Schwartz J., Di Z. W., Jiang Y., Fielitz A. J., Ha D. H., Perera S. D., El Baggari I., Robinson R. D., Fessler J. A., Ophus C., Rozeveld S., Hovden R., NPJ Comput. Mater., 2022, 8, 16. [24] Longo P., Thomas P., Aitouchen A., Schaffer B., Twesten R. D., Micros. Today, 2013, 21, 36. [25] Gázquez J., Sánchez-Santolino G., Biškup N., Roldán M. A., Cabero M., Pennycook S. J., Varela M., Mater. Sci. Semicond. Process., 2017, 65, 49. [26] D’Alfonso A. J., Freitag B., Klenov D., Allen L. J., Phys. Rev. B, 2010, 81, 100101. [27] Lu P., Zhou L., Kramer M. J., Smith D. J., Sci. Rep., 2014, 4, 3945. [28] Wenner S., Jones L., Marioara C. D., Holmestad R., Micron, 2017, 96, 103. [29] Miao J., Ercius P., Billinge S. J. L., Science, 2016, 353, aaf2157. [30] Zhou J., Yang Y., Ercius P., Miao J., MRS Bull., 2020, 45, 290. [31] Baba N., Hata S., Saito H., Kaneko K., Microscopy, 2023, 72, 111. [32] Midgley P. A., Dunin-Borkowski R. E., Nat. Mater., 2009, 8, 271. [33] Scott M. C., Chen C. C., Mecklenburg M., Zhu C., Xu R., Ercius P., Dahmen U., Regan B. C., Miao J., Nature, 2012, 483, 444. [34] Moniri S., Yang Y., Ding J., Yuan Y., Zhou J., Yang L., Zhu F., Liao Y., Yao Y., Hu L., Ercius P., Miao J., Nature, 2023, 624, 564. [35] Yuan Y., Kim D. S., Zhou J., Chang D. J., Zhu F., Nagaoka Y., Yang Y., Pham M., Osher S. J., Chen O., Ercius P., Schmid A. K., Miao J., Nat. Mater., 2022, 21, 95. [36] Nakane T., Kotecha A., Sente A., McMullan G., Masiulis S., Brown P. M. G. E., Grigoras I. T., Malinauskaite L., Malinauskas T., Miehling J., Uchański T., Yu L., Karia D., Pechnikova E. V., de Jong E., Keizer J., Bischoff M., McCormack J., Tiemeijer P., Hardwick S. W., Chirgadze D. Y., Murshudov G., Aricescu A. R., Scheres S. H. W., Nature, 2020, 587, 152. [37] Yip K. M., Fischer N., Paknia E., Chari A., Stark H., Nature, 2020, 587, 157. [38] Lyumkis D., J. Biol. Chem., 2019, 294, 5181. [39] Küçükoğlu B., Mohammed I., Guerrero-Ferreira R. C., Ribet S. M., Varnavides G., Leidl M. L., Lau K., Nazarov S., Myasnikov A., Kube M., Radecke J., Sachse C., Müller-Caspary K., Ophus C., Stahlberg H., Nat. Commun., 2024, 15, 8062. [40] Rösler C., Aijaz A., Turner S., Filippousi M., Shahabi A., Xia W., van Tendeloo G., Muhler M., Fischer R. A., Chem. Eur. J., 2016, 22, 3304. [41] Bentz K. C., Gnanasekaran K., Bailey J. B., Ayala S., Tezcan F. A., Gianneschi N. C., Cohen S. M., Chem. Sci., 2020, 11, 10523. [42] Sun H., Yamamoto K., Cell Rep. Phys. Sci., 2024, 5, 101839. [43] Maigné A., Wolf M., Microscopy, 2018, 67, 86. [44] Hart J. L., Lang A. C., Leff A. C., Longo P., Trevor C., Twesten R. D., Taheri M. L., Sci. Rep., 2017, 7, 8243. [45] Plotkin-Swing B., Corbin G. J., de Carlo S., Dellby N., Hoermann C., Hoffman M. V., Lovejoy T. C., Meyer C. E., Mittelberger A., Pantelic R., Piazza L., Krivanek O. L., Ultramicroscopy, 2020, 217, 113067. [46] Song K., Liu L., Zhang D., Hautzinger M. P., Jin S., Han Y., Adv. Energy Mater., 2020, 10, 1904006. [47] Schwartz J., Di Z. W., Jiang Y., Manassa J., Pietryga J., Qian Y., Cho M. G., Rowell J. L., Zheng H., Robinson R. D., Gu J., Kirilin A., Rozeveld S., Ercius P., Fessler J. A., Xu T., Scott M., Hovden R., Nat. Commun., 2024, 15, 3555. [48] Radon J., Akad. Wiss., 1917, 69, 16. [49] Bracewell R. N., Aust. J. Phys., 1956, 9, 198. [50] de Rosier D. J., Klug A., Nature, 1968, 217, 130. [51] Hata S., Sato K., Murayama M., Tsuchiyama T., Nakashima H., ISIJ Int., 2015, 55, 623. [52] Han Y., Jang J., Cha E., Lee J., Chung H., Jeong M., Kim T. G., Chae B. G., Kim H. G., Jun S., Hwang S., Lee E., Ye J. C., Nat. Mach. Intell., 2021, 3, 267. [53] Pryor A., Yang Y., Rana A., Gallagher-Jones M., Zhou J., Lo Y. H., Melinte G., Chiu W., Rodriguez J. A., Miao J., Sci. Rep., 2017, 7, 10409. [54] Chen M., Bell J. M., Shi X., Sun S. Y., Wang Z., Ludtke S. J., Nat. Methods, 2019, 16, 1161. [55] Liu Y., Penczek P. A., McEwen B. F., Frank J., Ultramicroscopy, 1995, 58, 393. [56] Goris B., de Beenhouwer J., de Backer A., Zanaga D., Batenburg K. J., Sánchez-Iglesias A., Liz-Marzán L. M., van Aert S., Bals S., Sijbers J., van Tendeloo G., Nano Lett., 2015, 15, 6996. [57] Radermacher M., In Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell, Springer, New York, 2006, 245. [58] Kak A. C., Slaney M., Principles of Computerized Tomographic Imaging, Society for Industrial and Applied Mathematics, Philadelphia, 2001. [59] Gordon R., Bender R., Herman G. T., J. Theor. Biol., 1970, 29, 471. [60] Gilbert P., J. Theor. Biol., 1972, 36, 105. [61] Miao J., Förster F., Levi O., Phys. Rev. B, 2005, 72, 052103. [62] Hegerl R., Hoppe W., Z. Naturforsch. A, 1976, 31, 1717. [63] McEwen B. F., Marko M., Hsieh C.-E., Mannella C., J. Struct. Biol., 2002, 138, 47. [64] Koster A. J., Ziese U., Verkleij A. J., Janssen A. H., de Graaf J., Geus J. W., de Jong K. P., Stud. Surf. Sci. Catal., 2000, 329. [65] Friedrich H., de Jongh P. E., Verkleij A. J., de Jong K. P., Chem. Rev., 2009, 109, 1613. [66] Weyland M., Midgley P. A., Thomas J. M., J. Phys. Chem. B, 2001, 105, 7882. [67] Zečević J., van der Eerden A. M. J., Friedrich H., de Jongh P. E., de Jong K. P., ACS Nano, 2013, 7, 3698. [68] Hugenschmidt M., Jannis D., Kadu A. A., Grünewald L., De Marchi S., Pérez-Juste J., Verbeeck J., van Aert S., Bals S., ACS Mater. Lett., 2023, 6, 165. [69] Craig T. M., Kadu A. A., Batenburg K. J., Bals S., Nanoscale, 2023, 15, 5391. [70] Chang Q., Yang D., Zhang X., Ou Z., Kim J., Liang T., Chen J., Cheng S., Cheng L., Ge B., Ang E. H., Xiang H., Li M., Song X., Nanoscale, 2023, 15, 13718. [71] Vanrompay H., Bladt E., Albrecht W., Béché A., Zakhozheva M., Sánchez-Iglesias A., Liz-Marzán L. M., Bals S., Nanoscale, 2018, 10, 22792. [72] Albrecht W., Bals S., J. Phys. Chem. C, 2020, 124, 27276. [73] Collins S. M., Midgley P. A., Ultramicroscopy, 2017, 180, 133. [74] Mao L., Cui J., Yu R., Sci. Bull., 2024, 70, 64. [75] Bladt E., Pelt D. M., Bals S., Batenburg K. J., Ultramicroscopy, 2015, 158, 81. [76] Jenkinson K., Liz-Marzán L. M., Bals S., Adv. Mater., 2022, 34, 2110394. [77] Liu Y. T., Zhang H., Wang H., Tao C. L., Bi G. Q., Zhou Z. H., Nat. Commun., 2022, 13, 6482. [78] Yao L., Lyu Z., Li J., Chen Q., NPJ Comput. Mater., 2024, 10, 28. [79] Wang C., Ding G., Liu Y., Xin H. L., Adv. Intell. Syst, 2020, 2, 2000152. [80] Liakakos N., Gatel C., Blon T., Altantzis T., Lentijo-Mozo S., Garcia-Marcelot C., Lacroix L. M., Respaud M., Bals S., Van Tendeloo G., Soulantica K., Nano Lett., 2014, 14, 2747. [81] Lin R., Hu E., Liu M., Wang Y., Cheng H., Wu J., Zheng J.-C., Wu Q., Bak S., Tong X., Zhang R., Yang W., Persson K. A., Yu X., Yang X. Q., Xin H. L., Nat. Commun., 2019, 10, 1650. [82] Schwartz J., Imaging 3D Chemistry and Structure at Nanometer Resolution, University of Michigan, Michigan, 2023. [83] Yuan Y., MacArthur K. E., Collins S. M., Brodusch N., Voisard F., Dunin-Borkowski R. E., Gauvin R., Ultramicroscopy, 2021, 220, 113166. [84] Huang K., Sun Y., Zhang Y., Wang X., Zhang W., Feng S., Adv. Mater., 2019, 31, 1801430. [85] Zhu W., Chen Z., Pan Y., Dai R., Wu Y., Zhuang Z., Wang D., Peng Q., Chen C., Li Y., Adv. Mater., 2019, 31, 1800426. [86] Goris B., Polavarapu L., Bals S., Van Tendeloo G., Liz-Marzán L. M., Nano Lett., 2014, 14, 3220. [87] Polavarapu L., Zanaga D., Altantzis T., Rodal-Cedeira S., Pastoriza-Santos I., Pérez-Juste J., Bals S., Liz-Marzán L. M., J. Am. Chem. Soc., 2016, 138, 11453. [88] Slater T. J. A., Macedo A., Schroeder S. L. M., Burke M. G., O’Brien P., Camargo P. H. C., Haigh S. J., Nano Lett., 2014, 14, 1921. [89] Zanaga D., Altantzis T., Polavarapu L., Liz-Marzán L. M., Freitag B., Bals S., Part. Part. Syst. Charact., 2016, 33, 396. [90] Yeoh C. S. M., Rossouw D., Saghi Z., Burdet P., Leary R. K., Midgley P. A., Microsc. Microanal., 2015, 21, 759. [91] Slater T., Chen Y., Auton G., Zaluzec N., Haigh S., Microsc. Microanal., 2016, 22, 440. [92] Collins S. M., MacArthur K. E., Longley L., Tovey R., Benning M., Schönlieb C.-B., Bennett T. D., Midgley P. A., APL Mater., 2019, 7, 091111. [93] Haberfehlner G., Orthacker A., Albu M., Li J., Kothleitner G., Nanoscale, 2014, 6, 14563. [94] Goris B., Turner S., Bals S., van Tendeloo G., ACS Nano, 2014, 8, 10878. [95] Yedra L., Eljarrat A., Arenal R., López-Conesa L., Pellicer E., López-Ortega A., Estrader M., Sort J., Baró M. D., Estradé S., Peiró F., Analyst, 2016, 141, 4968. [96] Torruella P., Arenal R., de la Peña F., Saghi Z., Yedra L., Eljarrat A., López-Conesa L., Estrader M., López-Ortega A., Salazar-Alvarez G., Nogués J., Ducati C., Midgley P. A., Peiró F., Estradé S., Nano Lett., 2016, 16, 5068. [97] Liu L. M., Wang N., Zhu C. Z., Liu X. N., Zhu Y. H., Guo P., Alfilfil L., Dong X. L., Zhang D. L., Han Y., Angew. Chem. Int. Ed., 2020, 59, 819. [98] Xiong H., Wang H., Chen X., Wei F., ACS Cata., 2023, 13, 12213. [99] Chi H. Y., Chen C., Zhao K., Villalobos L. F., Schouwink P. A., Piveteau L., Marshall K. P., Liu Q., Han Y., Agrawal K. V., Angew. Chem. Int. Ed., 2022, 61, e202207457. [100] Liu L., Chen Z., Wang J., Zhang D., Zhu Y., Ling S., Huang K. W., Belmabkhout Y., Adil K., Zhang Y., Slater B., Eddaoudi M., Han Y., Nat. Chem., 2019, 11, 622. [101] Shen B., Chen X., Shen K., Xiong H., Wei F., Nat. Commun., 2020, 11, 2692. [102] Esteban D. A., Vanrompay H., Skorikov A., Béché A., Verbeeck J., Freitag B., Bals S., Microsc. Microanal., 2021, 27, 2116. [103] Pelz P. M., Griffin S. M., Stonemeyer S., Popple D., deVyldere H., Ercius P., Zettl A., Scott M. C., Ophus C., Nat. Commun., 2023, 14, 7906. [104] You S., Romanov A., Pelz P., Phys. Scr., 2024, 100, 015404. [105] Zhang H., Li G., Zhang J., Zhang D., Chen Z., Liu X., Guo P., Zhu Y., Chen C., Liu L., Guo X., Han Y., Science, 2023, 380, 633. [106] Li G., Zhang H., Han Y., ACS Cent. Sci., 2022, 8, 1579. [107] Yu R., Sha H., Cui J., Yang W., Microstructures, 2024, 4, 2024056. [108] Ophus C., Microsc. Microanal., 2019, 25, 563. [109] Chen Z., Jiang Y., Shao Y.-T., Holtz M. E., Odstrčil M., Guizar-Sicairos M., Hanke I., Ganschow S., Schlom D. G., Muller D. A., Science, 2021, 372, 826. [110] Jiang Y., Chen Z., Han Y., Deb P., Gao H., Xie S., Purohit P., Tate M. W., Park J., Gruner S. M., Elser V., Muller D. A., Nature, 2018, 559, 343. [111] Ding Z., Gao S., Fang W., Huang C., Zhou L., Pei X., Liu X., Pan X., Fan C., Kirkland A. I., Wang P., Nat. Commun., 2022, 13, 4787. [112] Li G., Xu M., Tang W. Q., Liu Y., Chen C., Zhang D., Liu L., Ning S., Zhang H., Gu Z. Y., Lai Z., Muller A. D., Han Y., Nat. Commun., 2025, 16, 914. [113] Sadri A., Petersen T. C., Terzoudis-Lumsden E. W. C., Esser B. D., Etheridge J., Findlay S. D., NPJ Comput. Mater., 2024, 10, 243. [114] Jacob M., Sorel J., Pinhiero R. B., Mazen F., Grenier A., Epicier T., Saghi Z., Semicond. Sci. Technol., 2021, 36, 035006. [115] Segawa Y., Nakamura A., Hashiguchi H., Kohno Y., Ohta S., Seki T., Shibata N., BIO Web Conf., 2024, 129, 04038. [116] Longo P., Topuria T., Rice P., Aitouchen A., Thomas P. J., Twesten R. D., Microsc. Microanal., 2014, 20, 128. [117] Lahat D., Adali T., Jutten C., Proc. IEEE, 2015, 103, 1449. [118] Zhong Z., Goris B., Schoenmakers R., Bals S., Batenburg K. J., Ultramicroscopy, 2017, 174, 35. [119] Guo Y., Aveyard R., Rieger B., IEEE Trans. Image Process, 2019, 28, 4206. [120] Huber R., Haberfehlner G., Holler M., Kothleitner G., Bredies K., Nanoscale, 2019, 11, 5617. [121] Chang D. J., Kim D. S., Rana A., Tian X., Zhou J., Ercius P., Miao J., Phys. Rev. B, 2020, 102, 174101. [122] Li P., Maiden A., Sci. Rep., 2018, 8, 2049. [123] Song B., Ding Z., Allen C. S., Sawada H., Zhang F., Pan X., Warner J., Kirkland A. I., Wang P., Phys. Rev. Lett., 2018, 121, 146101. [124] Sader K., Schaffer B., Vaughan G., Brydson R., Brown A., Bleloch A., Ultramicroscopy, 2010, 110, 998. [125] Zhong Z., Palenstijn W. J., Adler J., Batenburg K. J., Ultramicroscopy, 2018, 191, 34. [126] Skorikov A., Heyvaert W., Albecht W., Pelt D. M., Bals S., Nanoscale, 2021, 13, 12242. [127] Cha E., Chung H., Jang J., Lee J., Lee E., Ye J. C., ACS Nano, 2022, 16, 10314. [128] Azubel M., Koivisto J., Malola S., Bushnell D., Hura G. L., Koh A. L., Tsunoyama H., Tsukuda T., Pettersson M., Häkkinen H., Kornberg R. D., Science, 2014, 345, 909. [129] Kim B. H., Heo J., Kim S., Reboul C. F., Chun H., Kang D., Bae H., Hyun H., Lim J., Lee H., Han B., Hyeon T., Alivisatos A. P., Ercius P., Elmlund H., Park J., Science, 2020, 368, 60. [130] Zhang H., Li X., Liu J., Lan Y.-Q., Han Y., Adv. Mater., 2024, 2406914. [131] Wang Y. C., Slater T. J. A., Leteba G. M., Roseman A. M., Race C. P., Young N. P., Kirkland A. I., Lang C. I., Haigh S. J., Nano Lett., 2019, 19, 732. [132] Pfeil-Gardiner O., Rosa H. V. D., Riedel D., Chen Y. S., Lörks D., Kükelhan P., Linck M., Müller H., Van Petegem F., Murphy B. J., bioRxiv, 2024, 2024.2001.2018.575858. [133] Li Y., Huang W., Li Y., Chiu W., Cui Y., ACS Nano, 2020, 14, 9263. [134] Zhou J., Wei N., Zhang D., Wang Y., Li J., Zheng X., Wang J., Alsalloum A. Y., Liu L., Bakr O. M., Han Y., J. Am. Chem. Soc., 2022, 144, 3182. [135] Salih S. M., Cosslett V. E., Philos. Mag., 1974, 30, 225. [136] Liu J., Song K., Zheng X., Yin J., Yao K. X., Chen C., Yang H., Hedhili M. N., Zhang W., Han P., Mohammed O. F., Han Y., Bakr O. M., J. Phys. Chem. Lett., 2021, 12, 10402. [137] Elad N., Bellapadrona G., Houben L., Sagi I., Elbaum M., Proc. Nat. Acad. Sci., 2017, 114, 11139. |
[1] | WANG Yujiao, ZHOU Jinfei, LIU Dong, LIU Lingmei, LI Xiao, ZHANG Daliang. Enhanced Bragg Filter: A New Drift Correction Method for Low-dose High-resolution STEM Images [J]. Chemical Research in Chinese Universities, 2025, 41(2): 343-350. |
[2] | WANG Lindong, SUN Jingyi, WANG Lang, LI Yu, HU Zhiyi, SU Baolian. Directly Unveiling the Photothermal Corrosion of BiVO4 via In-situ Transmission Electron Microscopy [J]. Chemical Research in Chinese Universities, 2025, 41(2): 351-357. |
[3] | WANG Guowei, KE Xiaoxing, SUI Manling. Advanced TEM Characterization for Single-atom Catalysts: from Ex-situ Towards In-situ [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1172-1184. |
[4] | LIU Shuhui, ZHANG Fan, LIN Ronghe, LIU Wei. Full Metal Species Quantification of Metal Supported Catalysts Through Massive TEM Images Recognition [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1263-1267. |
[5] | HOU Ju-ying, AI Shi-yun* and SHI Wei-jie. Preparation and Characterization of Nano-Se/Silk Fibroin Colloids [J]. Chemical Research in Chinese Universities, 2011, 27(1): 158-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||