Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2): 181-195.doi: 10.1007/s40242-025-4258-y
• Reviews • Previous Articles Next Articles
YE Jiali1, YIN Yiyan1, OUYANG Jin2, NA Na1
Received:
2024-12-30
Accepted:
2025-02-22
Online:
2025-04-01
Published:
2025-03-31
Contact:
NA Na,nana@bnu.edu.cn
E-mail:nana@bnu.edu.cn
Supported by:
YE Jiali, YIN Yiyan, OUYANG Jin, NA Na. Detection of Small Molecular Metabolites by Ambient Mass Spectrometry for Clinical Applications[J]. Chemical Research in Chinese Universities, 2025, 41(2): 181-195.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Nicholson J. K., Lindon J. C., Nature, 2008, 455, 1054. [2] Wishart D. S., Feunang Y. D., Marcu A., Guo A. C., Liang K., Vázquez-Fresno R., Sajed T., Johnson D., Li C., Karu N., Sayeeda Z., Lo E., Assempour N., Berjanskii M., Singhal S., Arndt D., Liang Y., Badran H., Grant J., Serra-Cayuela A., Liu Y., Mandal R., Neveu V., Pon A., Knox C., Wilson M., Manach C., Scalbert A., Nucleic Acids Res., 2018, 46, D608. [3] Phan L. M., Yeung S.-C. J., Lee M.-H., Cancer Biol. Med., 2014, 11, 1. [4] Vander Heiden M. G., Cantley L. C., Thompson C. B., Science, 2009, 324, 1029. [5] Zheng E., Khariwala S. S., The Laryngoscope, 2019, 129, 537. [6] Zhang Y., Zhou B., Li Q., Jin M., Bai Y., Chem. Res. Chin. Universities, 2024, 40, 237. [7] Gowda G. A. N., Djukovic D.; Ed.: Raftery D., Mass Spectrometry in Metabolomics: Methods and Protocols, Springer, New York, 2014, 3. [8] Cooks R. G., Ouyang Z., Takats Z., Wiseman J. M., Science, 2006, 311, 1566. [9] Clendinen C. S., Monge M. E., Fernández F. M., Analyst, 2017, 142, 3101. [10] Kuo T.-H., Dutkiewicz E. P., Pei J., Hsu C.-C., Anal. Chem., 2020, 92, 2353. [11] Wan E. C. H., Yu J. Z., Environ. Sci. Technol., 2007, 41, 2459. [12] Ruf A., Kanawati B., Schmitt-Kopplin P., Rapid Commun. Mass Spectrom., 2022, 36, e9283. [13] Chen H., Cotte-Rodríguez I., Cooks R. G., Chem. Commun., 2006, 597. [14] Zhang Y., Chen H., Int. J. Mass Spectrom., 2010, 289, 98. [15] Bi L., Habib A., Chen L., Xu T., Wen L., Talanta, 2021, 222, 121673. [16] Wang Y., Sun M., Qiao J., Ouyang J., Na N., Chem. Sci., 2018, 9, 594. [17] Ahmadi M., Nasri Z., von Woedtke T., Wende K., ACS Omega, 2022, 7, 31983. [18] Crabtree H. G., Biochem. J., 1929, 23, 536. [19] Dakubo G. D., Mitochondrial Genetics and Cancer, Springer, Berlin, Heidelberg, 2010, 39. [20] Banerjee S., Zare R. N., Tibshirani R. J., Kunder C. A., Nolley R., Fan R., Brooks J. D., Sonn G. A., Proc. Natl. Acad. Sci., 2017, 114, 3334. [21] Zeković M., Bumbaširević U., Živković M., Pejčić T., Int. J. Mol. Sci., 2023, 24, 1391. [22] Li L., Wang L., Feng Z., Hu Z., Wang G., Yuan X., Wang H., Hu D., Quant. Imaging Med. Surg., 2013, 3, 10012. [23] Yoshii Y., Furukawa T., Waki A., Okuyama H., Inoue M., Itoh M., Zhang M.-R., Wakizaka H., Sogawa C., Kiyono Y., Yoshii H., Fujibayashi Y., Saga T., Biomaterials, 2015, 51, 278. [24] Xie P., Zhang J., Wu P., Wu Y., Hong Y., Wang J., Cai Z., Chin. Chem. Lett., 2023, 34, 107349. [25] Liu X., Flinders C., Mumenthaler S. M., Hummon A. B., J. Am. Soc. Mass Spectrom., 2018, 29, 516. [26] Flint L. E., Hamm G., Ready J. D., Ling S., Duckett C. J., Cross N. A., Cole L. M., Smith D. P., Goodwin R. J. A., Clench M. R., Anal. Chem., 2020, 92, 12538. [27] Luo Z., He J., Chen Y., He J., Gong T., Tang F., Wang X., Zhang R., Huang L., Zhang L., Lv H., Ma S., Fu Z., Chen X., Yu S., Abliz Z., Anal. Chem., 2013, 85, 2977. [28] Lv Y., Li T., Guo C., Sun C., Tang F., Huang L., Luo Z., Li X., Zhang R., Zang Q., He J., Abliz Z., Chin. Chem. Lett., 2019, 30, 461. [29] Huang J., Gao S., Wang K., Zhang J., Pang X., Shi J., He J., Chin. Chem. Lett., 2023, 34, 107865. [30] Huo M., Wang Z., Fu W., Tian L., Li W., Zhou Z., Chen Y., Wei J., Abliz Z., J. Proteome Res., 2021, 20, 3567. [31] Butler L. M., Perone Y., Dehairs J., Lupien L. E., de Laat V., Talebi A., Loda M., Kinlaw W. B., Swinnen J. V., Adv. Drug Deliv. Rev., 2020, 159, 245. [32] Storck E. M., Özbalci C., Eggert U. S., Annu. Rev. Biochem., 2018, 87, 839. [33] Yu W., Lei Q., Yang L., Qin G., Liu S., Wang D., Ping Y., Zhang Y., J. Hematol. Oncol., 2021, 14, 187. [34] Li L., Han J., Wang Z., Liu J., Wei J., Xiong S., Zhao Z., Int. J. Mol. Sci., 2014, 15, 10492. [35] Takáts Z., Wiseman J. M., Gologan B., Cooks R. G., Science, 2004, 306, 471. [36] Ma X., Xia Y., Angew. Chem. Int. Ed., 2014, 53, 2592. [37] Adam W., Peters K., Peters E. M., Stegmann V. R., J. Am. Chem. Soc., 2000, 122, 2958. [38] Zhao Y., Zhao H., Zhao X., Jia J., Ma Q., Zhang S., Zhang X., Chiba H., Hui S.-P., Ma X., Anal. Chem., 2017, 89, 10270. [39] Cao W., Ma X., Li Z., Zhou X., Ouyang Z., Anal. Chem., 2018, 90, 10286. [40] Feng Y., Chen B., Yu Q., Li L., Anal. Chem., 2019, 91, 1791. [41] Zhang J., Xu D., Deng Z., Tan X., Guo D., Qiao Y., Li Y., Hou X., Wang S., Zhang J., Talanta, 2024, 267, 125267. [42] Müller P., Fruit C., Chem. Rev., 2003, 103, 2905. [43] Yang T., Tang S., Kuo S.-T., Freitas D., Edwards M., Wang H., Sun Y., Yan X., Angew. Chem. Int. Ed. Engl., 2022, 61, e202207098. [44] Hirtzel E., Edwards M., Freitas D., Liu Z., Wang F., Yan X., J. Am. Soc. Mass Spectrom., 2023, 34, 1998. [45] Wan Q., Xiao Y., Feng G., Dong X., Nie W., Gao M., Meng Q., Chen S., Chin. Chem. Lett., 2024, 35, 108775. [46] Ito J., Nakagawa K., Kato S., Hirokawa T., Kuwahara S., Nagai T., Miyazawa T., Anal. Bioanal. Chem., 2016, 408, 7785. [47] Unsihuay D., Su P., Hu H., Qiu J., Kuang S., Li Y., Sun X., Dey S. K., Laskin J., Angew. Chem. Int. Ed. Engl., 2021, 60, 7559. [48] Claes B. S. R., Bowman A. P., Poad B. L. J., Young R. S. E., Heeren R. M. A., Blanksby S. J., Ellis S. R., Anal. Chem., 2021, 93, 9826. [49] Santoro A. L., Drummond R. D., Silva I. T., Ferreira S. S., Juliano L., Vendramini P. H., Lemos M. B. D. C., Eberlin M. N., Andrade V. P., Cancer Res., 2020, 80, 1246. [50] Swiner D. J., Kulyk D. S., Osae H., Durisek III G. R., Badu-Tawiah A. K., Anal. Chem., 2022, 94, 2358. [51] Qi K., Wu L., Liu C., Pan Y., Metabolites, 2021, 11, 780. [52] Mao X., He J., Li T., Lu Z., Sun J., Meng Y., Abliz Z., Chen J., Sci. Rep., 2016, 6, 21043. [53] Qi K., Lv Y., Ren Y., Wang X., Wu L., Wang J., Zhang X., He Y., Zhang C., Liu C., Pan Y., Talanta, 2021, 231, 122380. [54] Bergman H.-M., Lindfors L., Palm F., Kihlberg J., Lanekoff I., Anal. Bioanal. Chem., 2019, 411, 2809. [55] Margulis K., Zhou Z., Fang Q., Sievers R. E., Lee R. J., Zare R. N., Anal. Chem., 2018, 90, 12198. [56] Yin Y., Ge X., Ouyang J., Na N., Nat. Commun., 2024, 15, 2954. [57] Cao M., Xing X., Shen X., Ouyang J., Na N., Chem. Res. Chin. Universities, 2024, 40, 202. [58] Sivanand S., Heiden M. G. V., Cancer Cell, 2020, 37, 147. [59] Lieu E. L., Nguyen T., Rhyne S., Kim J., Exp. Mol. Med., 2020, 52, 15. [60] Lu H., Ye J., Wei Y., Zhang H., Chingin K., Frankevich V., Chen H., Chin. Chem. Lett., 2025, 36, 110077. [61] Bouza M., Foest D., Brandt S., García-Reyes J. F., Franzke J., Anal. Chem., 2024, 96, 5289. [62] Maciel L. Í. L., Rodrigues Feitosa Ramalho R., Izidoro Ribeiro R., Cunha Xavier Pinto M., Pereira I., Vaz B. G., J. Am. Soc. Mass Spectrom., 2021, 32, 2513. [63] Xu N., Zhu Z.-Q., Yang S.-P., Wang J., Gu H.-W., Zhou Z., Chen H.-W., Chin. J. Anal. Chem., 2013, 41, 523. [64] Lu H., Li Y., Zhang H., Chingin K., Wei Y., Huang K., Feng S., Talanta, 2021, 233, 122544. [65] Song X., Yang X., Narayanan R., Shankar V., Ethiraj S., Wang X., Duan N., Ni Y.-H., Hu Q., Zare R. N., Proc. Natl. Acad. Sci., 2020, 117, 16167. [66] Song X., Chen H., Zare R. N., Anal. Chem., 2018, 90, 12878. [67] Zhu J., Thompson C. B., Nat. Rev. Mol. Cell Biol., 2019, 20, 436. [68] Altman B. J., Stine Z. E., Dang C. V., Nat. Rev. Cancer, 2016, 16, 619. [69] Chen X., Yu D., Metabolomics Off. J. Metabolomic Soc., 2019, 15, 22. [70] Pavlova N. N., Thompson C. B., Cell Metab., 2016, 23, 27. [71] Kang W., Zhang Y., Zhou Y., Feng X., Crit. Rev. Anal. Chem., 2022, 52, 1624. [72] Werner A., J. Chromatogr. B. Biomed. Sci. App., 1993, 618, 3. [73] Li A., Wang H., Ouyang Z., Cooks R. G., Chem. Commun., 2011, 47, 2811. [74] Beer B., Chasin M., Clody D. E., Vogel J. R., Horovitz Z. P., Science, 1972, 176, 428. [75] Li X., Liao X., Liu Y.-M., Talanta, 2020, 217, 121106. [76] Hardie D. G., Genes Dev., 2011, 25, 1895. [77] Miyamoto S., Hsu C.-C., Hamm G., Darshi M., Diamond-Stanic M., Declèves A.-E., Slater L., Pennathur S., Stauber J., Dorrestein P. C., Sharma K., EBioMedicine, 2016, 7, 121. [78] Marín-Aguilar F., Pavillard L. E., Giampieri F., Bullón P., Cordero M. D., Int. J. Mol. Sci., 2017, 18, 288. [79] Du F., Zhu X.-H., Zhang Y., Friedman M., Zhang N., Uğurbil K., Chen W., Proc. Natl. Acad. Sci., 2008, 105, 6409. [80] Yacoubi M. E., Ledent C., Ménard J.-F., Parmentier M., Costentin J., Vaugeois J.-M., Br. J. Pharmacol., 2000, 129, 1465. [81] Stockwell J., Jakova E., Cayabyab F. S., Molecules, 2017, 22, 676. [82] Yin X., Yang J., Zhang M., Wang X., Xu W., Price C.-A. H., Huang L., Liu W., Su H., Wang W., Chen H., Hou G., Walker M., Zhou Y., Shen Z., Liu J., Qian K., Di W., ACS Nano, 2022, 16, 2852. [83] McCreery M. Q., Balmain A., Annu. Rev. Cancer Biol., 2017, 1, 295. [84] Uchida K., Kanematsu M., Sakai K., Matsuda T., Hattori N., Mizuno Y., Suzuki D., Miyata T., Noguchi N., Niki E., Osawa T., Proc. Natl. Acad. Sci., 1998, 95, 4882. [85] Cao L., Liu X., Lin E.-J. D., Wang C., Choi E. Y., Riban V., Lin B., During M. J., Cell, 2010, 142, 52. [86] Li Z., Li Y., Zhan L., Meng L., Huang X., Wang T., Li Y., Nie Z., Anal. Chem., 2021, 93, 9158. [87] Peña J., Fernández Laespada M. E., García Pinto C., Pérez Pavón J. L., Moreno Cordero B., J. Chromatogr. B, 2019, 1133, 121824. [88] Wang S., Hu S., Xu H., Anal. Chim. Acta, 2015, 900, 67. [89] Weiner J., Maertzdorf J., Sutherland J. S., Duffy F. J., Thompson E., Suliman S., McEwen G., Thiel B., Parida S. K., Zyla J., Hanekom W. A., Mohney R. P., Boom W. H., Mayanja-Kizza H., Howe R., Dockrell H. M., Ottenhoff T. H. M., Scriba T. J., Zak D. E., Walzl G., Kaufmann S. H. E., Nat. Commun., 2018, 9, 5208. [90] Antonowicz S., Bodai Z., Wiggins T., Markar S. R., Boshier P. R., Goh Y. M., Adam M. E., Lu H., Kudo H., Rosini F., Goldin R., Moralli D., Green C. M., Peters C. J., Habib N., Gabra H., Fitzgerald R. C., Takats Z., Hanna G. B., Nat. Commun., 2021, 12, 1454. [91] Wang W., Yang Y., Chen Z., Wang X., Zhang G.-L., He T., Tong L., Tang B., Anal. Chem., 2024, 96, 787. [92] Liu J., Zang Q., Li X., Tu X., Zhu Y., Wang L., Zhao Z., Song Y., Zhang R., Abliz Z., Chin. Chem. Lett., 2023, 34, 108322. [93] Peng G., Tisch U., Adams O., Hakim M., Shehada N., Broza Y. Y., Billan S., Abdah-Bortnyak R., Kuten A., Haick H., Nat. Nanotechnol., 2009, 4, 669. [94] Christiansen A., Davidsen J. R., Titlestad I., Vestbo J., Baumbach J., J. Breath Res., 2016, 10, 034002. [95] Hakim M., Broza Y. Y., Barash O., Peled N., Phillips M., Amann A., Haick H., Chem. Rev., 2012, 112, 5949. [96] Fuchs P., Loeseken C., Schubert J. K., Miekisch W., Int. J. Cancer, 2010, 126, 2663. [97] Bag S., Hendricks P. I., Reynolds J. C., Cooks R. G., Anal. Chim. Acta, 2015, 860, 37. [98] Li Z., Li Y., Zhan L., Meng L., Huang X., Wang T., Li Y., Nie Z., Anal. Chem., 2021, 93, 9158. [99] Yu Q., Gao J., Yu X., Shi J., Lin L., Wang X., Analyst, 2022, 147, 4903. |
[1] | DONG Jiaxin, SU Rui, WU Xiaokang, DONG Deming, WANG Yining, HUANG Chenni, QIU Tao, GU Yu, HUA Xiuyi, LIANG Dapeng. Probing PFOA-induced Metabolic Disorders in Tilapia Through Fish Skin Mucus [J]. Chemical Research in Chinese Universities, 2025, 41(2): 358-366. |
[2] | QIN Changjuan, YANG Guanqing, WEI Qi, XIN Hua, DING Jianxun, CHEN Xuesi. Multi-Dimensional Role of Amino Acid Metabolism in Immune Regulation: From Molecular Mechanisms to Therapeutic Strategies [J]. Chemical Research in Chinese Universities, 2025, 41(1): 1-14. |
[3] | SONG Xingrui, LING Xiaoting, LIU Hailong, ZHAO Qiang, LI Xiangjun, LAI Weiyi, WANG Hailin. New Frontiers on Intracellular cGAS Activation: Molecular Mechanisms, Cellular Signaling, and Therapeutic Strategies [J]. Chemical Research in Chinese Universities, 2024, 40(4): 632-645. |
[4] | CUI Xulian, MA Baofu, PAN Hui, XIA Yu, LIU Li, ZHAO Baofeng, LIANG Zhen, ZHANG Lihua, ZHANG Yukui. A Pt/CeO2 Hybrid Nanozyme with Stable Peroxidase Activity for the Detection of Acetylcholine [J]. Chemical Research in Chinese Universities, 2024, 40(2): 268-271. |
[5] | YU Zhenyang, WANG Lei, LI Gaotian, ZHANG Jing. Reproductive Influences of Erythromycin and Sulfamethoxazole on Caenorhabditis elegans over Generations Mediated by Lipid Metabolism [J]. Chemical Research in Chinese Universities, 2023, 39(3): 434-440. |
[6] | CHAI Jingshan, LI Qiushi, ZHAO Yu, LIU Yang. Nanocomposites Facilitate the Removal of Aβ Fibrils for Neuroprotection [J]. Chemical Research in Chinese Universities, 2022, 38(2): 522-528. |
[7] | YANG Jia, ZHENG Rui, AN Hongwei, WANG Hao. In vivo Self-assembled Peptide Nanoprobes for Disease Diagnosis [J]. Chemical Research in Chinese Universities, 2021, 37(4): 855-869. |
[8] | LIU Fei, LI Ren, YE Jing, REN Yujie, TANG Zhipeng, LI Rongchen, ZHANG Cuihua, LI Qunlin. Study of Aldo-keto Reductase 1C3 Inhibitor with Novel Framework for Treating Leukaemia Based on Virtual Screening and In vitro Biological Activity Testing [J]. Chemical Research in Chinese Universities, 2021, 37(3): 778-786. |
[9] | ZHOU Tong, XU Guangyu, SUN Luyao, YU Zhenxiang, WANG Guixia. Improving Energy Metabolism of Deproteinized Extract of Calf Blood Through Regulation of Hmgcs2, Cpt1a, Angptl4, Cyp8b1, and Ehhadh Genes in Mice [J]. Chemical Research in Chinese Universities, 2019, 35(3): 427-433. |
[10] | LIU Zhi, XU Feifan, ZHAO Zhijie, HE Yuhua, ZHANG Hongxing, ZOU Guangtian, LI Yangxue. Porous Organic Polymer Nanoparticles for Sensing of Unsaturated Hydrocarbons [J]. Chemical Research in Chinese Universities, 2018, 34(6): 1035-1040. |
[11] | WANG Xiye, WANG Yu, WEI Chengxi, YU Lijun. Metabonomics and Molecular Biology-based Effects of Sugemule-3 in an Isoproterenol-induced Cardiovascular Disease Rat Model [J]. Chemical Research in Chinese Universities, 2018, 34(4): 590-597. |
[12] | WANG Hui-jing, ZHANG Dan, WANG Fu-sheng, WU Yi, SONG Hao. Synthesis and Anticholinesterase Activity of (-)-Physostigmine Analogues with Modifications at C3a and C5 [J]. Chemical Research in Chinese Universities, 2013, 29(5): 888-893. |
[13] | LU Wei-da, QIU Jie, ZHAO Gai-xia, QIE Liang-yi, WEI Xin-bing, GAO Hai-qing. Quantitative Mitochondrial Proteomics Study on Protective Mechanism of Grape Seed Proanthocyanidin Extracts Against Ischemia/Reperfusion Heart Injury in Rat [J]. Chemical Research in Chinese Universities, 2012, 28(6): 1035-1040. |
[14] | HUANG Hai-yan, MENG Xiang-wei, LI Xiao, SUN Li-li, KAN Shi-fu, LIU Lei, PIAO Bing-guo, YANG Guo-hua, WANG Zhuo-yue, WANG Yu-hang, QI Yan-xin and JIN Ning-yi*. Induction of Effective Antitumor Immune Response by Combined Administration of hIL-18 and NDV HN [J]. Chemical Research in Chinese Universities, 2011, 27(5): 836-840. |
[15] | PIAO Bing-guo, LI Xiao, SUN Li-li, KAN Shi-fu, LIU Lei, HUANG Hai-yan, .... Activity of T Cells Stimulated by Hemagglutinin-neuraminidase of Newcastle Disease Virus in vivo [J]. Chemical Research in Chinese Universities, 2011, 27(3): 455-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||