Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6): 943-963.doi: 10.1007/s40242-024-4179-1
• Review • Previous Articles Next Articles
JI Houqiang1, LIU Yuxin2, DU Guangyu2, HUANG Tianyu1, ZHU Ying1, SUN Yangyang1, PANG Huan1
Received:
2024-08-14
Online:
2024-12-01
Published:
2024-10-26
Contact:
PANG Huan,panghuan@yzu.edu.cn;SUN Yangyang,yangyangsun@yzu.edu.cn
E-mail:panghuan@yzu.edu.cn;yangyangsun@yzu.edu.cn
Supported by:
JI Houqiang, LIU Yuxin, DU Guangyu, HUANG Tianyu, ZHU Ying, SUN Yangyang, PANG Huan. Synthesis and Utilization of MXene/MOF Hybrid Composite Materials[J]. Chemical Research in Chinese Universities, 2024, 40(6): 943-963.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Pettinari C., Pettinari R., Di Nicola C., Tombesi A., Scuri S., Marchetti F., Coord. Chem. Rev., 2021, 446, 214121. [2] Zhai Q. G., Bu X., Zhao X., Li D. S., Feng P., Acc. Chem. Res., 2017, 50, 407. [3] Gu Y., Wu Y. N., Li L., Chen W., Li F., Kitagawa S., Angew. Chem. Int. Ed., 2017, 56, 15658. [4] Masoomi M. Y., Morsali A., Dhakshinamoorthy A., Garcia H., Angew. Chem. Int. Ed., 2019, 58, 15188. [5] Ikigaki K., Okada K., Tokudome Y., Toyao T., Falcaro P., Doonan C. J., Takahashi M., Angew. Chem. Int. Ed., 2019, 58, 6886. [6] Peng Y., Xu J., Xu J., Ma J., Bai Y., Cao S., Zhang S., Pang H., Adv. Colloid Interface Sci., 2022, 307, 102732. [7] Khalil I. E., Fonseca J., Reithofer M. R., Eder T., Chin J. M., Coord. Chem. Rev., 2023, 481, 215043. [8] Zhang Q., Jiang S., Lv T., Peng Y., Pang H., Adv. Mater., 2023, 35, e2305532. [9] Qian Y., Zhang F., Pang H., Adv. Funct. Mater., 2021, 31, 2104231. [10] Shen Z., Li W., Tang W., Jiang X., Qi K., Liu H., Xu W., Xu W., Zang S., Zhen K., Li H., He Q., Tu M., Cheng J., Fan Z., Fu Y., Adv. Funct. Mater., 2024, 34, 2401631. [11] Guo G.-C., Zhao J.-P., Guo S., Shi W.-X., Liu F.-C., Lu T.-B., Zhang Z.-M., Angew. Chem. Int. Ed., 2024, 63, e202402374. [12] Senkovska I., Bon V., Abylgazina L., Mendt M., Berger J., Kieslich G., Petkov P., Luiz Fiorio J., Joswig J. O., Heine T., Schaper L., Bachetzky C., Schmid R., Fischer R. A., Pöppl A., Brunner E., Kaskel S., Angew. Chem. Int. Ed., 2023, 62, e202218076. [13] Wang K., Li Y., Xie L. H., Li X., Li J. R., Chem. Soc. Rev., 2022, 51, 6417. [14] Olorunyomi J. F., Dyett B. P., Murdoch B. J., Ahmed A. J., Rosengarten G., Caruso R. A., Doherty C. M., Mulet X., Adv. Funct. Mater., 2024, 2403644, https://doi.org/10.1002/adfm.202403644. [15] Li K., Yang J., Gu J., Acc. Chem. Res., 2022, 55, 2235. [16] Daglar H., Gulbalkan H. C., Avci G., Aksu G. O., Altundal O. F., Altintas C., Erucar I., Keskin S., Angew. Chem. Int. Ed., 2021, 60, 7828. [17] Shrivastav V., Sundriyal S., Goel P., Kaur H., Tuteja S. K., Vikrant K., Kim K.-H., Tiwari U. K., Deep A., Coord. Chem. Rev., 2019, 393, 48. [18] Kitao T., Zhang Y., Kitagawa S., Wang B., Uemura T., Chem. Soc. Rev., 2017, 46, 3108. [19] Lin Z., Han Z., O'Connell G. E. P., Wan T., Zhang D., Ma Z., Chu D., Lu X., Adv. Mater., 2024, 36, e2312797. [20] Huang G., Yang Q., Xu Q., Yu S. H., Jiang H. L., Angew. Chem. Int. Ed. Engl., 2016, 55, 7379. [21] Shelonchik O., Lemcoff N., Shimoni R., Biswas A., Yehezkel E., Yesodi D., Hod I., Weizmann Y., Nat. Commun., 2024, 15, 1154. [22] Troyano J., Çamur C., Garzón-Tovar L., Carné-Sánchez A., Imaz I., Maspoch D., Acc. Chem. Res., 2020, 53, 1206. [23] Roh H., Kim D. H., Cho Y., Jo Y. M., del Alamo J. A., Kulik H. J., Dincă M., Gumyusenge A., Adv. Mater., 2024, 36, 2312382. [24] Wei Y., Zhang P., Soomro R. A., Zhu Q., Xu B., Adv. Mater., 2021, 33, e2103148. [25] Li X., Huang Z., Shuck C. E., Liang G., Gogotsi Y., Zhi C., Nat. Rev. Chem., 2022, 6, 389. [26] Xue H., Huang P. H., Lai L. L., Su Y., Strömberg A., Cao G., Fan Y., Khartsev S., Göthelid M., Sun Y. T., Weissenrieder J., Gylfason K. B., Niklaus F., Li J., Carbon Energy, 2024, 6, e442. [27] Zhao X., Radovic M., Green M. J., Chem, 2020, 6, 544. [28] Natu V., Pai R., Sokol M., Carey M., Kalra V., Barsoum M. W., Chem, 2020, 6, 616. [29] Wang Y., Guo T., Alhajji E., Tian Z., Shi Z., Zhang Y. Z., Alshareef H. N., Adv. Energy Mater., 2022, 13, 2202860 [30] Wang Y., Guo T., Tian Z., Bibi K., Zhang Y. Z., Alshareef H. N., Adv. Mater., 2022, 34, e2108560. [31] Zhang P., Wang X., Zhang Y., Wei Y., Shen N., Chen S., Xu B., Adv. Funct. Mater., 2024, 34, 2402307. [32] Wang X., Kajiyama S., Iinuma H., Hosono E., Oro S., Moriguchi I., Okubo M., Yamada A., Nat. Commun., 2015, 6, 6544. [33] Yin L., Li Y., Yao X., Wang Y., Jia L., Liu Q., Li J., Li Y., He D., Nano-Micro Letters, 2021, 13, 78. [34] Etman A. S., Halim J., Rosen J., Nano Energy, 2021, 88, 106271. [35] Krecker M. C., Bukharina D., Hatter C. B., Gogotsi Y., Tsukruk V. V., Adv. Funct. Mater., 2020, 30, 2004554. [36] He F., Zhu B., Cheng B., Yu J., Ho W., Macyk W., Appl. Catal. B, 2020, 272, 119006. [37] Li J.-Y., Li Y.-H., Zhang F., Tang Z.-R., Xu Y.-J., Appl. Catal. B, 2020, 269, 118783. [38] Lei D., Liu N., Su T., Zhang Q., Wang L., Ren Z., Gao Y., Adv. Mater., 2022, 34, 2110608. [39] Bi W., Gao G., Li C., Wu G., Cao G., Prog. Mater Sci., 2024, 142, 101227. [40] Liang X., Rangom Y., Kwok C. Y., Pang Q., Nazar L. F., Adv. Mater., 2016, 29, 1603040. [41] Xu T., Wang Y., Xue Y., Li J., Wang Y., Chem. Eng. J., 2023, 470, 144247. [42] Venkateswarlu S., Vallem S., Umer M., Jyothi N. V. V., Babu A., Govindaraju S., Son Y., Kim M., Yoon M., J. Energy Chem., 2023, 86, 409. [43] Ghani A. A., Devarayapalli K. C., Kim B., Lim Y., Kim G., Jang J., Lee D. S., Carbohydr. Polym., 2023, 318, 121098. [44] Yu S., Cheng C., Li K., Wang J., Wang Z., Zhou H., Wang W., Zhang Y., Quan Y., Chem. Eng. J., 2023, 465, 143039. [45] Mathew A. E., Jose S., Babu A. M., Varghese A., Materials Today Chemistry, 2024, 36, 101927. [46] Saini H., Srinivasan N., Sedajova V., Majumder M., Dubal D. P., Otyepka M., Zboril R., Kurra N., Fischer R. A., Jayaramulu K., ACS Nano, 2021, 15, 18742. [47] Bibi S., Shah S. S. A., Nazir M. A., Helal M. H., El-Bahy S. M., El-Bahy Z. M., Ullah S., Wattoo M. A., Rehman A. U., Advanced Sustainable Systems, 2024, 8, 202400011. [48] Ma X., Kang J., Wu Y., Pang C., Li S., Li J., Xiong Y., Luo J., Wang M., Xu Z., Chem. Eng. J., 2023, 469, 143888. [49] Nazari M., Morsali A., J. Mater. Chem. A, 2024, 12, 4826. [50] Hu M.-L., Masoomi M. Y., Morsali A., Coord. Chem. Rev., 2019, 387, 415. [51] Jin S., ACS Energy Letters, 2019, 4, 1443. [52] Qian Z., Zhang R., Xiao Y., Huang H., Sun Y., Chen Y., Ma T., Sun X., Adv. Energy Mater., 2023, 13, 2300086. [53] Shi X., Lee G. A., Liu S., Kim D., Alahmed A., Jamal A., Wang L., Park A.-H. A., Mater. Today, 2023, 65, 207. [54] McHugh L. N., McPherson M. J., McCormick L. J., Morris S. A., Wheatley P. S., Teat S. J., McKay D., Dawson D. M., Sansome C. E. F., Ashbrook S. E., Stone C. A., Smith M. W., Morris R. E., Nat. Chem., 2018, 10, 1096. [55] Dai F., Wang X., Zheng S., Sun J., Huang Z., Xu B., Fan L., Wang R., Sun D., Wu Z.-S., Chem. Eng. J., 2021, 413, 127520. [56] Sikma R. E., Katyal N., Lee S. K., Fryer J. W., Romero C. G., Emslie S. K., Taylor E. L., Lynch V. M., Chang J. S., Henkelman G., Humphrey S. M., J. Am. Chem. Soc., 2021, 143, 13710. [57] Lu Z., Liu J., Zhang X., Liao Y., Wang R., Zhang K., Lyu J., Farha O. K., Hupp J. T., J. Am. Chem. Soc., 2020, 142, 21110. [58] Akuzum B., Maleski K., Anasori B., Lelyukh P., Alvarez N. J., Kumbur E. C., Gogotsi Y., ACS Nano, 2018, 12, 2685. [59] Wang H., Yao Z., Acauan L., Kong J., Wardle B. L., Matter, 2021, 4, 1447. [60] Soomro R. A., Zhang P., Fan B., Wei Y., Xu B., Nanomicro Lett., 2023, 15, 108. [61] Ahmed H., Alijani H., El-Ghazaly A., Halim J., Murdoch B. J., Ehrnst Y., Massahud E., Rezk A. R., Rosen J., Yeo L. Y., Nat. Commun., 2023, 14, 3. [62] Hou P., Tian Y., Xie Y., Du F., Chen G., Vojvodic A., Wu J., Meng X., Angew. Chem. Int. Ed. Engl., 2023, 62, e202304205. [63] Cao F., Zhang Y., Wang H., Khan K., Tareen A. K., Qian W., Zhang H., Agren H., Adv. Mater., 2022, 34, e2107554. [64] Eom W., Shin H., Jeong W., Ambade R. B., Lee H., Han T. H., Mater Horiz, 2023, 10, 4892. [65] Han Y., Zong P.-A., Huang M., Yang Z., Feng Y., Pan W., Zhang P., Wan C., Journal of Advanced Ceramics, 2022, 11, 1445. [66] Lou S., Jia X., Wang Y., Zhou S., Appl. Catal. B, 2015, 176/177, 586. [67] Wang Y., Dong Y., Liu Q., Guo X., Zhang M., Li Y., Nano Energy, 2020, 78, 105150. [68] Li G., Si Z., Cai D., Wang Z., Qin P., Tan T., Sep. Purif. Technol., 2020, 236, 116263. [69] Gao Y., Lu J., Xia J., Yu G., ACS Appl. Mater. Interfaces, 2020, 12, 12706. [70] Yue L., Chen L., Wang X., Lu D., Zhou W., Shen D., Yang Q., Xiao S., Li Y., Chem. Eng. J., 2023, 451, 138687. [71] Zhang X., Yang S., Lu W., Lei D., Tian Y., Guo M., Mi P., Qu N., Zhao Y., J. Colloid Interface Sci., 2021, 592, 95. [72] Cao B., Liu H., Zhang X., Zhang P., Zhu Q., Du H., Wang L., Zhang R., Xu B., Nanomicro Lett., 2021, 13, 202. [73] Liu X., Liu F., Zhao X., Fan L.-Z., Journal of Materiomics, 2022, 8, 30. [74] Ye Z., Jiang Y., Li L., Wu F., Chen R., Adv. Mater., 2021, 33, e2101204. [75] Li H., Li J., Ma L., Zhang X., Li J., Li J., Lu T., Pan L., J. Mater. Chem. A, 2023, 11, 2836. [76] Zhao L., Dong B., Li S., Zhou L., Lai L., Wang Z., Zhao S., Han M., Gao K., Lu M., Xie X., Chen B., Liu Z., Wang X., Zhang H., Li H., Liu J., Zhang H., Huang X., Huang W., ACS Nano, 2017, 11, 5800. [77] Nam S., Mahato M., Matthews K., Lord R. W., Lee Y., Thangasamy P., Ahn C. W., Gogotsi Y., Oh I. K., Adv. Funct. Mater., 2023, 33, 2210702. [78] Chang Y., Chen M., Fu Z., Lu R., Gao Y., Chen F., Li H., Frans de Rooij N., Lee Y.-K., Wang Y., Zhou G., J. Mater. Chem. A, 2023, 11, 6966. [79] Liu C., Bai Y., Li W., Yang F., Zhang G., Pang H., Angew. Chem. Int. Ed. Engl., 2022, 61, e202116282. [80] Lee P. Y., Cheng T. M., Yougbare S., Lin L. Y., J. Colloid Interface Sci., 2022, 618, 219. [81] Zhan X., Si C., Zhou J., Sun Z., Nanoscale Horizons, 2020, 5, 235. [82] Wang H.-Y., Sun X.-B., Wang G.-S., J. Mater. Chem. A, 2021, 9, 24571. [83] Liu Z., Chen J., Que M., Zheng H., Yang L., Yuan H., Ma Y., Li Y., Yang X., Chem. Eng. J., 2022, 450, 138442. [84] Chen F., Zhang S., Ma B., Xiong Y., Luo H., Cheng Y., Li X., Wang X., Gong R., Chem. Eng. J., 2022, 431, 134007. [85] Zong H., Hu L., Wang Z., Qi R., Yu K., Zhu Z., Chem. Eng. J., 2021, 416, 129102. [86] Na J. H., Oh H. G., Lee S., Park S.-K., J. Mater. Chem. A, 2024, 12, 2848. [87] Tan P., Gao R., Zhang Y., Han N., Jiang Y., Xu M., Bao S. J., Zhang X., J. Colloid Interface Sci., 2023, 630, 363. [88] Zhao X., Xu H., Hui Z., Sun Y., Yu C., Xue J., Zhou R., Wang L., Dai H., Zhao Y., Yang J., Zhou J., Chen Q., Sun G., Huang W., Small, 2019, 15, e1904255. [89] Wu F., Liu Z., Wang J., Shah T., Liu P., Zhang Q., Zhang B., Chem. Eng. J., 2021, 422, 130591. [90] Li J., Yang Z., Wang C., Wu S., Zheng Y., Cui Z., Jiang H., Li Z., Zhu S., Feng L., Liu X., Appl. Catal. B, 2023, 339, 123163. [91] Shi L., Wu C., Wang Y., Dou Y., Yuan D., Li H., Huang H., Zhang Y., Gates I. D., Sun X., Ma T., Adv. Funct. Mater., 2022, 32, 2202571. [92] Guo X., Zhang H., Yao Y., Xiao C., Yan X., Chen K., Qi J., Zhou Y., Zhu Z., Sun X., Li J., Appl. Catal. B, 2023, 323, 122136. [93] Li Y., Liu Y., Wang Z., Wang P., Zheng Z., Cheng H., Dai Y., Huang B., Chem. Eng. J., 2021, 411, 128446. [94] Shen Z., Li F., Guo L., Zhang X., Wang Y., Wang Y., Jian X., Gao X., Wang Z., Li R., Fan C., Liu J., Appl. Catal. B, 2024, 346, 123732. [95] Zhao X., Chen Y., Niu R., Tang Y., Chen Y., Su H., Yang Z., Jing X., Guan H., Gao R., Meng L., Adv. Mater., 2024, 36, e2307839. [96] Jiang M., Jiang D., Cao X., Wang J., Sun Y., Zhang M., Liu J., Adv. Funct. Mater., 2023, 34, 2312692. [97] Pathak I., Acharya D., Chhetri K., Chandra Lohani P., Ko T., Muthurasu A., Subedi S., Kim T., Saidin S., Dahal B., Kim H., Chem. Eng. J., 2023, 469, 143388. [98] Hu L., Xiao R., Wang X., Wang X., Wang C., Wen J., Gu W., Zhu C., Appl. Catal. B, 2021, 298, 120599. [99] Yang Z., Weng C., Gao X., Meng F., Ji Y., Li J., Lu T., Li J., Wang J., Pan L., Chem. Eng. J., 2024, 486, 150299. [100] Shi X., Liang W., Liu G., Chen B., Shao L., Wu Y., Sun Z., García F., Chem. Eng. J., 2023, 462, 142271. |
[1] | LI Chengqiu, ZHOU Chaoyong, MEI Shilin, YAO Changjiang. Chemical Activation of S/Li2S in Li-S Batteries by a Bidirectional Organic Redox Mediator [J]. Chemical Research in Chinese Universities, 2024, 40(5): 927-934. |
[2] | RAO Fu, XIAO Qian, WEI Yanze, WANG Jiangyan, YU Ranbo, WANG Dan. Balanced Polysulfide Containment and Lithium Ion Transport in Lithium-Sulfur Batteries via Nitrogen-doped Carbon Hollow Multi-shelled Structures on Modified Separators [J]. Chemical Research in Chinese Universities, 2024, 40(4): 690-698. |
[3] | SHI Junye, YU Chenxi, ZOU Zewei, ZHENG Shumin, ZHANG Xing, WANG Bao. Reasonable Designing of Free-standing MnO2/Graphene Composite Membrane for Lithium-ion Storage [J]. Chemical Research in Chinese Universities, 2024, 40(3): 508-512. |
[4] | DOU Renju, WANG Qin, REN Xiaoyan, LU Lehui. In-situ UV-Vis Spectroscopy of Trisulfur Radicals in Lithium-Sulfur Batteries [J]. Chemical Research in Chinese Universities, 2024, 40(2): 279-286. |
[5] | ZHAI Ziqi, LU Yumiao, LIU Guangyong, DING Wei-Lu, CAO Bobo, HE Hongyan. Recent Advances in Biomass-derived Porous Carbon Materials: Synthesis, Composition and Applications [J]. Chemical Research in Chinese Universities, 2024, 40(1): 3-19. |
[6] | YAN Jiali, YANG Kaiying, WANG Xi, ZHAI Jinli, ZHU Wenjie, YANG Daoli, LUO Yongming, GAO Xiaoya. Rapid Degrading Carbamazepine in a Novel Advanced Oxidation Process of Bisulfite Activated by Lithium Cobaltate Recovered from Spent Lithium-ion Battery [J]. Chemical Research in Chinese Universities, 2024, 40(1): 127-135. |
[7] | ZHANG Weiguo, ZHANG Chong, WANG Hongzhi, and WANG huanhuan. TEGDME Electrolyte Additive for High-performance Zinc Anodes [J]. Chemical Research in Chinese Universities, 2023, 39(6): 1037-1043. |
[8] | BAI Yulin, FENG Rong, YAN Tao, LIU Yusi, CUI Li, and WANG Kaixue. Hierarchical Ti3C2/TiO2/MoS2 Composite as an Anode Material for Sodium-ion Batteries [J]. Chemical Research in Chinese Universities, 2023, 39(6): 1100-1105. |
[9] | LI Qi, ZHAO Yajun, WANG Yueyang, Abdalla Kovan KHASRAW, ZHAO Yi, SUN Xiaoming. Rational Design of Nanostructured MnO2 Cathode for High-performance Aqueous Zinc Ion Batteries [J]. Chemical Research in Chinese Universities, 2023, 39(4): 599-611. |
[10] | FU Zerui, WANG Shu, YU Haohan, NIE Meilin, FENG Xilan, ZUO Xintao, FU Lichao, LIU Dapeng, ZHANG Yu. CeO2 Supported on Reduced Graphene Oxide as Li-O2 Battery Cathode [J]. Chemical Research in Chinese Universities, 2023, 39(4): 636-641. |
[11] | LIU Meijing, HAO Xiaoliang, DAI Shujuan, WANG Shaoyan, WANG Yong, ZHANG Hao. Preparation of Fluorescent Carbon Dots from Chinese Herbal Medicine Alisma and Its Potential Applications in Photocatalytic Degradation of Malachite Green and Cell Imaging [J]. Chemical Research in Chinese Universities, 2023, 39(2): 234-239. |
[12] | WANG Suhang, ZUO Jinxin, LI Yongliang, ZHONG Yiming, REN Xiangzhong, ZHANG Peixin, SUN Lingna. Fe2O3-MWNTs Composite with Reinforced Concrete Structure as High-performance Anode Material for Lithium-ion Batteries [J]. Chemical Research in Chinese Universities, 2023, 39(2): 240-245. |
[13] | WANG Renquan, LI Tiantian, GAO Rui, QIN Jiaqi, LI Mengyao, GUO Yizheng, SONG Yujiang. Carbonized Yolk-shell Metal-Organic Frameworks for Electrochemical Conversion of CO2 into Ethylene [J]. Chemical Research in Chinese Universities, 2023, 39(2): 246-252. |
[14] | WU Ziye, LI Zifan, CHOU Shulei, LIANG Xiaoyu. Novel Biomass-derived Hollow Carbons as Anode Materials for Lithium-ion Batteries [J]. Chemical Research in Chinese Universities, 2023, 39(2): 283-289. |
[15] | CHEN Weijie, XIA Huicong, GUO Kai, JIN Wangzhe, DU Yu, YAN Wenfu, QU Gan, ZHANG Jianan. Atomically Dispersed Fe-N4 Sites and Fe3C Particles Catalyzing Polysulfides Conversion in Li-S Batteries [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1232-1238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||