Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3): 447-463.doi: 10.1007/s40242-025-4243-5
• Reviews • Previous Articles Next Articles
HUANG Yingying1,2, FANG Bo1,2
Received:
2024-12-18
Revised:
2025-02-12
Online:
2025-06-01
Published:
2025-05-27
Contact:
FANG Bo,E-mail:bofang@polyu.edu.hk
E-mail:bofang@polyu.edu.hk
Supported by:
HUANG Yingying, FANG Bo. Frontier Biological Electrodes for Cell Analysis[J]. Chemical Research in Chinese Universities, 2025, 41(3): 447-463.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Delaughter D. M., Current Protocols, 2018, 122, e55. [2] Iravanian S., Langberg J. J., Heart Rhythm, 2019, 16, 460. [3] Erickson J. R., Mair F., Bugos G., Martin J., Tyznik A. J., Nakamoto M., Mortimer S., Prlic M., STAR Protoc., 2020, 1, 100092. [4] Macosko E., Basu A., Satija R., Nemesh J., Shekhar K., Goldman M., Tirosh I., Bialas A., Kamitaki N., Martersteck E., Trombetta J., Weitz D., Sanes J., Shalek A., Regev A., Mccarroll S., Cell, 2015, 161, 1202. [5] Huang J., Zhu Z., Ji D., Sun R., Yang Y., Liu L., Shao Y., Chen Y., Li L., Sun B., Front. Immunol., 2022, 12. [6] Montaldo E., Lusito E., Bianchessi V., Caronni N., Scala S., Basso-Ricci L., Cantaffa C., Masserdotti A., Barilaro M., Barresi S., Genua M., Vittoria F. M., Barbiera G., Lazarevic D., Messina C., Xue E., Marktel S., Tresoldi C., Milani R., Ronchi P., Gattillo S., Santoleri L., Di Micco R., Ditadi A., Belfiori G., Aleotti F., Naldini M. M., Gentner B., Gardiman E., Tamassia N., Cassatella M. A., Hidalgo A., Kwok I., Ng L. G., Crippa S., Falconi M., Pettinella F., Scapini P., Naldini L., Ciceri F., Aiuti A., Ostuni R., Nat. Immunol., 2022, 23, 1470. [7] Guo C., Liu Q., Zong D., Zhang W., Zuo Z., Yu Q., Sha Q., Zhu L., Gao X., Fang J., Tao J., Wu Q., Li X., Qu K., Cell Rep., 2022, 41, 111606. [8] Gui Q., Lawson T., Shan S., Yan L., Liu Y., Sensors, 2017, 17, 1623. [9] Yuan T. K., Yin R. L., Li C. W., Fan Z., Pan L. J., Chem. Eng. J., 2024, 498, 155590. [10] Xu S. M., Chen G. R., Scott K., Manshaii F., Chen J., Matter, 2024, 7, 2795. [11] Amirghasemi F., Al-Shami A., Ushijima K., Mousavi M. P. S., ACS Mater. Lett., 2024, 6, 4158. [12] Ganaie M. M., Kumar A., Shringi A. K., Sahu S., Saliba M., Kumar M., Adv. Funct. Mater., 2024. [13] Li L., Jiang C., Duan W., Wang Z., Zhang F., He C., Long T., Li L., Microsyst. Nanoeng., 2022, 8, 96. [14] Cassar I. R., Yu C., Sambangi J., Lee C. D., Whalen J. J., Petrossians A., Grill W. M., Biomater., 2019, 205, 120. [15] Fanelli A., Ferlauto L., Zollinger E. G., Brina O., Reymond P., Machi P., Ghezzi D., Adv. Mater. Technol., 2022, 7, 2100176. [16] Chung T., Wang J. Q., Wang J., Cao B., Li Y., Pang S. W., J. Neural Eng., 2015, 12, 056018. [17] Robbins E. M., Wong B., Pwint M. Y., Salavatian S., Mahajan A., Cui X. T., ACS Appl. Mater. Interfaces, 2024, 16, 40570. [18] Tang Z. G., Sun W., Tao C., Peng T., Li H., Chen K., Li J. L., Zhao Z. H., Li Z. L., Hong X. H., SSRN Electronic Journal, 2024, 129, 110041. [19] Lu L., Fu X., Liew Y., Zhang Y., Zhao S., Xu Z., Zhao J., Li D., Li Q., Stanley G. B., Duan X., Nano Lett., 2019, 19, 1577. [20] Qian L. L., Jin F., Li T., Wei Z. D., Ma X. Y., Zheng W. Y., Javanmardi N., Wang Z., Ma J., Lai C. T., Dong W., Wang T., Feng Z. Q., Adv. Mater., 2024, 2406636. [21] Wang H., Ren Z. J., Biotechnol. Adv., 2013, 31, 1796. [22] Rabaey K., Rozendal R. A., Nat. Rev. Microbiol., 2010, 8, 706. [23] Lee J. M., Lin D. C., Hong G. S., Kim K. H., Park H. G., Lieber C. M., Nano Lett., 2022, 22, 4552. [24] Yang S. J., Liu C. Q., Tang L. X., Shang J., Zhang J. R., Jiang X. Y., ACS Appl. Mater. Interfaces, 2024, 16, 43880. [25] Chen K. Y., Wu B. C., Krahe D., Vazquez A., Siegenthaler J. R., Rechenberg R., Li W., Cui X. T., Kozai T. D. Y., Adv. Funct. Mater., 2024, [26] Thomas C. A. Jr., Springer P. A., Loeb G. E., Berwald-Netter Y., Okun L. M., Exp. Cell Res., 1972, 74, 61. [27] Clark L. C. Jr., Lyons C., Ann. N.Y. Acad. Sci., 1962, 102, 29. [28] Updike S. J., Hicks G. P., Nature, 1967, 214, 986. [29] Xie X., Criddle C., Cui Y., Energy Environ. Sci., 2015, 8, 3418. [30] Mcadams E., Encyclopedia of Medical Devices and Instrumentation: Bioelectrodes, Wiley, Hoboken, 2006. [31] Singh A. K., Mittal S., Das M., Saharia A., Tiwari M., Alexandria Eng. J., 2023, 67, 673. [32] Wu R., Song H., Wang Y., Wang L., Zhu Z., Chin. J. Chem. Eng., 2020, 28, 2037. [33] Fang Y., Meng L., Prominski A., Schaumann E. N., Seebald M., Tian B., Chem. Soc. Rev., 2020, 49, 7978. [34] Hu M., Liang C., Wang D., Biomater. Sci., 2024, 12, 270. [35] Dong J., Wang D., Peng Y., Zhang C., Lai F., He G., Ma P., Dong W., Huang Y., Parkin I., Liu T., SSRN Electronic Journal, 2022, 97, 107160. [36] Venugopalan R., Ideker R., Biomaterials Science: Bioelectrodes, Elsevier, San Diego, 2013, 957. [37] Zhang S., Jiang J., Wang H., Li F., Hua T., Wang W., J. CO2 Util., 2021, 51, 101640. [38] Zhou X., Kateb P., Fan J., Kim J., Lodygensky G. A., Amilhon B., Pasini D., Cicoira F., J. Mater. Chem. C, 2024, 12, 5708. [39] Willner I., Katz E., Bioelectronics: From Theory to Applications, Wiley, Weinheim, 2005. [40] Gooding J. J., Electroanalysis, 2002, 14, 1149. [41] Mestre A. L. G., Cerquido M., Inácio P. M. C., Asgarifar S., Lourenço A. S., Cristiano M. L. S., Aguiar P., Medeiros M. C. R., Araújo I. M., Ventura J., Gomes H. L., Sci. Rep., 2017, 7, 14284. [42] Brown M. A., Zappitelli K. M., Singh L., Yuan R. C., Bemrose M., Brogden V., Miller D. J., Smear M. C., Cogan S. F., Gardner T. J., Nat. Commun., 2023, 14, 3610. [43] Khan M. A. R., Al Mamun M. S., Habib M. A., Islam A. B. M. N., Mahiuddin M., Karim K. M. R., Naime J., Saha P., Dey S. K., Ara M. H., Results Chem., 2022, 4, 100478. [44] Wang J., Electroanalysis, 2005, 17, 7 [45] Fritea L., Banica F., Costea T. O., Moldovan L., Dobjanschi L., Muresan M., Cavalu S., Materials, 2021, 14, 6319. [46] Katz E., Willner I., ChemPhysChem, 2004, 5, 1084. [47] Fang B., Bodepudi S. C., Tian F., Liu X., Chang D., Du S., Lv J., Zhong J., Zhu H., Hu H., Xu Y., Xu Z., Gao W., Gao C., Nat. Commun., 2020, 11, 6368. [48] Fang B., Chang D., Xu Z., Gao C., Adv. Mater., 2020, 32, 1902664. [49] Mao K., Zhang H., Pan Y., Zhang K., Cao H., Li X., Yang Z., Trends Anal. Chem., 2020, 130, 115975. [50] Mazloum-Ardakani M., Sheikh-Mohseni M. A., Carbon Nanotubes in Electrochemical Sensors, InTech, Rijeka, 2011. [51] Fang B., Xiao Y., Xu Z., Chang D., Wang B., Gao W., Gao C., Mater. Horiz., 2019, 6, 1207. [52] Liu J., Chakraborty S., Hosseinzadeh P., Yu Y., Tian S., Petrik I., Bhagi A., Lu Y., Chem. Rev., 2014, 114, 4366. [53] Armstrong F., Science, 2013, 339, 658. [54] Mckone J. R., Marinescu S. C., Brunschwig B. S., Winkler J. R., Gray H. B., Chem. Sci., 2014, 5, 865. [55] Xiao X., Xia H.-Q., Wu R., Bai L., Yan L., Magner E., Cosnier S., Lojou E., Zhu Z., Liu A., Chem. Rev., 2019, 119, 9509. [56] Yachandra V. K., Sauer K., Klein M. P., Chem. Rev., 1996, 96, 2927. [57] Ji Z., Feng Y., Wang P., Huang Y., Polym. Int., 2020, 70, 437 [58] Zhang Y., Rutledge G., Macromolecules, 2012, 45, 4238. [59] Qu J., Ouyang L., Kuo C.-C., Martin D. C., Acta Biomater., 2016, 31, 114. [60] Lee J. H., Jeong Y. R., Lee G., Jin S. W., Lee Y. H., Hong S. Y., Park H., Kim J. W., Lee S.-S., Ha J. S., ACS Appl. Mater. Interfaces, 2018, 10, 28027. [61] Chen R., Xu X., Yu D., Xiao C., Liu M., Huang J., Mao T., Zheng C., Wang Z., Wu X., J. Mater. Chem. C, 2018, 6, 11193. [62] Shin S., Bae H., Cha J., Mun J., Chen Y.-C., Tekin H., Shin H., Farshchi S., Dokmeci M., Tang X., Khademhosseini A., ACS Nano, 2011, 6, 362. [63] Hsiao L.-Y., Jing L., Li K., Yang H., Li Y., Chen P.-Y., Carbon, 2020, 161, 784. [64] Deng J., Yuk H., Wu J., Varela C. E., Chen X., Roche E. T., Guo C. F., Zhao X., Nat. Mater., 2021, 20, 229. [65] Li J., Cao J., Lu B., Gu G., Nat. Rev. Mater., 2023, 8, 604. [66] Jiang Y., Zhang Z., Wang Y.-X., Li D., Coen C.-T., Hwaun E., Chen G., Wu H.-C., Zhong D., Niu S., Wang W., Saberi A., Lai J.-C., Wu Y., Wang Y., Trotsyuk A. A., Loh K. Y., Shih C.-C., Xu W., Liang K., Zhang K., Bai Y., Gurusankar G., Hu W., Jia W., Cheng Z., Dauskardt R. H., Gurtner G. C., Tok J. B.-H., Deisseroth K., Soltesz I., Bao Z., Science, 2022, 375, 1411. [67] Zeng Q., Xing C., Xu Z., Liu Q., Yang L., Yang H., Zhang Y., Peng Z., Adv. Funct. Mater., 2024, 34, 2312770. [68] Zhao Y., Zhang S., Yu T., Zhang Y., Ye G., Cui H., He C., Jiang W., Zhai Y., Lu C., Gu X., Liu N., Nat. Commun., 2021, 12, 4880. [69] Zheng Y.-Q., Liu Y., Zhong D., Nikzad S., Liu S., Yu Z., Liu D., Wu H.-C., Zhu C., Li J., Tran H., Tok J. B.-H., Bao Z., Science, 2021, 373, 88. [70] Kato K., Lee S., Nagata F., J. Asian Ceram. Soc., 2020, 8, 396. [71] Yuk H., Lu B., Lin S., Qu K., Xu J., Luo J., Zhao X., Nat. Commun., 2020, 11, 1604. [72] Zhai X.-J., Luo M.-Y., Luo X.-M., Dong X.-Y., Si Y., Zhang C., Han Z., Han R., Zang S.-Q., Mak T. C. W., Nat. Commun., 2024, 15, 9155. [73] Lalaoui N., Rousselot-Pailley P., Robert V., Mekmouche Y., Villalonga R., Holzinger M., Cosnier S., Tron T., Le Goff A., ACS Catal., 2016, 6, 1894. [74] Zhai X., Liu X., Dong H., Lin M., Zheng X., Yang Q., Bioprocess Biosyst. Eng., 2024, 47, 159. [75] Mier A. A., Olvera-Vargas H., Mejía-López M., Longoria A., Verea L., Sebastian P. J., Arias D. M., Chemosphere, 2021, 283, 131138. [76] Zeng Q., Xia K., Sun B., Yin Y., Wu T., Humayun M. S., Electrochim. Acta, 2017, 237, 152. [77] Liu H., Tian G., Zhao Q., Chen J., Liu Y., Liang C., Qi D., Adv. Fiber Mater., 2024, 7, 266. [78] Lee S., Ho D. H., Jekal J., Cho S. Y., Choi Y. J., Oh S., Choi Y. Y., Lee T., Jang K.-I., Cho J. H., Nat. Commun., 2024, 15, 5974. [79] Salahinejad E., Hadianfard M. J., Macdonald D. D., Sharifi(Asl) S., Mozafari M., Walker K. J., Rad A. T., Madihally S. V., Vashaee D., Tayebi L., J. Biomed. Nanotechnol., 2013, 9, 1327. [80] Yoon T., Park W., Kim Y., Na S., Appl. Surf. Sci., 2023, 608, 155124. [81] Ji B., Wang M., Ge C., Xie Z., Guo Z., Hong W., Gu X., Wang L., Yi Z., Jiang C., Yang B., Wang X., Li X., Li C., Liu J., Biosens. Bioelectron., 2019, 135, 181. [82] Zhao S., Wang X., Wang Q., Sumpradit T., Khan A., Zhou J., Salama E.-S., Li X., Qu J., Ecotoxicol. Environ. Saf., 2023, 267, 115643. [83] Yamashita Y., Lee I., Loew N., Sode K., Curr. Opin. Electrochem., 2018, 12, 92. [84] Song Y., Wang C., Microsyst. Nanoeng., 2019, 5, 46. [85] Izzo M., Osella S., Jacquet M., Kiliszek M., Harputlu E., Starkowska A., Łasica A., Unlu C. G., Uśpieński T., Niewiadomski P., Bartosik D., Trzaskowski B., Ocakoglu K., Kargul J., Bioelectrochemistry, 2021, 140, 107818. [86] Chen H., Dong F., Minteer S. D., Nature Catalysis, 2020, 3, 225. [87] Weliwatte N. S., Grattieri M., Minteer S. D., Photochem. Photobiol. Sci., 2021, 20, 1333. [88] Kurimoto A., Nasseri S. A., Hunt C., Rooney M., Dvorak D. J., Lesage N. E., Jansonius R. P., Withers S. G., Berlinguette C. P., Nat. Commun., 2023, 14, 1814. [89] Kalita N., Gogoi S., Minteer S. D., Goswami P., ACS Meas. Sci. Au, 2023, 3, 404. [90] Siritanaratkul B., Megarity C. F., Herold R. A., Armstrong F. A., Commun. Chem., 2024, 7, 132. [91] Song D., Liu N., Nat. Electron., 2024, 7, 432. [92] Heumos L., Schaar A. C., Lance C., Litinetskaya A., Drost F., Zappia L., Lücken M. D., Strobl D. C., Henao J., Curion F., Aliee H., Ansari M., Badia-I-Mompel P., Büttner M., Dann E., Dimitrov D., Dony L., Frishberg A., He D., Hediyeh-Zadeh S., Hetzel L., Ibarra I. L., Jones M. G., Lotfollahi M., Martens L. D., Müller C. L., Nitzan M., Ostner J., Palla G., Patro R., Piran Z., Ramírez-Suástegui C., Saez-Rodriguez J., Sarkar H., Schubert B., Sikkema L., Srivastava A., Tanevski J., Virshup I., Weiler P., Schiller H. B., Theis F. J., Nat. Rev. Genet., 2023, 24, 550. [93] Ascoli G. A., Alonso-Nanclares L., Anderson S. A., Barrionuevo G., Benavides-Piccione R., Burkhalter A., Buzsáki G., Cauli B., Defelipe J., Fairén A., Feldmeyer D., Fishell G., Fregnac Y., Freund T. F., Gardner D., Gardner E. P., Goldberg J. H., Helmstaedter M., Hestrin S., Karube F., Kisvárday Z. F., Lambolez B., Lewis D. A., Marin O., Markram H., Muñoz A., Packer A., Petersen C. C. H., Rockland K. S., Rossier J., Rudy B., Somogyi P., Staiger J. F., Tamas G., Thomson A. M., Toledo-Rodriguez M., Wang Y., West D. C., Yuste R., Nat. Rev. Neurosci., 2008, 9, 557. [94] Rebuffet L., Melsen J. E., Escalière B., Basurto-Lozada D., Bhandoola A., Björkström N. K., Bryceson Y. T., Castriconi R., Cichocki F., Colonna M., Davis D. M., Diefenbach A., Ding Y., Haniffa M., Horowitz A., Lanier L. L., Malmberg K.-J., Miller J. S., Moretta L., Narni-Mancinelli E., O’neill L. A. J., Romagnani C., Ryan D. G., Sivori S., Sun D., Vagne C., Vivier E., Nat. Immunol., 2024, 25, 1474. [95] Casey P. J., Science, 1995, 268, 221. [96] Yosef N., Regev A., Science, 2016, 354, 64. [97] Landry C. R., Yip M. C., Zhou Y., Niu W., Wang Y., Yang B., Wen Z., Forest C. R., J. Neurosci. Methods, 2023, 394, 109898. [98] Liu Y.-L., Zhao Y.-X., Li Y.-B., Ye Z.-Y., Zhang J.-J., Zhou Y., Gao T.-Y., Li F., J. Anal. Test, 2022, 6, 178. [99] Masvidal-Codina E., Illa X., Dasilva M., Calia A. B., Dragojević T., Vidal-Rosas E. E., Prats-Alfonso E., Martínez-Aguilar J., De La Cruz J. M., Garcia-Cortadella R., Godignon P., Rius G., Camassa A., Del Corro E., Bousquet J., Hébert C., Durduran T., Villa R., Sanchez-Vives M. V., Garrido J. A., Guimerà-Brunet A., Nat. Mater., 2019, 18, 280. [100] Lee M., Lee S., Kim J., Lim J., Lee J., Masri S., Bao S., Yang S., Ahn J.-H., Yang S., NPG Asia Mater., 2021, 13, 65. [101] Zhang J., Liu X., Xu W., Luo W., Li M., Chu F., Xu L., Cao A., Guan J., Tang S., Duan X., Nano Lett., 2018, 18, 2903. [102] Lee J., Lee K., Kang K., Ali A., Kim D. W., Ahn H., Ko G., Choi M., Tchoe Y., Park H. Y., Yi G.-C., NPG Asia Mater., 2024, 16, 13. [103] Xu D., Fang J., Zhang M., Xia Q., Li H., Hu N., Nano Lett., 2022, 22, 2479. [104] Xiao X., Xu D., Han H., Wang D.-C., Lei S.-N., Liu R., Hu N., Sessler J. L., Huang F., Adv. Funct. Mater., 2024, n/a, 2404634. [105] Liu Y., Mcguire A. F., Lou H.-Y., Li T. L., Tok J. B.-H., Cui B., Bao Z., Proc. Natl. Acad. Sci., 2018, 115, 11718. [106] Muguet I., Maziz A., Mathieu F., Mazenq L., Larrieu G., Adv. Mater., 2023, 35, 2302472. [107] Bray D., Nature, 1995, 376, 307. [108] Hunter T., Cell, 2000, 100, 113. [109] Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E., Science, 2012, 337, 816. [110] Tsien R. Y., Annu. Rev. Biochem., 1998, 67, 509. [111] Fromherz P., Phys. E: Low-Dimens. Syst. Nanostructures, 2003, 16, 24. [112] Patolsky F., Zheng G., Hayden O., Lakadamyali M., Zhuang X., Lieber C. M., Proc. Natl. Acad. Sci., 2004, 101, 14017. [113] Ruff A., Conzuelo F., Schuhmann W., Nat. Catal., 2020, 3, 214. [114] Turner A., Karube I., Wilson G. S., Biosensors: Fundamentals and Applications, Oxford University Press, Oxford, 1987. [115] Newman J. D., Turner A. P. F., Biosens. Bioelectron., 2005, 20, 2435. [116] Petersson B. A., Anal. Chim. Acta, 1988, 209, 239. [117] Kumar A., Hsu L. H.-H., Kavanagh P., Barrière F., Lens P. N. L., Lapinsonnière L., Lienhard V J. H., Schröder U., Jiang X., Leech D., Nat. Rev. Chem., 2017, 1, 0024. [118] Li T., Yang Y., Qi H., Cui W., Zhang L., Fu X., He X., Liu M., Li P.-F., Yu T., Signal Transduction Targeted Ther., 2023, 8, 36. [119] Wilson G. S., Gifford R., Biosens. Bioelectron., 2005, 20, 2388. [120] Viana D., Walston S. T., Masvidal-Codina E., Illa X., Rodríguez-Meana B., Del Valle J., Hayward A., Dodd A., Loret T., Prats-Alfonso E., Nat. Nanotechnol., 2024, 19, 514. [121] Sun G., Zhang L., Zhang Y., Yang H., Ma C., Ge S., Yan M., Yu J., Song X., Biosens. Bioelectron., 2015, 71, 30. [122] Liu G., Ma C., Jin B.-K., Chen Z., Zhu J.-J., Anal. Chem., 2018, 90, 4801. [123] Wang Y., Quan J., Zhang J., Huang K., Wang X., Jiang H., Sens. Actuators B, 2022, 366, 132021. [124] Lee S., Min K., Jung J., Yi J., Tae G., Lee J. Y., Chem. Eng. J., 2024, 494, 152861. [125] Jain A., Gosling J., Liu S., Wang H., Stone E. M., Chakraborty S., Jayaraman P.-S., Smith S., Amabilino D. B., Fromhold M., Nat. Nanotechnol., 2024, 19, 106. [126] Kell D. B., Curr. Opin. Microbiol., 2004, 7, 296. [127] Wang J., Chem. Rev., 2008, 108, 814. [128] Lu B., Deng Y., Peng Y., Huang Y., Ma J., Li G., Anal. Chem., 2022, 94, 12822. [129] Peng Y., Pan Y., Han Y., Sun Z., Jalalah M., Al-Assiri M. S., Harraz F. A., Yang J., Li G., Anal. Chem., 2020, 92, 13478. [130] Premaratne G., Niroula J., Moulton J. T., Krishnan S., ACS Appl. Bio Mater., 2024, 7, 2197. [131] Hsiao Y.-S., Quiñones E. D., Yen S.-C., Yu J., Fang J.-T., Chen P., Juang R.-S., ACS Appl. Mater. Interfaces, 2023, 15, 21953. [132] Wang J., Small, 2005, 1, 1036. [133] Ino K., Yaegaki R., Hiramoto K., Nashimoto Y., Shiku H., ACS Sens., 2020, 5, 740. [134] Yang X.-Y., Bai Y.-Y., Huangfu Y.-Y., Guo W.-J., Yang Y.-J., Pang D.-W., Zhang Z.-L., Anal. Chem., 2021, 93, 1757. [135] Wu Y., Arroyo-Currás N., Curr. Opin. Electrochem., 2021, 27, 100695. [136] Cosnier S., Anal. Bioanal. Chem., 2003, 377, 507. [137] Israel E., Ramganesh S., Abia A. L. K., Chikere C. B., J. Mar. Sci. Eng., 2023, 11, 1586. [138] Radu V., Frielingsdorf S., Evans S. D., Lenz O., Jeuken L. J. C., J. Am. Chem. Soc., 2014, 136, 8512. [139] Lalaoui N., De Poulpiquet A., Haddad R., Le Goff A., Holzinger M., Gounel S., Mermoux M., Infossi P., Mano N., Lojou E., Cosnier S., Chem. Commun., 2015, 51, 7447. [140] Gentil S., Che Mansor S. M., Jamet H., Cosnier S., Cavazza C., Le Goff A., ACS Catal., 2018, 8, 3957. [141] Szczesny J., Marković N., Conzuelo F., Zacarias S., Pereira I. A. C., Lubitz W., Plumeré N., Schuhmann W., Ruff A., Nat. Commun., 2018, 9, 4715. [142] Ruff A., Janke S., Szczesny J., Alsaoub S., Ruff I., Lubitz W., Schuhmann W., ACS Appl. Energy Mater., 2019, 2, 2921. [143] Mano N., Bioelectrochemistry, 2019, 128, 218. [144] Du Z. J., Kolarcik C. L., Kozai T. D. Y., Luebben S. D., Sapp S. A., Zheng X. S., Nabity J. A., Cui X. T., Acta Biomater., 2017, 53, 46. [145] Berggren G., Adamska A., Lambertz C., Simmons T. R., Esselborn J., Atta M., Gambarelli S., Mouesca J. M., Reijerse E., Lubitz W., Happe T., Artero V., Fontecave M., Nature, 2013, 499, 66. |
[1] | YU Yile, FAN Jinghan, LIU Huihui, NIE Zongxiu. Mass Spectrometry Imaging for Cellular-level Analysis: Advances and Applications on Medical Research [J]. Chemical Research in Chinese Universities, 2025, 41(2): 254-265. |
[2] | LUO Yichen, ZHU Canhong, ZHANG Tianlong, YAN Tengfei, LIU Junqiu. Self-assembled Supramolecular Artificial Transmembrane Ion Channels: Recent Progress and Application [J]. Chemical Research in Chinese Universities, 2023, 39(1): 3-12. |
[3] | TU Tingting, HUAN Shuangyan, KE Guoliang, ZHANG Xiaobing. Functional Xeno Nucleic Acids for Biomedical Application [J]. Chemical Research in Chinese Universities, 2022, 38(4): 912-918. |
[4] | LIAN Xiaodong, SONG Chenhao and WANG Yapei. Regulating the Oil-Water Interface to Construct Double Emulsions: Current Understanding and Their Biomedical Applications [J]. Chemical Research in Chinese Universities, 2022, 38(3): 698-715. |
[5] | LI Xiaodan, GUO Mengyu, CHEN Chunying. Graphdiyne: from Preparation to Biomedical Applications [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1176-1194. |
[6] | HU Qinyu, WU Jun, CHEN Lulu, LOU Xiaoding, XIA Fan. Recent Development of DNA-modified AIEgen Probes for Biomedical Application [J]. Chemical Research in Chinese Universities, 2021, 37(1): 66-72. |
[7] | WANG Hengliang, CHAI Luxiao, XIE Zhongjian, ZHANG Han. Recent Advance of Tellurium for Biomedical Applications [J]. Chemical Research in Chinese Universities, 2020, 36(4): 551-559. |
[8] | LI Jun, LONG Yin, WANG Xudong. Polymer-based Nanogenerator for Biomedical Applications [J]. Chemical Research in Chinese Universities, 2020, 36(1): 41-54. |
[9] | YAN Liu-ming , LU Wen-cong. Modulating Bandgap and HOCO/LUCO Energy of Semiconducting Polymer by Copolymerization or Incorporation of Electron Withdrawing/Releasing Groups [J]. Chemical Research in Chinese Universities, 2007, 23(5): 598-601. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||