Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4): 646-656.doi: 10.1007/s40242-024-4122-5
• Reviews • Previous Articles Next Articles
LIU Pei1, WU Qinming1,2, CHEN Zhenghai3, XIAO Feng-Shou1,2
Received:
2024-05-14
Online:
2024-08-01
Published:
2024-07-24
Contact:
WU Qinming,qinmingwu@zju.edu.cn;XIAO Feng-Shou,fsxiao@zju.edu.cn
E-mail:qinmingwu@zju.edu.cn;fsxiao@zju.edu.cn
Supported by:
LIU Pei, WU Qinming, CHEN Zhenghai, XIAO Feng-Shou. Recent Advances in the Synthesis of Zeolites from Solid Wastes[J]. Chemical Research in Chinese Universities, 2024, 40(4): 646-656.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Wang Z. P., Yu J. H., Xu R. R., Chem. Soc. Rev., 2012, 41, 1729. [2] Garces L. J., Makwana V. D., Hincapie B., Sacco A., Suib S. L., J. Catal., 2003, 217, 107. [3] Higuchi Y., Tanaka S., Microporous Mesoporous Mater., 2023, 354, 112550. [4] Shi D. D., Haw K.-G., Kouvatas C., Tang L. X., Zhang Y. Y., Fang Q. R., Qiu S. L., Valtchev V., Angew. Chem. Int. Ed., 2020, 59, 19576. [5] Tang L. X., Haw K.-G., Zhang Y. Y, Fang Q. R., Qiu S. L., Valtchev V., Microporous Mesoporous Mater., 2019, 280, 306. [6] Wu Q. M., Zhu L. F., Chu Y. Y., Liu X. L., Zhang C. S., Zhang J., Xu H., Xu J., Deng F., Feng Z. C., Meng X. J., Xiao F.-S., Angew. Chem. Int. Ed., 2019, 58, 12138. [7] Cao C. Y., Xuan W. W., Yan S. Y., Wang Q., J. Environ. Chem. Eng., 2023, 11, 110898. [8] Chang H. L., Shih W. H., Ind. Eng. Chem. Res., 2000, 39, 4185. [9] Coronas J., Chem. Eng. J., 2010, 156, 236. [10] Xu H., Wu P., Natl. Sci. Rev., 2022, 9, nwac045. [11] Belviso C., Prog. Energy Combust. Sci., 2018, 65, 109. [12] Collins F., Rozhkovskaya A., Outram J. G., Millar G. J., Microporous Mesoporous Mater., 2020, 291, 109667. [13] Fan X. H., Yuan R. R., Gan M. J., Ji Z. Y., Sun Z. Q., Sci. Total Environ., 2023, 865, 160745. [14] Lee Y.-R., Soe J. T., Zhang S. Q., Ahn J.-W., Park M. B., Ahn W.-S., Chem. Eng. J., 2017, 317, 821. [15] Chen X. Y., Zhang P., Wang Y., Peng W., Ren Z. F., Li Y. H., Chu B. S., Zhu Q., Front. Environ. Sci. Eng., 2023, 17, 149. [16] Kaithwas A., Prasad M., Kulshreshtha A., Verma S., Chem. Eng. Res. Des., 2012, 90, 1632. [17] Elidrissi Z. C., Idrissi D. E. M., Kouzi Y., Achiou B., Tahiri S., Ouammou M., Younssi S. A., Inorg. Chem. Commun., 2023, 156, 111192. [18] Fan Y., Zhang F.-S.; Zhu, J. X., Liu Z. G., J. Hazard. Mater., 2008, 153, 382. [19] Mamaghani F. A. A., Salem A., Salem S., Process Saf. Environ. Prot., 2022, 159, 500. [20] Silva B., Martins M., Rosca M., Rocha V., Lago A., Neves I. C., Tavares T., Sep. Purif. Technol., 2020, 235, 116139. [21] Mlonka-Medrala A., Energies., 2023, 16, 6593. [22] Montalvo S., Huilinir C., Borja R., Sanchez E., Herrmann C., Bioresource Technol., 2020, 301, 122808. [23] Zhang X. Y., Li C. Q., Zheng S. L., Di Y. H., Sun Z. M., Int. J. Min. Met. Mater., 2022, 29, 1. [24] Bukhari S. S., Behin J., Kazemian H., Rohani S., Fuel, 2015, 140, 250. [25] Wang R. Y., Song Y., Yang X., Zhou J. H., Jiang Q. Q., Wang Z. B., Wang L., Peng B., Song H. T., Lin W., ACS Sustainable Chem. Eng., 2022, 10, 11376. [26] Li H., Zheng F., Wang J., Zhou J. M., Huang X. H., Chen L., Hu P. F., Gao J.-M., Zhen Q., Bashir S., Liu J. B. L., Chem. Eng. J., 2020, 390, 124513. [27] Xue Y. J., Wei X. T., Zhao H., Wang T., Xiao Y., J. Cleaner Prod., 2020, 259, 120830. [28] Basaldella E. I., Paladino J. C., Solari M., Valle G. M., Appl. Catal. B: Environ., 2006, 66, 186. [29] Huang S. Z., Wang Y., Zhang L., Zhu S. J., Ma Z. F., Cui Q., Wang H. Y., New J. Chem., 2023, 47, 14335. [30] Wang B. Y., Li J., Zhou X., Hao W. F., Zhang S. Q., Lan C., Wang X. M., Wang Z. Y., Xu J., Zhang J.-N., Yan W. F., Inorg. Chem. Front., 2022, 9, 468. [31] Qiang Z. Q., Li R., Yang Z. Q., Guo M., Cheng F. Q., Zhang M., Energy Fuels, 2019, 33, 6641. [32] Hernandez-Tamargo C., Kwakye-Awuah B., O'Malley A. J., de Leeuw N. H., Microporous Mesoporous Mater., 2021, 315, 110903. [33] Kang Y. B., Swain B., Im B., Yoon J.-H., Park K. H., Lee C. G., Kim D. G., Metals, 2019, 9, 1240. [34] Ojumu T. V., Du Plessis P. W., Petrik L. F., Ultrason. Sonochem., 2016, 31, 342. [35] Liu P., Wu Q. M., Yan K. P., Wang L., Xiao F. -S., Dalton Trans., 2022, 52, 24. [36] Rodríguez E. D., Bernal S. A., Provis J. L., Gehman J. D., Monzó J. M., Payá J., Borrachero M. V., Fuel, 2013, 109, 493. [37] Rozhkovskaya A., Rajapakse J., Millar G. J., Adv. Powder Technol., 2021, 32, 3248. [38] Qiang Z. Q., Shen X. J., Guo M., Cheng F. Q., Zhang M. A., Microporous Mesoporous Mater., 2019, 287, 77. [39] Liu L. Y., Du T., Li G., Yang F., Che S., J. Hazard. Mater., 2014, 278, 551. [40] Kim J.-C., Choi M., Song H. J., Park J. E., Yoon J.-H., Park K.-S., Lee C. G., Kim D.-W., Mater. Chem. Phys., 2015, 166, 20. [41] Sayehi M., Delahay G., Tounsi H., J. Environ. Chem. Eng., 2022, 10, 108561. [42] Breck D. W., Eversole W. G., Milton R. M., J. Am. Chem. Soc., 1956, 78, 2338. [43] Escamilla-Perez A. M., Barre Y., Grandjean A., Hertz A., J. Supercrit. Fluid., 2023, 199, 105940. [44] Mouna S., Hajji S., Tounsi H., J. Cleaner Prod., 2024, 434, 139946. [45] Lee K. M., Jo Y. M., J. Mater. Cycles. Waste. Manage., 2010, 12, 212. [46] Qian T. T., Li J. H., Adv. Powder Technol., 2015, 26, 98. [47] Jin Y. X., Li L., Liu Z., Zhu S. Y., Wang D. M., Adv. Powder Technol., 2021, 32, 791. [48] Escardino A., Barba A., Sánchez E., Cantavella V., Br. Ceram. Trans., 1999, 98, 172. [49] Basaldella E. I., Torres Sanchez R. M., Conconi M. S., Appl. Clay Sci., 2009, 42, 611. [50] Ferella F., Leone S., Innocenzi V., De Michelis I., Taglieri G., Gallucci K., J. Cleaner Prod., 2019, 230, 910. [51] Li L., Xu S. C., Liu Z., Wang D. M., Materials, 2024, 17, 568. [52] Ma D. Y., Wang Z. D., Guo M., Zhang M., Liu J. B., Waste Manage., 2014, 34, 2365. [53] Lei P.-C., Shen X.-J., Li Y., Guo M., Zhang M., Int. J. Min. Met. Mater., 2016, 23, 850. [54] Tsujiguchi M., Kobashi T., Utsumi Y., Kakimori N., Nakahira A., J. Am. Ceram. Soc., 2014, 97,114. [55] Tae L. C., Appl. Chem. Eng., 2017, 28, 521. [56] Li W. J, Chai Y. C., Wu G. J., Li L. D., J. Phys. Chem. Lett., 2022, 13, 11419. [57] Nazir L. S. M., Yeong Y. F., Chew T. L., J. Asian Ceram. Soc., 2020, 8, 553. [58] Yu Q., Zhang W. N., Li J. J., Liu W., Wang Y. N., Chu W. F., Zhang X. B., Xu L. Y., Zhu X. X., Li X. J., Microporous Mesoporous Mater., 2023, 355, 112570. [59] Holler H., Wirsching U., Fortschr. Mineral., 1985, 63, 21. [60] Molina A., Poole, C. A., Miner. Eng., 2004, 17, 167. [61] Belviso C., Cavalcante F., Javier Huertas F., Lettino A., Ragone P., Fiore S., Microporous Mesoporous Mater., 2012, 162, 115. [62] Murukutti M. K., Jena H., J. Hazard. Mater., 2022, 423, 127085. [63] Ren L. M., Wu Q. M., Yang C. G., Zhu L. F., Li C. J, Zhang P. L., Zhang H. Y., Meng X. J., Xiao F.-S. J. Am. Chem. Soc., 2012, 134, 15173. [64] Wu Q. M., Meng X. J, Gao X. H., Xiao F.-S., Acc. Chem. Res., 2018, 51, 1396. [65] Sivalingam S., Sen S., Environ. Sci. Pollut. Res., 2019, 26, 34693. [66] Belviso C., Ultrason. Sonochem., 2018, 43, 9. [67] Liu X. M., Li L., Yang T. T., Yan Z. F., J. Porous Mater., 2012, 19, 133. [68] Yang N. N., Gou L. Z., Bai Z. T., Cheng F. Q., Guo M., Zhang M., J. Inorg. Organomet. Poly. Mater., 2022, 32, 3496. [69] Chen G. R., Li J. Y., Wang S., Han J., Wang X. X., She P. H., Fan W. B., Guan B. Y., Tian P., Yu J. H., Angew. Chem. Int. Ed., 2022, 61, e202200677. [70] Bensafi B., Chouat N., Djafri F., Coord. Chem. Rev., 2023, 496, 215397. [71] Rahimi N., Karimzadeh R., Appl. Catal. A: Gen., 2011, 398, 1. [72] Rajakrishnamoorthy P., Saravanan C. G., Natarajan R., Karthikeyan D., Sasikala J., Femilda Josephin J. S., Vikneswaran M., Sonthalia A., Varuvel E. G., Fuel, 2023, 340, 127380. [73] Zhao Y. F., Gu S. Y., Li L., Wang M., Environ. Pollut., 2024, 345, 1. [74] Li H. P., Cheng R. Q., Liu Z. L., Du C. F., Sci. Total Environ., 2019, 683, 638. [75] Tehubijuluw H., Subagyo R., Yulita M. F., Nugraha R. E., Kusumawati Y., Bahruji H., Jalil A. A., Hartati H., Prasetyoko D., Environ. Sci. Pollut. Res., 2021, 28, 37354. [76] Timoshev V., Haufe L. A., Busse O., Hamedi H., Seifert M., Weigand J. J., ChemSusChem, 2024, e202301642. [77] Wu Q. M., Luan H. M., Xiao F.-S., Sci. China Chem., 2022, 65, 1683. [78] Liu L. J., Ji W. X., Li K. N., Yu W. H., Lan L. P., Ye J. J., Gao X., Li Y. Y., Ma Y. L., Sun Y. G., Silicon, 2022, 14, 8855. [79] Gao J. D., Lin Q. J., Yang T. Z., Bao Y. C., Liu J., Chemosphere, 2023, 341, 139741. [80] Wu Y. F., Liang G. B., Zhao X. N., Wang H., Qu Z. P., J. Environ. Chem. Eng., 2023, 11, 109589. [81] Beale A. M., Gao F., Lezcano-Gonzalez I., Peden C. H. F., Szanyi J., Chem. Soc. Rev., 2015, 44, 7371. [82] Fickel D. W., D'Addio E., Lauterbach J. A., Lobo R. F., Appl. Catal. B-Environ., 2011, 102, 441. [83] Deimund M. A., Harrison L., Lunn J. D., Liu Y., Malek A., Shayib R., Davis M. E., ACS Catal., 2016, 6, 542. [84] Hudson M. R., Queen W. L., Mason J. A., Fickel D. W., Lobo R. F., Brown C. M., J. Am. Chem. Soc., 2012, 134, 1970. [85] Han J. F., Ha Y., Guo M. Y., Zhao P. P., Liu Q. L., Liu C. X., Song C. F., Ji N, Lu X. B., Ma D. G., Li Z. G., Ultrason. Sonochem., 2019, 59, 104703. [86] Han J. F., Jin X. T., Song C. F., Bi Y. L., Liu Q. L., Liu C. X., Ji N., Lu X. B., Ma D. G., Li Z. G., Green Chem., 2020, 22, 219. [87] Gollakota A. R. K., Munagapati V. S., Volli V., Gautam S., Wen J.-C., Shu C.-M., J. Hazard. Mater., 2021, 416, 125925. [88] Liao X., Wang B., Yin R., Ren W. G., Li J., Gan H. T., Lv P. B., Bao W. R., Wang J. C., Chang, L. P., Huang Z. G., Han L. N., J. Solid. State Chem., 2023, 323, 124024. [89] Lv W. T., Sun F. M., Zhang R. H., Jiao W. Y., Qin Z. F., Dong M., Fan W. B., Wang J. G., Microporous Mesoporous Mater., 2024, 370, 113073. [90] Ren L. M., Zhang Y. B., Zeng S. J., Zhu L. F., Sun Q., Zhang H. Y., Yang C. G., Meng X. J., Yang X. G., Xiao F.-S., Chin. J. Catal., 2012, 33, 92. [91] Liu P., Wu Q. M., Yan K. P., Wang L., Xiao F.-S., J. Catal., 2024, 432, 115442. [92] Jiang J. X., Xu Y., Cheng P., Sun Q. M., Yu J. H., Corma A., Xu R. R., Chem. Mater., 2011, 23, 4709. [93] Lu T. T., Yan W. F., Xu R. R., Inorg. Chem. Front., 2019, 6, 1938. [94] Meng X. J., Xie B., Xiao F.-S., Chin. J. Catal., 2009, 30, 965. [95] Muñiz J. G. R., Ramirez A. M., Robles J. M. A., Melo P. G., Bocard J. C. E., Martine A. M. M., Lat. Am. Appl. Res., 2010, 4, 323. [96] Ameh A. E., Musyoka N. M., Oyekola O., Louis B., Petrik L. F., Front. Chem., 2021, 9, 683125. [97] Gao W. Z., Amoo C. C., Zhang G. H., Javed M., Mazonde B., Lu C. X., Yang R. Q., Xing C., Tsubaki N., Microporous Mesoporous Mater., 2019, 280, 187. [98] Fischer J. W. A., Brenig A., Klose D., van Bokhoven J. A., Sushkevich V. L., Jeschke G., Angew. Chem. Int. Ed., 2023, 62, e2023035. [99] Lu K., Huang J., Ren L., Li C., Guan Y., Hu B. W., Xu H., Jiang J. G., Ma Y. H., Wu P., Angew. Chem. Int. Ed., 2020, 59, 6258. [100] Zhou T., Wang B., Dai Z. D., Jiang X., Wang Y., Microporous Mesoporous Mater., 2021, 314, 110872. [101] Liu X. C., Lu P., Jiang W. L., Shan Y. L., Li S., Wang X. S., Liu S. W., Han L., Liu Y. X., Chem. Eng. Sci., 2023, 281, 118967. |
[1] | ZHENG Mingdan, CHEN Ya, LIU Zhan, LYU Jiamin, YE Bo, SUN Ming-Hui, CHEN Li-Hua, SU Bao-Lian. Hierarchically Macroporous Zeolite ZSM-5 Microspheres for Efficient Catalysis [J]. Chemical Research in Chinese Universities, 2024, 40(4): 704-711. |
[2] | HAN Xiaoyang, XIA Huicong, TU Weifeng, WEI Yifan, XUE Dongping, LI Minhan, YAN Wenfu, ZHANG Jia-Nan, HAN Yi-Fan. Zeolite-confined Fe-site Catalysts for the Hydrogenation of CO2 to Produce High-value Chemicals [J]. Chemical Research in Chinese Universities, 2024, 40(1): 78-95. |
[3] | QU Ziqiang, ZHANG Tianjun, YIN Xichen, ZHANG Junyi, XIONG Xiaoyun, and SUN Qiming. Zeolite-encaged Ultrasmall Pt-Zn Species with Trace Amount of Pt for Efficient Propane Dehydrogenation [J]. Chemical Research in Chinese Universities, 2023, 39(6): 870-876. |
[4] | HE Huan, ZOU Zhengxi, HUA Weiming, YUE Yinghong, and GAO Zi. Promoting Effect of ZnO on the Catalytic Performance of CoZSM-5 for CO2-Assisted Dehydrogenation of Ethane [J]. Chemical Research in Chinese Universities, 2023, 39(6): 1064-1069. |
[5] | LUO Yichen, ZHU Canhong, ZHANG Tianlong, YAN Tengfei, LIU Junqiu. Self-assembled Supramolecular Artificial Transmembrane Ion Channels: Recent Progress and Application [J]. Chemical Research in Chinese Universities, 2023, 39(1): 3-12. |
[6] | LIU Zailun, SUN Like, ZHANG Qitao, TENG Zhenyuan, SUN Hongli, SU Chenliang. TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1123-1138. |
[7] | TU Tingting, HUAN Shuangyan, KE Guoliang, ZHANG Xiaobing. Functional Xeno Nucleic Acids for Biomedical Application [J]. Chemical Research in Chinese Universities, 2022, 38(4): 912-918. |
[8] | XIAO Peiwen, LI Hui, WANG Pingmei, LIU Bolun, JING Wendan, HE Lipeng, WANG Runwei, HAN Xue, ZHANG Zongtao, QIU Shilun, LUO Jianhui. Functionalized Hierarchical ZSM-5 Zeolites for the Viscosity Reduction of Heavy Oil at Low Temperature [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1083-1088. |
[9] | CHENG Dajun, and MENG Xiangju. Recent Advances of Beta Zeolite in the Volatile Organic Compounds(VOCs) Elimination by the Catalytic Oxidations [J]. Chemical Research in Chinese Universities, 2022, 38(3): 716-722. |
[10] | LIU Yifeng, WANG Liang, and XIAO Feng-Shou. Selective Oxidation of Methane into Methanol Under Mild Conditions [J]. Chemical Research in Chinese Universities, 2022, 38(3): 671-676. |
[11] | LIAN Xiaodong, SONG Chenhao and WANG Yapei. Regulating the Oil-Water Interface to Construct Double Emulsions: Current Understanding and Their Biomedical Applications [J]. Chemical Research in Chinese Universities, 2022, 38(3): 698-715. |
[12] | FU Yu, LI Yinhui, ZHANG Wenxiang, LUO Chen, JIANG Lingchang, MA Heping. Ionic Covalent Organic Framework: What Does the Unique Ionic Site Bring to Us? [J]. Chemical Research in Chinese Universities, 2022, 38(2): 296-309. |
[13] | LUAN Huimin, WU Qinming, ZHANG Jian, WANG Yeqing, MENG Xiangju, XIAO Feng-Shou. Sustainable Synthesis of Core-Shell Structured ZSM-5@Silicalite-1 Zeolite [J]. Chemical Research in Chinese Universities, 2022, 38(1): 136-140. |
[14] | SHI Chao, WANG Jiaze, LI Lin, LI Yi. High-throughput Screening of Aluminophosphate Zeolites for Adsorption Heat Pump Applications [J]. Chemical Research in Chinese Universities, 2022, 38(1): 161-166. |
[15] | ZHANG Yunzhe, DAI Weili, WU Guangjun, GUAN Naijia, LI Landong. Catalytic Hydration of Aromatic Alkynes to Ketones over H-MFI Zeolites [J]. Chemical Research in Chinese Universities, 2022, 38(1): 173-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||