Chemical Research in Chinese Universities ›› 2026, Vol. 42 ›› Issue (1): 251-262.doi: 10.1007/s40242-025-5084-y
• Research Articles • Previous Articles Next Articles
NING Lingling, YI Zhihui, ZHOU Yiyang, LI Yikun, LIU Wenping, ZHAO Jing, GUO Shutong, QIU Shengqing, TENG Yuan
Received:2025-04-30
Online:2026-02-01
Published:2026-01-28
Contact:
TENG Yuan,E-mail:tengy6@mail.sysu.edu.cn
E-mail:tengy6@mail.sysu.edu.cn
Supported by:NING Lingling, YI Zhihui, ZHOU Yiyang, LI Yikun, LIU Wenping, ZHAO Jing, GUO Shutong, QIU Shengqing, TENG Yuan. Bi and Ag Nanoclusters Dual Plasmonic-cocatalysts Decorating Bi4Ti3O12 Perovskite for Efficient Photocatalysis[J]. Chemical Research in Chinese Universities, 2026, 42(1): 251-262.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] Fung C. M., Er C. C., Tan L. L., Mohamed A. R., Chai S. P., Chem. Rev., 2022, 122, 3879. [2] Wang X. Y., Zhao Z. W., Zahra K., Li J. J., Zhang Z. C., Chem. Res. Chinese Universities, 2023, 39, 580. [3] Tian J. Z., Guan C. H., Hu H. B., Liu E. Z., Yang D. Y., Acta Phys. Chim. Sin., 2025, 41, 100068. [4] Tsao C. W., Narra S., Kao J. C., Lin Y. C., Chen C. Y., Chin Y. C., Huang Z. J., Huang W. H., Huang C. C., Luo C. W., Chou J. P., Ogata S., Sone M., Huang M. H., Chang T. F. M., Lo Y. C., Lin Y. G., Diau E. W. G., Hsu Y. J., Nat. Commun., 2024, 15, 413. [5] Yan S. G., Zhang L., Shi S. H., Ren Y. Y., Liu W. H., Li Y. J., Duan F., Lu S. L., Du M. L., Chen M. Q., Chem. Res. Chinese Universities, 2025, 41, 121. [6] Shen R. C., Qin C. C., Hao L., Li X. Z., Zhang P., Li X., Adv. Mater., 2023, 35, 2305397. [7] Gao R. Q., Shen R. C., Huang C., Huang K. H., Liang G. J., Zhang P., Li X., Angew. Chem. Int. Ed., 2025, 64, e202414229. [8] Chen Y. Y., Wang X., Liu B. Y., Zhang Y. J., Zhao Y. P., Wang S. C., J. Colloid Interface Sci., 2024, 673, 275. [9] Wu J. W., Xie Q. J., Zhang C. L., Shi H. F., Acta Phys. Chim. Sin., 2025, 41, 100050. [10] Yang M., Zhu X. W., Zhu Z., Zhang H. Y., Teng Y., Kuang D. B., Li Y. J., Chem. Eng. J., 2023, 472, 145071. [11] Shen R. C., Huang C., Hao L., Liang G. J., Zhang P., Yue Q., Li X., Nat. Commun., 2025, 16, 2457. [12] Chiu N. C., Lessard J. M., Musa E. N., Lancaster L. S., Wheele C., Krueger T. D., Chen C., Gallagher T. C., Nord M. T., Huang H. L., Cheong P. H. Y., Fang C., Stylianou K. C., Nat. Commun., 2024, 15, 1459. [13] Ren C. Y., Bai R., Chen W., Li J. P., Zhou X. D., Tian X. C., Zhao F., Chem. Res. Chinese Universities, 2023, 39, 389. [14] Jiang J. Z., Yu L. L., Li F. Y., Deng W. M., Pan C., Wang H. T., Zou J., Ding Y. B., Deng F. X., Huang J., Acta Phys. Chim. Sin., 2023, 39, 2209033. [15] Huang K. H., Liang G. J., Sun S. L., Hu H. B., Peng X. M., Shen R. C., Li X., J. Mater. Sci. Technol., 2024, 193, 98. [16] Wu X. H., Chen G. Q., Wang J., Li J. M., Wang G. H., Q Li., Zhang H. H., Gu H. J., Cui Y. Y., Gao R. H., Dai W. L., Acta Phys. Chim Sin., 2025, 41, 100031. [17] Huang K. H., Chen D. J., Zhang X., Shen R. C., Zhang P., Xu D. F., Li X., Acta Phys. Chim. Sin., 2024, 40, 2407020. [18] He J. Y., Chen L. Y., Xie X. L., Qin Z. Z., Ji H. B., Su T. M., Acta Phys. Chim. Sin., 2024, 40, 2404030. [19] Teng Y., Ning L. L., Tan C. W., Zhao J., Xiong Y. W., Zou H. L., Ye Z. M., Zhang X. M., Kuang D. B., Li Y. J., Adv. Funct. Mater., 2025, 35, 2414892. [20] Huang J., Kang Y. Y., Liu J. N., Yao T. T., Qiu J. H., Du P. P., Huang B. H., Hu W. J., Liang Y., Xie T. F., Chen C. L., Yin L. C., Wang L. Z., Cheng H. M., Liu G., Nat. Commun., 2023, 14, 7948. [21] Li S. J., Yan R. Y., Cai M. J., Jiang W., Zhang M. Y., Li X., J. Mater. Sci. Technol., 2023, 164, 59. [22] Cao C. Y., Zou H., Yang N., Li H., Cai Y., Song X. J., Shao J. J., Chen P., Mou X. Z., Wang W. J., Dong X. C., Adv. Mater., 2021, 33, 2106996. [23] Wang S. C., Wang X., Liu B. Y., Guo Z. C., Ostrikov K. K., Wang L. Z., Huang W., Nanoscale, 2021, 13, 17989. [24] Teng Y., Zhao J., Ye Z. M., Tan C. W., Ning L. L., Zhou Y. Y., Wu Z. L., Kuang D. B., Li Y. J., Adv. Energy. Mater., 2025, 15, 2404029. [25] Xue P. J., Wu H., Lu Y., Zhu X. H., J. Mater. Sci. Technol., 2018, 34, 914. [26] Teng Y., Zhou Z. C., Chen J. H., Huang S. Y., Chen H. Y., Kuang D. B., Chin. Chem. Lett., 2025, 36, 110430. [27] Teng Y., Chen J. H., Huang Y. H., Zhou Z. C., Wang X. D., Kuang D. B., Chen H. Y., Appl. Catal. B: Environ Energy, 2023, 335, 122889. [28] Ma J., Yuan M., Yang Z., Ma Z. Z., Zhang J. S., Li Z. Y., Ma P. A., Cheng Z. Y., Lin J., J. Am. Chem. Soc., 2024, 146, 22348. [29] Zhang D. P., Li Y. X., Wang P. F., Qu J. Y., Zhan S. H., Li Y., Angew. Chem. Int. Ed., 2023, 135, e202303807. [30] Li M., Yu S. X., Huang H. W., Chin. J. Catal., 2024, 57, 18. [31] Zhu Q. H., Wang Y., Wang J. J., Luo J. M., Xu J. S., Wang C. Y., Appl. Catal. B: Environ. Energy, 2024, 346, 123734. [32] Das K., Bariki R., Majhi D., Mishra A., Das K. K., Dhiman R., Mishra B. G., Appl. Catal. B: Environ. Energy, 2022, 303, 120902. [33] Wang C. C., You C. J., Rong K., Shen C. Q., Yang F., Li S. J., Acta Phys. Chim. Sin., 2024, 40, 2307045. [34] Xiao Q., Liu T., Zhou Q. H., Li L. Y., Chang C. T., Gao D. W., Li D. Y., You F. F., Chem. Res. Chinese Universities, 2024, 40, 484. [35] Zhao X. Y., Li J., Kong X. G., Li C. C., Lin B., Dong F., Yang G. D., Shao G. S., Xue C., Small, 2022, 18, 2204154. [36] Meng C. C., Huang M., Li Y. C., Chem. Res. Chinese Universities, 2023, 39, 697. [37] Liu G. P., Li L. N., Wang B., Shan N. J., Dong J. T., Ji M. X., Zhu W. S., Chu P. K., Xia J. X., Li H. M., Acta. Phys. Chim. Sin., 2024, 40, 2306041. [38] Yan W. K., Zhang Y. J., Bi Y. P., Angew. Chem. Int. Ed., 2024, 63, e202316459. [39] Cao Y. D., Yin D., Li S., Dong X. Y., Feng Y., Angew. Chem. Int. Ed., 2023, 62, e202307678. [40] Raziq F., Feng C. Y., Hu M., Zuo S. W., Rahman M. Z., Yan Y. Y., Li Q. H., Gascon J., Zhang H., J. Am. Chem. Soc., 2024, 146, 21008. [41] Zhang B. C., Cao X. C., Suo C., Cui J., Duan X. C., Guo S. H., Zhang X. M., Sci. China Mater., 2024, 67, 3151. [42] Liu D. C., Zhang M. L., Huang H. H., Qin F., Su C., Mo A., Wang J. W., Qi Z. P., Zhang X. J., Chen Z., ACS Sustain Chem. Eng., 2021, 9, 9273. [43] Yang, W. P., Xiao L., Wu H. R., Li X., Ren Q., Li J. Y., Zhou Y., Dong F, Angew. Chem. Int. Ed., 2024, 63, 202408379. [44] Kresse G., Furthmuller J., Comput. Mater. Sci., 1996, 6, 15. [45] Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865. [46] Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys., 2010, 132, 15410. [47] Jia G. R., Sun F. S., Zhou T., Wang Y., Cui X. Q., Guo Z. X., Fan F. T., Yu J. C., Nat. Commun., 2024, 15, 4746. [48] Deng Y. H., Wang J. T., Wang J., Zhang H. D., Xiao H. B., Zhang C. H., Wang W. L., Appl. Catal. B: Environ. Energy, 2023, 338, 123041. [49] Xu J. X., Ramasamy M., Tang T., Wang Y., W. N. Zhao, Tam K. C., J. Colloid Interface Sci., 2022, 623, 883. [50] Lian Z. C., Gao F. F., Xiao H., Luo D., M. Y. Li, Fang D. D., Yang Y. P., Zi J. Z., Li H. X., Angew. Chem. Int. Ed., 2024, 63, e202318927. [51] Wu H., Sun Q., Chen J. Y., Wang G.Y., Wang D., Zeng X. F., Wang J. X., Chem. Eng. J., 2021, 425, 130640. [52] Lu N., Jing X. D., Xu Y., Lu W., Liu K. C., Zhang Z. Y., Acta Phys. Chim. Sin., 2023, 39, 2207045. [53] Zhang P., Gao L. N., Ding S. Q., Li L., Zhu X. R., He R., Chem. Ind. Eng. Prog., 2025, 44, 2045. [54] Liao Z. Y., Hou H. L., Du J. J., Wang L., Wang S. H., Wang S., Zhan X. Q., Yang H. L., Yang D. J., Yang, W. Y., J. Mater. Chem. A, 2025, 13, 9849. [55] Tang Q. Y., Yang M. J., Yang S. Y., Xu Y. H., J. Hazard. Mater., 2021, 407, 124798. [56] Tang Q. Y., Huo R., Ou L. Y., Luo X. L., Lv Y. R., Xu Y. H., J. Catal., 2019, 40, 580. [57] Lv Y. R., He R. K., Chen Z. Y., Li X., Xu Y. H., J. Colloid Interface Sci., 2020, 560, 293. [58] Bamiduro G. J., Dollar C. M., Abaddi S., Ensinger N., Zahran E. M., Catal. Commun., 2023, 174, 106599. [59] Cao L. D., Ma D. K., Zhou Z. L., Xu C. L., Cao C., Zhao P. Y., Huang Q. L., Chem. Eng. J., 2019, 368, 212. [60] Huang Y. P., Li Z. L., Yao K., Chen C. C., Deng C. Y., Fang Y. F., Li R. P., Tian H. L., Appl. Catal. B: Environ. Energy, 2021, 299, 120671. [61] Wu, H., Sun, Q., Chen, J., Wang, G. Y., Wang, D., Zeng, X. F., Wang, J. X., Chem. Eng. J., 2021, 425, 130640. [62] Lv, Y. R., He, R. K., Chen, Z. Y., Li, X., Xu, Y. H., J. Colloid Interface Sci., 2020, 560, 293. |
| [1] | ZHAI Binjiang, JIANG Yuzhou, ZONG Shichao, WANG Mingzhi, WANG Zixin, JIN Hui, LIU Yanbing, KANG Xing, SHI Jinwen. Molecular-doped Precursor Derived Porous g-C3N4 for Photocatalytic H2 Production [J]. Chemical Research in Chinese Universities, 2026, 42(1): 276-282. |
| [2] | XIE Siying, GAO Renwu, YI Zhichao, GONG Kun, HUANG Weiya, LU Kangqiang, YU Changlin, YANG Kai. Holmium-engineered Graphitic Carbon Nitride via Molten Salt Synthesis for CO2 Photoreduction [J]. Chemical Research in Chinese Universities, 2026, 42(1): 305-313. |
| [3] | SHANG Wei, CHEN Jiahui, QIAO Jianguo, YANG Xiaohang, WANG Pengpeng, LI Dumin, LI Tianxiang, ZHOU Shiyu, JIA Ruokun. Construction of WO3/CN Z-Type Heterojunction Containing Oxygen Vacancies to Enhance Formaldehyde Degradation Efficiency and Photocatalytic Performance [J]. Chemical Research in Chinese Universities, 2026, 42(1): 351-361. |
| [4] | NIU Yifan, CAI Houhao, WANG Chongjian, HAN Chenglong, TAO Xingfu, LIU Kun. On-demand Hydrogen Production Through Aluminum-Water Reaction Enabled by Aluminum Nanoparticles and NaOH Nano-composite Coating [J]. Chemical Research in Chinese Universities, 2025, 41(5): 1201-1207. |
| [5] | LU Chongjiu, GONG Yunnan, ZHONG Dichang, LU Tongbu. Syntheses and Photocatalytic Application of Porous Supramolecular Frameworks [J]. Chemical Research in Chinese Universities, 2025, 41(4): 655-665. |
| [6] | ZHOU Yu, WANG Weikang, LI Jinhe, REN Wei, WANG Lele, LIU Qinqin. Transition Metal Sulfide Cocatalysts: Applications and Challenges in Photocatalytic Hydrogen Production [J]. Chemical Research in Chinese Universities, 2025, 41(4): 687-703. |
| [7] | WANG Kangning, YANG Tingting, Graham DAWSON, ZHANG Jinfeng, SHAO Chunfeng, DAI Kai. NiB as a Non-noble Metal Cocatalyst Electronic Bridge to Enhance the Photocatalytic Hydrogen Production of Cd3(C3N3S3)2 [J]. Chemical Research in Chinese Universities, 2025, 41(4): 716-725. |
| [8] | LIU Chuang, GAO Tengyuan, WANG Guohong, CHENG Qiang, WANG Kai. Efficient CO2 Photoreduction into Solar Fuels over MoO3-x/COF S-Scheme Photocatalyst [J]. Chemical Research in Chinese Universities, 2025, 41(4): 726-733. |
| [9] | YU Hong, ZHANG Xuening, CHEN Qian, ZHOU Pan-Ke, XU Fei, WANG Hongqiang, CHEN Xiong. Linkage Conversion in Pyrene-based Covalent Organic Frameworks for Promoted Photocatalytic Hydrogen Peroxide Generation in a Biphasic System [J]. Chemical Research in Chinese Universities, 2025, 41(4): 734-740. |
| [10] | WANG Yufan, ZHOU Guosheng, XU Yangrui, CHENG Yu, SONG Minshan, JIN Jie, LIU Xinlin, LU Ziyang. Hydrothermal Synthesis of Inorganic Imprinted Bi4Ti3O12 Nanosheets for Efficient Selective Photocatalytic Degradation of Ciprofloxacin [J]. Chemical Research in Chinese Universities, 2025, 41(4): 741-750. |
| [11] | CHENG Shuilian, FANG Yuxuan, YANG Siyuan, GAO Qiongzhi, CAI Xin ZHANG Shengsen. Synergistic Dual-cocatalyst Modified TiO2/g-C3N4 Heterojunctions for Efficient Photocatalytic Overall Water Splitting [J]. Chemical Research in Chinese Universities, 2025, 41(4): 751-759. |
| [12] | LU Junyu, LU Yunshu, Pitcheri ROSAIAH, LIN Shu, Zada AMIR, QI Kezhen. ZnCo2O4-ZnO S-Scheme Heterojunction for Photocatalytic Degradation of Cefalexin and Antimicrobial Properties [J]. Chemical Research in Chinese Universities, 2025, 41(4): 799-811. |
| [13] | WU Jingyao, ZHAO Qiang, LV Yujing, WANG Shuo, WANG Pengzhao, LONG Jinlin, WANG Ying. Pyridine Nitrogen-modified Covalent Organic Frameworks for Photocatalytic One-step 2e-H2O2 Production [J]. Chemical Research in Chinese Universities, 2025, 41(4): 822-830. |
| [14] | LI Xiaofang, LI Fang, WU Yetong, YANG Heng, WANG Chunlei, CHAI Bo, GUO Xiaoliang, YAN Juntao. Oxygen Vacancy-rich BiOBr for Enhanced Photocatalytic NO Removal and Bacterial Inactivation [J]. Chemical Research in Chinese Universities, 2025, 41(4): 839-849. |
| [15] | GAO Juanfeng, LIN Xiao, JIANG Bowen, TANG Senpei, ZHANG Haiyan, CHEN Feitai, JIN Zhiliang, LI Youji, Noritatsu Tsubaki. Epitaxial Vertical Growth of Carbon Nitride-based Homojunction Composites for Enhanced Photocatalytic Degradation of Tetracycline Hydrochloride [J]. Chemical Research in Chinese Universities, 2025, 41(4): 868-879. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

