Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1): 55-60.doi: 10.1007/s40242-020-9092-7
• Reviews • Previous Articles Next Articles
JI Xiulei, JIANG Heng
Received:
2019-12-09
Revised:
2020-01-07
Online:
2020-02-01
Published:
2020-01-09
Contact:
JI Xiulei
E-mail:david.ji@oregonstate.edu
Supported by:
JI Xiulei, JIANG Heng. A Perspective: the Technical Barriers of Zn Metal Batteries[J]. Chemical Research in Chinese Universities, 2020, 36(1): 55-60.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Ji X., Energy & Environment Science, 2019, 12, 3203 |
[2] | Henzen V., BloombergNEF Blog, 2019, https://about.bnef.com/blog/energy-storage-investments-boom-battery-costs-halve-next-decade/ |
[3] | Wang X., Yasukawa E., Kasuya S., Journal of the Electrochemistry Society, 2001, 148, A1058 |
[4] | Zeng Z., Murugesan V., Han K. S., Jiang X., Cao Y., Xiao L., Ai X., Yang H., Zhang J. G., Sushko M. L., Liu J., Nature Energy, 2018, 3, 674 |
[5] | Wang J., Yamada Y., Sodeyama K., Watanabe E., Takada K., Tateyama Y., Yamada A., Nature Energy, 2018, 3, 22 |
[6] | Kundu D., Talaie E., Duffort V., Nazar L. F., Angewandte Chemie International Edition, 2015, 54, 3431 |
[7] | Delmas C., Advanced Energy Materials, 2018, 8, 1703137 |
[8] | Wu X., Leonard D. P., Ji X., Chemistry of Materiasl, 2017, 29, 5031 |
[9] | Jian Z., Luo W., Ji X., Journal of the American Chemical Society, 2015, 137, 11566 |
[10] | Li Z., Bommier C., Chong Z. S., Jian Z., Surta T. W., Wang X., Xing Z., Neuefeind J. C., Stickle W. F., Dolgos M., Greaney P. A., Ji X., Advanced Energy Materials, 2017, 7, 1602894 |
[11] | Aurbach D., Lu Z., Schechter A., Gofer Y., Gizbar H., Turgeman R., Cohen Y., Moshkovich M., Levi E., Nature, 2000, 407, 724 |
[12] | Lin M. C., Gong M., Lu B., Wu Y., Wang D. Y., Guan M., Angell M., Chen C., Yang J., Hwang B. J., Dai H., Nature, 2015, 520, 324 |
[13] | Shyamsunder A., Blanc L. E., Assoud A., Nazar L. F., ACS Energy Letter, 2019, 4, 2271 |
[14] | Zhang M., Song X., Ou X., Tang Y., Energy Storage Materials, 2019, 16, 65 |
[15] | Rodríguez-Pérez I. A., Ji X., ACS Energy Letter, 2017, 2, 1762 |
[16] | Zhou X., Liu Q., Jiang C., Ji B., Ji X., Tang Y., Cheng H. M., Angewandte Chemie International Edition, 2019, 58, 2 |
[17] | Edison T. A., Reversible Galvanic Battery, U.S. Patent 678,722, 1901 |
[18] | Whittingham M. S., Science, 1976, 192, 1126 |
[19] | Mizushima K., Jones P., Wiseman P., Goodenough J. B., Materials Research Bulletin, 1980, 15, 783 |
[20] | Turney D. E., Gallaway J. W., Yadav G. G., Ramirez R., Nyce M., Banerjee S., Chen-Wiegart Y. C. K., Wang J., D'Ambrose M. J., Kolhekar S., Chemistry of Materials, 2017, 29, 4819 |
[21] | Wu X., Xu Y., Jiang H., Wei Z., Hong J. J., Hernandez A. S., Du F., Ji X., ACS Applied Energy Materials, 2018, 1, 3077 |
[22] | Wang F., Borodin O., Gao T., Fan X., Sun W., Han F., Faraone A., Dura J. A., Xu K., Wang C., Nature Materials, 2018, 17, 543 |
[23] | Yufit V., Tariq F., Eastwood D. S., Biton M., Wu B., Lee P. D., Brandon N. P., Joule, 2019, 3, 485 |
[24] | Higashi S., Lee S. W., Lee J. S., Takechi K., Cui Y., Nature Communications, 2016, 7, 11801 |
[25] | Li S., Jiang M., Xie Y., Xu H., Jia J., Li J., Advanced Materials, 2018, 30, 1706375 |
[26] | Parker J. F., Pala I. R., Chervin C. N., Long J. W., Rolison D. R., Journal of the Electrochemistry Society, 2016, 163, A351 |
[27] | Parker J. F., Chervin C. N., Pala I. R., Machler M., Burz M. F., Long J. W., Rolison D. R., Science, 2017, 356, 415 |
[28] | Xu C., Li B., Du H., Kang F., Angewandte Chemie International Edition, 2012, 51, 933 |
[29] | Zhang N., Cheng F., Liu Y., Zhao Q., Lei K., Chen C., Liu X., Chen J., Journal of the American Chemical Society, 2016, 138, 12894 |
[30] | Ma L., Li N., Long C., Dong B., Fang D., Liu Z., Zhao Y., Li X., Fan J., Chen S., Advanced Functional Materials, 2019, 29, 1906142 |
[31] | Zhao Q., Huang W., Luo Z., Liu L., Lu Y., Li Y., Li L., Hu J., Ma H., Chen J., Science Advances, 2018, 4, e1761 |
[32] | Wu X., Xu Y., Zhang C., Leonard D. P., Markir A., Lu J., Ji X., Journal of the American Chemical Society, 2019, 141, 6338 |
[33] | Kundu D., Adams B. D., Duffort V., Vajargah S. H., Nazar L. F., Nature Energy, 2016, 1, 16119 |
[34] | Sun W., Wang F., Hou S., Yang C., Fan X., Ma Z., Gao T., Han F., Hu R., Zhu M., Wang C., Journal of the American Chemical Society, 2017, 139, 9775 |
[35] | Yadav G. G., Gallaway J. W., Turney D. E., Nyce M., Huang J., Wei X., Banerjee S., Nature Communications, 2017, 8, 14424 |
[36] | Zhang C., Holoubek J., Wu X., Daniyar A., Zhu L., Chen C., Leonard D. P., Rodríguez-Pérez I. A., Jiang J. X. Jiang C., Ji X, Chemical Communications, 2018, 54, 14097 |
[37] | Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K., Science, 2015, 350, 938 |
[38] | Dubouis N., Lemaire P., Mirvaux B., Salager E., Deschamps M., Grimaud A., Energy & Environmental Science, 2018, 11, 3491 |
[39] | Zheng J., Tan G., Shan P., Liu T., Hu J., Feng Y., Yang L., Zhang M., Chen Z., Lin Y., Chem., 2018, 4, 2872 |
[40] | Li X., Liu L., Schlegel H. B., Journal of the American Chemical Society, 2002, 124, 9639 |
[41] | Dou Q., Lu Y., Su L., Zhang X., Lei S., Bu X., Liu L., Xiao D., Chen J., Shi S., Energy Storage Materials, 2019, 23, 603 |
[42] | Zhao J., Ren H., Liang Q., Yuan D., Xi S., Wu C., Manalastas Jr. W., Ma J., Fang W., Zheng Y., Nano Energy, 2019, 62, 94 |
[43] | Wu X., Markir A., Xu Y., Zhang C., Leonard D. P., Shin W., Ji X., Advanced Functional Materials, 2019, 29, 1900911 |
[1] | XU Guangyuan, LIU Qin, YAN Huan. Recent Advances of Single-atom Catalysts for Electro-catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1146-1150. |
[2] | JI Yuancheng, XU Jiayun, SUN Hongcheng, and LIU Junqiu. Artificial Photosynthesis(AP): from Molecular Catalysts to Heterogeneous Materials [J]. Chemical Research in Chinese Universities, 2022, 38(3): 688-697. |
[3] | XU Jing, MIAO Sijia, TANG Duihai, ZHANG Wenting, ZHAO Zhen, QIAO Zhen-An. Molten Salts Strategy for the Synthesis of CoP Nanoparticles Entrapped, N,P co-Doped Mesoporous Carbons as Electrocatalysts for Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2022, 38(1): 237-242. |
[4] | SHI Yi, DAI Wenrui, WANG Meng, XING Yongfang, XIA Xinghua, CHEN Wei. Bioinspired Construction of Ruthenium-decorated Nitrogen-doped Graphene Aerogel as an Efficient Electrocatalyst for Hydrogen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2020, 36(4): 709-714. |
[5] | YAN Baolin, LIU Dapeng, FENG Xilan, SHAO Mingzhe, ZHANG Yu. Ru Nanoparticles Supported on Co-Embedded N-Doped Carbon Nanotubes as Efficient Electrocatalysts for Hydrogen Evolution in Basic Media [J]. Chemical Research in Chinese Universities, 2020, 36(3): 425-430. |
[6] | JIAN Juan, YUAN Long, LI He, LIU Huanhuan, ZHANG Xinghui, SUN Xuejiao, YUAN Hongming, FENG Shouhua. Hydrothermal Synthesized Co-Ni3S2 Ultrathin Nanosheets for Efficient and Enhanced Overall Water Splitting [J]. Chemical Research in Chinese Universities, 2019, 35(2): 179-185. |
[7] | ZHANG Xuena, ZHONG Xinwen, YANG Zhe, SONG Jiapeng, LU Haiyan. Carbon-covered Tungsten Carbide Nanoparticles: Solid-state Synthesis and Application as Stable Electrocatalysts for the Hydrogen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2016, 32(6): 1016-1018. |
[8] | YU Jin-yu, QIAN Zhao-hong, ZHAO Meng, WANG Yu-jie, NIU Lin. Effects of Sodium Sulfate as Electrolyte Additive on Electrochemical Performance of Lead Electrode [J]. Chemical Research in Chinese Universities, 2013, 29(2): 374-378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||