Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3): 451-461.doi: 10.1007/s40242-024-4063-z
• Reviews • Previous Articles Next Articles
ZENG Bingyuan1, XIA Tingting1, SUN Yanli1, ZHANG Pan1, WANG Wenjing2, ZHAO Kun1
Received:
2024-03-14
Online:
2024-06-01
Published:
2024-06-01
Contact:
WANG Wenjing,E-mail:wangwenjing@hbu.edu.cn;ZHAO Kun,E-mail:zhaokun@ncepu.edu.cn
E-mail:wangwenjing@hbu.edu.cn;zhaokun@ncepu.edu.cn
Supported by:
ZENG Bingyuan, XIA Tingting, SUN Yanli, ZHANG Pan, WANG Wenjing, ZHAO Kun. Functional Group Effects for Photothermal Mass-energy Transfer in CO2 Capture and Conversion[J]. Chemical Research in Chinese Universities, 2024, 40(3): 451-461.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Ebi K. L., Loladze I., The Lancet Planetary Health, 2019, 3, e283. [2] Gallego D. J., Sacchi R., Pizzol M., Journal of Cleaner Production, 2023, 425, 138935. [3] Meng F. Z., Meng Y., Ju T. Y., Han S. Y., Lin L., Jiang J. G., Renewable and Sustainable Energy Reviews, 2022, 168, 112902. [4] Zheng Y. W., Gao L., He S., Energy, 2023, 262, 125103. [5] Obi D., Onyekuru S., Orga A., International Journal of Sustainable Energy, 2024, 43, 2317137. [6] Zhou W. M., Huang H. Q., Wu Y. T., Wang J., Yamauchi Y., Kim J., Osman S. M, Xu X. T., Wang L. W., Wang C., Yuan Z. H., Chemical Engineering Journal, 2023, 471, 144395. [7] Fan P. C., He Y. H., Pan J. N., Sun N., Zhang Q. Y., Gu C., Chen K., Yin W. N., Wang L. L., Chinese Chemical Letters, 2024, 35, 108513. [8] Chen X. B., Yang N. L., Wang Y. L., He H. Y., Wang J. W., Wan J. W., Jiang H. Y., Xu B., Wang L. M., Yu R. B., Tong L. M., Gu L., Xiong Q. H., Chen C. Y., Zhang S. J., Wang D., Advanced Materials, 2022, 34, 2107400. [9] Wu G. L., Sun B., He Y. X., Tan X., Pan Q., Yang S., Li N., Wang M. H., Wu P. X., Liu F., Xiao H., Tang L., Zhu S. J., Yang Q. L., Chemical Engineering Journal, 2023, 463, 142372. [10] Gao J. B., Song X. Y., Yan J., Yuan J. J., Cao L. D., Deng G. F., Wang Z. C., Chemical Engineering Journal, 2023, 455, 140621. [11] Zhou J., Liu H., Wang H. Q., Chinese Chemical Letters, 2023, 34, 107420. [12] Fresno F., Iglesias-Juez A., Coronado J. M., Topics in Current Chemistry, 2023, 381, 21. [13] Sellaro M., Bellardita M., Brunetti A., Fontananova E., Palmisano L., Drioli E., Barbieri G., RSC Advances, 2016, 6, 67418. [14] Huang F. W., Zhang F. L., Wang Y. X., Lang X. J., Trends in Chemistry, 2024, 6, 115. [15] Xu C. P., Anusuyadevi P. R., Aymonier C., Luque R., Marre S., Chemical Society Reviews, 2019, 48, 3868. [16] Xu D. X., Li Z. D., Li L.S., Wang J., Advanced Functional Materials, 2020, 30, 2000712. [17] Liu H., Cao S. H., Chen L., Zhao K., Wang C. B., Li M. X., Shen S. G., Wang W. J., Ge L., Chemical Engineering Journal, 2022, 433, 133594. [18] Zhang L., Luo B. C., Fu K., Gao C. L., Han X. F., Zhou M. L., Zhang T. C., Zhong L. H., Hou Y. P., Zheng Y. M., Advanced Science, 2023, 10, 2304187. [19] Usman M., Iqbal N., Noor T., Zaman N., Asghar A., Abdelnaby M. M., Galadima A., Helal A., The Chemical Record, 2022, 22, e202100230. [20] Han W. S., Wang Y. L., Wan J. W., Wang D., Chemical Research in Chinese Universities, 2022, 38, 117. [21] Chen D. Y., Zhao X. Y., Shi M. S., Fu X. Y., Hu W., Shi X. Y., Zhao R., Zhu G. S., Chemical Engineering Journal, 2024, 480, 148108. [22] Cao S. H., Liu H., Jia Z. H., Guo M., Gao W. T., Ding Z. H., Yang W. J., Chen L., Wang W. J., Chemical Engineering Journal, 2023, 455, 140746. [23] Hou Z. S., Wang Z. Z., Wang P. W., Chen F., Luo X. L., Diamond and Related Materials, 2022, 123, 108831. [24] Gao H. X., Xu B. Liu H. L., Liang Z. W., Energy&Fuels, 2016, 30, 7481. [25] Xiao M., Liu H. L., Idem R., Tontiwachwuthikul P., Liang Z. W., Applied Energy, 2016, 184, 219. [26] Xing L., Wei K. X., Li Q. W., Wang R. J., Zhang S. H., Wang L. D., Environmental Science&Technology, 2020, 54, 13944. [27] Sun Y. L., Zhao Y. T., Zhou Y. A., Wang L. M., Wang Z. M., Qi J., Fu D., Zhang P., Zhao K., Materials Today Energy, 2023, 37, 101397. [28] Ghoussoub M., Xia M. K., Duchesne P. N., Segal D., Ozin G., Energy&Environmental Science, 2019, 12, 1122. [29] Zhang J. Q., Chen H. J., Duan X. G., Sun H. Q., Wang S. B., Materials Today, 2023, 68, 234. [30] Wang Z. Q., Yang Z. Q., Kadirova Z. C., Guo M. N., Fang R., He J., Yan Y. F., Ran J., Coordination Chemistry Reviews, 2022, 473, 214794. [31] Xu J., Zhang X. Q., Yan W., Xie T. F., Chen Y. P., Wei Y. C., Inorganic Chemistry, 2024, 63, 4279. [32] Song C. Q., Wang Z. H., Yin Z., Xiao D. Q., Ma D., Chem Catalysis, 2022, 2, 52. [33] Mateo D., Cerrillo J. L., Durini S., Gascon J., Chemical Society Reviews, 2021, 50, 2173. [34] Gao M. M., Zhu L. L., Peh C. K., Ho G. W., Energy&Environmental Science, 2019, 12, 841. [35] Ji Y., Zhang C., Zhang X. J., Xie P. F., Wu C., Jiang L., Separation and Purification Technology, 2022, 293, 121131. [36] Fiorenza R., Bellardita M., Balsamo S. A., Spitaleri L., Gulino A., Condorelli M., D'Urso L., Scirè S., Palmisano L., Chemical Engineering Journal, 2022, 428, 131249. [37] Li X., Xing L., Zhan G. X., Huang Z. l., Chen Z., Chang H. Z., Li J. H., ACS Catalysis, 2024, 14, 1083. [38] Cui H. P., Cai J. X., Chen H., Fu Y. C., Shen J. Y., Microporous and Mesoporous Materials, 2021, 327, 111400. [39] Xu J. Q., Yin Z. W., Zhang L., Dong Q., Cai X. Q., Li S. K., Chen Q., Keoingthong P., Li Z. Q., Chen L., Chen Z., Tan W. H., CCS Chemistry, 2021, 4, 2333. [40] Qiu J. Q., Guo M. N., Yang Z. Q., Wang Z. Q., Fang R., He, J., Ran J. Y., Applied Surface Science, 2023, 617, 156605. [41] He H. B., Zhao X. B., Jian X., Zhang H., Zeng T. X., Feng B. B., Hu Y., Yuan Z. Q., Gao X. M., Fu F., Chemical Engineering Journal, 2023, 476, 146442. [42] Zhang S. H., Wang L. W., Zhang Y., Cao F., Sun Q., Ren X. H., Wennersten R., Journal of Environmental Chemical Engineering, 2022, 10, 108727. [43] Gao Z. Y., Li M. H., Sun Y., Yang W. J., Journal of Hazardous Materials, 2018, 360, 436. [44] Wang X. R., Song J. Z., Chen Y., Xiao H., Shi X. Y., Liu Y. L., Zhu, L. L., He Y. L., Chen X., Industrial&Engineering Chemistry Research, 2020, 59, 16507. [45] Lu X. Y., Zhu X. R., Ma Z. Y., Che Z. W., Li Y. F., Bao J. C., Liu Y., Electrochimica Acta, 2022, 426, 140755. [46] Liu J., Cui Y. Y., Pan Y. Y., Chen Z. J., Jia T., Li C. L., Wang Y., Angewandte Chemie International Edition, 2022, 61, e202117087. [47] Wang D. D., Wu H. H., Zhou J. J., Xu P. P., Wang C. L., Shi R. H., Wang H. B., Wang H., Guo Z., Chen Q. W., Advanced Science, 2018, 5, 1800287. [48] Nie N., He F., Zhang L. Y., Cheng B., Applied Surface Science, 2018, 457, 1096. [49] Lu J. L., Shi Y. X., Chen Z. Z., Sun X. H., Yuan H., Guo F., Shi W. L., Chemical Engineering Journal, 2023, 453, 139834. [50] Ruan C. H., Xiang H. X., Yan H., Deng Y. X., Zhao Y., Xu C.-Q., Li J., Yao C. H., Small, 2023, 19, 2305056. [51] Pang W. Y., Du X., Yang Y. T., Long C., Li Y. T., Hu C. Y., Xu R. H., Tian M., Xie J. J., Wang W. J., Guo J., Li B. H., Zhang P., Fu D., Zhao K., Advanced Functional Materials, 2024, 2400466. [52] Kim J., Ravi S., Kim K., Choi Y., Park H. H., Bae Y. S., ACS Applied Materials&Interfaces, 2023, 15, 48485. [53] Zhou W. M., Huang H. Q., Wang Z. Q., Sharshir S. W., Wang C., An M., Wang L. W., Yuan Z. H., Journal of Materials Chemistry A, 2024, 12, 4046. [54] Li F., Cheng L., Fan J. J., Xiang Q. J., Journal of Materials Chemistry A, 2021, 9, 23765. [55] Chen P. Y., Ji F. B., Ma D. T., Xie Y. B., Wu X, Zhang M. C., Ru C. L., Zhou L., Wu J. C, Pan X. B., Journal of Materials Chemistry A, 2023, 11, 21146. [56] Wang D. D., Zhou J. J., Chen R. H., Shi R. H., Zhao G. L., Xia G. L., Li R., Liu Z. B., Tian J., Wang H. J., Guo Z., Wang H. B., Chen Q. W., Biomaterials, 2016, 100, 27. [57] Liu Z. F., Lu X., Chen D., ACS Sustainable Chemistry&Engineering, 2018, 6, 10289. [58] Zhou Z. L., Zhu H. P., Wu S. L., Lv Y. L., Zheng Y. F., Chen D. F., Zhu S.L., Li Z. Y., Cui Z. D., Liu X. M., Chemical Engineering Journal, 2023, 455, 140857. [59] Wang M. Q., Liang Y., Zhang Z. C., Ren G. H., Liu Y. J., Wu S. S., Shen J., Analytica Chimica Acta, 2019, 1086, 122. [60] Yao P. C., Gong H., Wu Z.-Y., Fu H., Li B., Zhu B., Ji J., Wang X. Y., Xu N., Tang C., Zhang H. G., Zhu J., Wu Z. Y., Ji J. W., Tang C. J., Nature Sustainability, 2022, 5, 348. [61] Zhang Y. Q., Hudson-Smith N. V., Frand S. D., Cahill M. S., Davis L. S., Feng Z. V., Haynes C. L., Hamers R. J., Journal of the American Chemical Society, 2020, 142, 10814. [62] Lv S. B., Wang B., Wu Y. N., Zhang R. L., Feng E. T., Liu T. Y., Xie X. Y., Jiang J. R., Hou X. C., Liu D. P., Song F. L., Acta Biomaterialia, 2024, 174, 400. [63] Shi W. B., Deng J., Qin H., Wang D. S., Zhao C. S., Journal of Membrane Science, 2014, 455, 357. [64] Zhang W., Yang H., Liu F. H., Chen T., Hu G. X., Guo D. H., Hou Q. F., Wu X., Su Y., Wang J. B., RSC Advances, 2017, 7, 32518. [65] Luo H. X., Chang K., Bahati K., Geise G. M., Journal of Membrane Science, 2019, 590, 117295. [66] Xu C. Y., Huang W. H., Li Z., Deng B. W., Zhang Y. W., Ni M. J., Cen. K. F., ACS Catalysis, 2018, 8, 6582. [67] Lin B., Li J. L., Xu B. R., Yan X. Q., Yang B. L., Wei J. J., Yang G. D., Applied Catalysis B:Environmenta, 2019, 243, 94. [68] Gao Y. J., Tang P, Zhou H, Yang. H. J., Yan N., Hu G., Mei D. H., Wang J. G., Ma D., Angewandte Chemie International Edition, 2016, 55, 3124. [69] Xu X., Cui Y. Y., Chen T., Jiang K., Wang J., Xiao Y. L., Yang X. J., Zhu J., Chen H., Ding X., ACS Catalysis, 2023, 13, 4700. [70] Yu Q., Feng J. Y., Li J., He A. F., Sheng G. D., Chemosphere, 2021, 275, 130021. [71] Xu M., Hu X. T., Wang S. L., Yu J. C., Zhu D. J., Wang J. Y., Journal of Catalysis, 2019, 377, 652. [72] Kataoka T., Orita Y., Shimoyama Y., Chemical Engineering Journal, 2024, 482, 148710. [73] An X. F., Zhao K., Zhang W. P., Yang J. H., Liao Y. J., Wang L. M., Fu D., Fuel, 2022, 309, 122175. [74] Jiang K., Zhang L., Hu Q., Yue D., Zhang J., Zhang X., Li B., Cui Y., Yang Y., Qian G. I., Materials Today Nano, 2018, 2, 50. [75] Wang X., Rong Y., Wang F., Zhang C., Wang Q., Microporous and Mesoporous Materials, 2022, 346, 112314. [76] Xiao J. D., Jiang H. L., Accounts of Chemical Research, 2019, 52, 356. [77] Chen Y. T., Wen X., He J., Li Z., Zhu S., Chen W., Yu J., Guo Y., Ni S., Chen S., Dang L., Li M. D., ACS Applied Materials&Interfaces, 2022, 14, 28781. [78] Wang D. B., Kan X. N., Wu C. Y., Gong Y. Z., Guo G. M., Liang T. L., Li Z. B., Wang L., Zhao Y. J., Chemical Communications, 2020, 56, 5223. [79] Sun Z. K., Wang Z. H., Yang X., An K. B., Qu Z. B., Tang Z. Y., Lai S. W., He M. Q., Yang L., Zhou B., Zhao H. Q., Chemosphere, 2023, 337, 139351. [80] Xing C. C., Zhang Z. F., Zhang Y., Han X., Yang L. L., Li J. S., Wang X., Martinez P., Demir M., Piveteau L., Florian P., Arbiol J., Guo Y., Llorca J., Cabot A., Materials Today Nano, 2023, 24, 100435. [81] Zhang Y., Xiong F., Liu G. Y., Yang J. L., Zeng Z., Zeng D. B., Yang B. R., Materials Today Communications, 2024, 38, 107651. [82] Zhao K., Pang W. Y., Jiang S. Y., Hu C. Y., Liu P. R., Cui D. D., An X. F., Tian B. J., Gao C., Zhang P., Tian M., Fu D., Zhao H. J., Nano Research, 2023, 16, 4812. [83] Santika A. S., Permatasari F. A., Umami R., Muyassiroh D. A. M., Irham M. A., Fitriani P., Iskandar F., Physical Chemistry Chemical Physics, 2022, 24, 27163. [84] Gao J., Chu R. Z., Meng X. L., Yang J. Y., Yang D. G., Li X., Lou W. T., Fuel, 2020, 278, 118407. [85] Xiong X. Q., Tang Y. H., Xu C. J., Huang Y. Y., Wang Y. P., Fu L. L., Lin C. X., Zhou D. F., Lin Y. H., Small, 2020, 16, 2004129. [86] Shi Y. S., Geng F. S., Sun Y., Jiang P. P., Kan W. H.; Tong W., Lu X. Y., Qian G. Y., Zhang N., Wei B., Hu B. W., Cao D. P., Lu X., ACS Nano, 2024, 18, 5609. [87] Tayyab M., Park J.-H., Kim K.-M., Lee C.-H., Journal of Catalysis, 2024, 429, 115236. [88] Wei Y. Z., Yang N. L., Huang K. K., Wan J. W., You F. F., Yu R. B., Feng S. H., Wang D., Advanced Materials, 2020, 32, 2002556. [89] Yu Z. H., Yue X. Y., Fan J. J., Xiang Q. J., ACS Catalysis, 2022, 12, 6345. [90] Zhang L., Zhou K. C., Wei Q. P., Ma L., Ye W. T., Li H. C., Zhou B., Yu Z. M., Lin C. T., Luo J. T., Gan X. P., Applied Energy, 2019, 233/234, 208. [91] An X. F., Zhao K., Pang W. Y., Zhang W. P., Wang L. M., Guo T. X., Fu D., Chemical Engineering Journal, 2022, 431, 133877. [92] Zhang Z. X., Wang Y. H., Stensby Hansen P. A., Du K., Gustavsen K. R., Liu G. H., Karlsen F., Nilsen O., Xue C. Y., Wang K. Y., Nano Energy, 2019, 65, 103992. |
[1] | REN Fengdi, GAO Qiqin, CHEN Yuzhen. MxCo3O4/g-C3N4 Derived from Bimetallic MOFs/g-C3N4 Composites for Styrene Epoxidation by Synergistic Photothermal Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1361-1367. |
[2] | CHEN Liquan, LI Dawei, REN Jinghan, LI Yameng, GAO Dong, XING Chengfen. Side Chain Functional Conjugated Porous Polymers for NIR Controlled Carbon Dioxide Adsorption and Release [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1467-1474. |
[3] | YU Xinyue, ZHONG Yao, SUN Yu, CHEN Yanwei. Controllable Preparation of Plasmonic Gold Nanostars for Enhanced Photothermal and SERS Effects [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1284-1291. |
[4] | YU Wenli, ZHANG Mingjuan, LIU Kang, YANG Yu, WANG Lei. Hydrogen Bonding Assembled 3D Supramolecular Structures Formed by 5-Amino-2,4,6-triiodoisophthalic Acid and N-Heterocyclic Aromatic Ligands [J]. Chemical Research in Chinese Universities, 2019, 35(5): 806-811. |
[5] | Muddasir Hanif, LU Ping, XU Hai, TIAN Zhi-cheng, YANG Bing, WANG Zhi-ming, ...... Synthesis, GC-EIMS, 1H NMR, 13C NMR, Mechanistic and Thermal Studies of o-Xylylene-α,α’-bis(triphenylphosphinebromide) [J]. Chemical Research in Chinese Universities, 2009, 25(5): 754-759. |
[6] | CHENG Jian-bo, XUE Wei-qing, ZHAO Bing, ZHANG Gang, GONG Bao-an. Investigation on Vibrational Spectra and Structures of 4-Mercaptopyridine Monomer and Its Dihydrate [J]. Chemical Research in Chinese Universities, 2006, 22(1): 90-93. |
[7] | LI Yong, LU Jing, XU Ji-qing, CUI Xiao-bing, SUN Ying-hua, LI Ke-chang, PAN Ling-yun, BIE Hai-ying. Synthesis, Structure and Third-order Non-linear Optical Properties of Tungsten Dioxo Complex with 8-Hydroxyquinoline Ligand WO2(C9H6NO)2 [J]. Chemical Research in Chinese Universities, 2004, 20(6): 681-684. |
[8] | LU Shi-xiang, JIN Guo-xin, HU Ning-hai, JIA Heng-qing. Synthesis, Structure and Characterization of a Novel Asymmetrical Half-sandwich Binuclear Iron Carborane Complex [η5-C5H3(t-Bu)2]2Fe2(CO)3Se2C2B10H10 [J]. Chemical Research in Chinese Universities, 2002, 18(4): 405-408. |
[9] | LIU Kui, ZHANG Ping, ZHANG Wei-xing, YANG Guang-di, WANG Yue. Self-assembly of Bis[2-(2-hydroxyphenyl)- pyridine]Copper(Ⅱ) Induced by C—H…π and π…π Stacking Interaction [J]. Chemical Research in Chinese Universities, 2000, 16(3): 280-282. |
[10] | GONG Xue-dong, XIAO He-ming, DONG Hai-shan . Quantum Chemical Investigations on the Structures, Stabilities, Decompositions of Trinitrobenzenes, Their Chloro Derivatives [J]. Chemical Research in Chinese Universities, 1999, 15(2): 152-157. |
[11] | ZHOU Zhao-hui, WANG Jinzhi, WAN Hui-lin, TSAl Khi-rui. Synthesis and Structure of(NH4)2 [V2O4(OCH2COO)2] [J]. Chemical Research in Chinese Universities, 1994, 10(2): 102-106. |
[12] | ZHOU Xiu-zhong, WANG Ying, XU Shan-sheng, WANG Hong-gen, YAO Xin-kai. Syntheses and Structures of Sil abridged Hafnocene Dichlorides [J]. Chemical Research in Chinese Universities, 1992, 8(3): 239-246. |
[13] | JIANG Li-hong, LIU Shen-ping, LI Gen-pei, WU Hai-tao, JIN Sheng. Crystal and Molecular Structures of Two Derivatives of 1, 3a, 5-Trisubstituted-3a,4,5,11-Tetrahydro-1,2,4-Oxadiazolino[5,4-d] [1, 5]Benzothiazepine [J]. Chemical Research in Chinese Universities, 1992, 8(3): 247-252. |
[14] | Yu Kaibei, Zhou Zhongyuan, Gou Shaohua, You Xiaozeng, Xu Zheng. Crystal and Molecular Structure of Copper (Ⅱ) Dimeric Complex of S-Methyl-β-N-(Pyridine N-Oxide-2-ylmethylidene) Dithiocarbazate with Acetonitrile [J]. Chemical Research in Chinese Universities, 1990, 6(4): 262-265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||