Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5): 816-821.doi: 10.1007/s40242-017-6452-z

• Articles • Previous Articles     Next Articles

Effect of Synthetic Method and Reductant on the Morphology and Photocatalytic Hydrogen Evolution Performance of Ru Nanoparticles

KONG Chao, HAN Yanxia, HOU Lijie, CHEN Dongping, WU Bowan   

  1. College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, P. R. China
  • Received:2016-11-14 Revised:2016-12-24 Online:2017-10-01 Published:2017-03-13
  • Contact: KONG Chao,E-mail:kongchao010@163.com E-mail:kongchao010@163.com
  • Supported by:

    Supported by the Doctor Foundation of Longdong University, China(Nos.XYBY1603, XYBY140210); the Scientific Research Project of Gansu Province Higher Education, China(No.2016B-098); the Key Constructive Discipline of Longdong University, China(No.LDKCD201704).

Abstract:

Ru nanoparticles were synthesized using the photoreduction and chemical reduction methods. Ru nanoparticles were used as a cocatalyst to develop a photocatalytic hydrogen evolution system sensitized by Eosin Y(EY), and the effects of the synthetic method and reductant on the morphology and photocatalytic hydrogen evolution performance of Ru nanoparticles were studied. The results indicated that Ru nanoparticles prepared by photoreduction and thermochemical reduction by ethanediol had a relatively uniform size, and the photoreduced Ru showed higher photocatalytic performance than Ru reduced by ethanediol and methanal. The amount of H2 evolution in 60 min over Ru(photoreduction)-EY was 1247.7μmol, which was 13.6 and 14.3 times that over Ru prepared by chemical reduction methods under the same photoreaction conditions. The calculation of binding energies showed that a higher binding energy of Ru nanoparticles and glycol was one of the main reasons for the uniform size and low photocatalytic performance of Ru reduced by glycol. The results indicated that different preparation methods and reductants had a significant influence on the catalytic activity of Ru catalyst.

Key words: Ruthenium, Photocatalysis, Hydrogen evolution, Morphology, Binding energy