Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3): 643-652.doi: 10.1007/s40242-022-2063-4
• Reviews • Previous Articles Next Articles
LUO Xianfeng1,2, ZHU Zhongpeng3, YOU Jun1, TIAN Ye2,4, and JIANG Lei2,4
Received:
2022-02-26
Revised:
2022-03-22
Online:
2022-06-01
Published:
2022-05-26
Contact:
YOU Jun, ZHU Zhongpeng, JIANG Lei
E-mail:youjun@hrbust.edu.cn;zhuzp@buaa.edu.cn;jianglei@iccas.ac.cn
Supported by:
LUO Xianfeng, ZHU Zhongpeng, YOU Jun, TIAN Ye, and JIANG Lei. Superlyophilic Interfaces Assisted Thermal Management[J]. Chemical Research in Chinese Universities, 2022, 38(3): 643-652.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Balandin A. A., Nat. Mater., 2011, 10(8), 569 [2] Tao P., Shang W., Song C., Shen Q., Zhang F., Luo Z., Yi N., Zhang D., Deng T., Adv. Mater., 2015, 27(3), 428 [3] Kwon Y. J., Park J. B., Jeon Y. P., Hong J. Y., Park H. S., Lee J. U., Polymers (Basel), 2021, 13(8), 1312 [4] Peng L., Su B., Yu A., Jiang X., Cellulose, 2019, 26(11), 6415 [5] Patankar N. A., Soft Matter, 2010, 6(8), 1613 [6] Jiang M. N., Wang Y., Liu F. Y., Du H. H., Li Y. C., Zhang H. H., To S. E., Wang S., Pan C., Yu J. H., Quere D., Wang Z. K., Nature, 2022, 601(7894), 17 [7] Peng Y. C., Chen J., Song A. Y., Catrysse P. B., Hsu P. C., Cai L. L., Liu B. F., Zhu Y. Y., Zhou G. M., Wu D. S., Lee H. R., Fan S. H., Cui Y., Nat. Sustain., 2018, 1(2), 105 [8] Zhu Z., Chen Y., Xu Z., Yu Z., Luo X., Zhou J., Tian Y., Jiang L., iScience, 2021, 24(4), 102334 [9] Ze H. J., Wu F. F., Chen S. H., Gao X. F., Adv. Mater. Interfaces, 2020, 7(14), 6 [10] Miao D., Cheng N., Wang X., Yu J., Ding B., Nano Lett., 2022, 22(2), 680 [11] Oh J., Zhang R., Shetty P. P., Krogstad J. A., Braun P. V., Miljkovic N., Adv. Funct. Mater., 2018, 28(16), 1707000 [12] Zhu Z. P., Zheng S., Peng S., Zhao Y., Tian Y., Adv. Mater., 2017, 29(45), 1703120 [13] Wang S., Liu K., Yao X., Jiang L., Chem. Rev., 2015, 115(16), 8230 [14] Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., Watanabe T., Nature, 1997, 388, 431 [15] Fujishima A., Zhang X. T., Tryk D. A., Surf. Sci. Rep., 2008, 63(12), 515 [16] Zhu Z., Tian Y., Chen Y. P., Gu Z., Wang S. T., Jiang L., Angew. Chem. Int. Ed., 2017, 56(21), 5720 [17] Wu L., Dong Z., Kuang M., Li Y., Li F., Jiang L., Song Y., Adv. Funct. Mater., 2015, 25(15), 2237 [18] Son J., Kundu S., Verma L. K., Sakhuja M., Danner A. J., Bhatia C. S., Yang H., Sol. Energy Mater. Sol. Cells, 2012, 98, 46 [19] England M. W., Urata C., Dunderdale G. J., Hozumi A., ACS Appl. Mater. Interfaces, 2016, 8(7), 4318 [20] Zhang W. B., Zhang F., Gao S. J., Zhu Y. Z., Li J. Y., Jin J., Sep. Purif. Technol., 2015, 156, 207 [21] Zhang P. C., Shao N., Qin L. D., Adv. Mater., 2021, 33(46), 29 [22] Zhu H., Duan R. L., Wang X. D., Yang J. L., Wang J. H., Huang Y., Xia F., Nanoscale, 2018, 10(27), 13045 [23] Ye J. M., Yin Q. M., Zhou Y. L., Thin Solid Films, 2009, 517(21), 6012 [24] Wang R., Sakai N., Fujishima A., Watanabe T., Hashimoto K., J. Phys. Chem. B, 1999, 103(12), 2188 [25] Vorobyev A. Y., Guo C., Opt. Express, 2010, 18(7), 6455 [26] Sakai N., Fujishima A., Watanabe T., Hashimoto K., J. Phys. Chem. B, 2003, 107(4), 1028 [27] Liu M. J., Wang S. T., Jiang L., Nat. Rev. Mater., 2017, 2(7), 17036 [28] Schutzius T. M., Bayer I. S., Jursich G. M., Das A., Megaridis C. M., Nanoscale, 2012, 4(17), 5378 [29] Adera S., Raj R., Enright R., Wang E. N., Nature Communications, 2013, 4, 1 [30] Wiedenheft K. F., Guo H. A., Qu X., Boreyko J. B., Liu F., Zhang K., Eid F., Choudhury A., Li Z., Chen C.-H., Applied Physics Letters, 2017, 110(14), 141601 [31] Dai B., Li K., Shi L., Wan X., Liu X., Zhang F., Jiang L., Wang S., Advanced Materials, 2019, 31(41), 1904113 [32] Wu F. F., Ze H. J., Chen S. H., Gao X. F., ACS Appl. Mater. Interfaces, 2020, 12(35), 39902 [33] Yin K., Wu Z., Wu J., Zhu Z., Zhang F., Duan J.-A., Appl. Phys. Lett., 2021, 118(21), 211905 [34] Chen G., Wang Y., Qiu J., Cao J., Zou Y., Wang S., Jia D., Zhou Y., Mater. Des., 2021, 206, 109829 [35] Suroto B. J., Kohno M., Takata Y., AIP Publishing LLC, 2018, 1927(1), 030047 [36] McClure E. R., Carey V. P., ACS Appl. Mater. Interfaces, 2020, 12(23), 26350 [37] Moze M., Senegacnik M., Gregorcic P., Hocevar M., Zupancic M., Golobic I., ACS Appl. Mater. Interfaces, 2020, 12(21), 24419 [38] Lim Y. S., Hung Y. M., Energy Convers. Manage., 2021, 244, 114522 [39] Lv L. C., Li J., Appl. Therm. Eng., 2017, 122, 593 [40] Li S., Luo X., Li C., Surf. Coat. Technol., 2021, 422, 127519 [41] Tang Y., Yang X. L., Li Y. M., Zhu D., Adv. Mater. Interfaces, 2021, 8(13), 10 [42] Drelich J., Marmur A., Surf. Innov., 2014, 2(4), 211 [43] Saneie N., Kulkarni V., Treska B., Fezzaa K., Patankar N., Anand S., Int. J. Heat Mass Transfer, 2021, 176, 121413 [44] Yang G., Liu J., Cheng X., Wang Y., Chu X., Mukherjee S., Terzis A., Schneemann A., Li W., Wu J., Fischer R. A., J. Mater. Chem. A, 2021, 9(45), 25480 [45] Kim S., Kim H. D., Kim H., Ahn H. S., Jo H., Kim J., Kim M. H., Exp. Therm. Fluid Sci., 2010, 34(4), 487 [46] Takata Y., Hidaka S., Masuda M., Ito T., Int. J. Energy Res., 2003, 27(2), 111 [47] Kondou C., Umemoto S., Koyama S., Mitooka Y., Appl. Therm. Eng., 2017, 118, 147 [48] Yang F. H., Dai X. M., Peles Y., Cheng P., Khan J., Li C., Int. J. Heat Mass Transfer, 2014, 68, 703 [49] Chen R., Lu M.-C., Srinivasan V., Wang Z., Cho H. H., Majumdar A., Nano Lett., 2009, 9(2), 548 [50] Shim D. II, Choi G., Lee N., Kim T., Kim B. S., Cho H. H., ACS Appl. Mater. Interfaces, 2017, 9(20), 17595 [51] Kim B. S., Shin S., Lee D., Choi G., Lee H., Kim K. M., Cho H. H., Int. J. Heat Mass Transfer, 2014, 70, 23 [52] Liu T. Y., Li P. L., Liu C. W., Gau C., Int. J. Heat Mass Transfer, 2011, 54(1/3), 126 [53] Dai X., Huang X., Yang F., Li X., Sightler J., Yang Y., Li C., Appl. Phys. Lett., 2013, 102(16), 161605 [54] Wu S. L., Quan L. N., Huang Y. T., Li Y. T., Yang H. C., Darling S. B., ACS Appl Mater Interfaces, 2021, 13(33), 39513 [55] Xiao R., Maroo S. C., Wang E. N., Appl. Phys. Lett., 2013, 102(12), 123103 [56] Panda A., Pati A. R., Kumar A., Mohapatra S. S., Int. Commun. Heat Mass Transfer, 2019, 105, 19 [57] Hong S. J., Pialago E. J. T., Ha H. H., Kwon O. K., Park C. W., Int. J. Heat Mass Transfer, 2020, 157, 119935 [58] Ranjan R., Murthy J. Y., Garimella S. V., Int. J. Heat Mass Transfer, 2011, 54(1/3), 169 [59] Li L., Li Q., Feng Y., Chen K., Zhang J., ACS Appl. Mater. Interfaces, 2021, 14(1), 2360 [60] Zhang P., Lv F. Y., Askounis A., Orejon D., Shen B., Int. J. Heat Mass Transfer, 2017, 109, 1229 [61] Hu T., Li L. X., Yang Y. F., Zhang J. P., J. Mater. Chem. A, 2020, 8(29), 14736 [62] Bae K., Kang G., Cho S. K., Park W., Kim K., Padilla W. J., Nat. Commun., 2015, 6, 10103 [63] Wu L., Dong Z., Cai Z., Ganapathy T., Fang N. X., Li C., Yu C., Zhang Y., Song Y., Nat. Commun., 2020, 11(1), 521 [64] Peng Y., Li W., Liu B., Jin W., Schaadt J., Tang J., Zhou G., Wang G., Zhou J., Zhang C., Zhu Y., Huang W., Wu T., Goodson K. E., Dames C., Prasher R., Fan S., Cui Y., Nat. Commun., 2021, 12(1), 6122 [65] Takata Y., Hidaka S., Cao J. M., Nakamura T., Yamamoto H., Masuda M., Ito T., Energy, 2005, 30(2/4), 209 [66] Bai X. H., Li Y. G., Zhang F. Y., Xu Y. Q., Wang S. F., Fu G. S., Environ. Sci. Water Res. Technol., 2019, 5(11), 2041 [67] Guo L. P., Gong J., Song C. Y., Zhao Y. L., Tan B. E., Zhao Q., Jin S. B., ACS Energy Lett., 2020, 5(4), 1300 [68] He J. X., Zhang Z., Xiao C. H., Liu F., Sun H. X., Zhu Z. Q., Liang W. D., Li A., ACS Appl. Mater. Interfaces, 2020, 12(14), 16308 [69] Jaleh B., Shariati K., Khosravi M., Moradi A., Ghasemi S., Azizian S., Colloids Surf. A, 2019, 577, 323 [70] Liu Y. Y., Qian L. Q., Guo C., Jia X., Wang J. W., Tang W. H., J. Alloys Compd., 2009, 479(1/2), 532 [71] Aytug T., Simpson J. T., Lupini A. R., Trejo R. M., Jellison G. E., Ivanov I. N., Pennycook S. J., Hillesheim D. A., Winter K. O., Christen D. K., Hunter S. R., Haynes J. A., Nanotechnology, 2013, 24(31), 315602 [72] Rathousky J., Rohlfing D. F., Wark M., Brezesinski T., Smarsly B., Thin Solid Films, 2007, 515(16), 6541 [73] Song Y.-N., Lei M.-Q., Deng L.-F., Lei J., Li Z.-M., ACS Appl. Polym. Mater., 2020, 2(11), 4379 [74] Zeng S. N., Pian S. J., Su M. Y., Wang Z. N., Wu M. Q., Liu X. H., Chen M. Y., Xiang Y. Z., Wu J. W., Zhang M. N., Cen Q. Q., Tang Y. W., Zhou X. H., Huang Z. H., Wang R., Tunuhe A., Sun X. Y., Xia Z. G., Tian M. W., Chen M., Ma X., Yang L., Zhou J., Zhou H. M., Yang Q., Li X., Ma Y. G., Tao G. M., Science, 2021, 373(6555), 692 [75] Hsu P. C., Song A. Y., Catrysse P. B., Liu C., Peng Y. C., Xie J., Fan S. H., Cui Y., Science, 2016, 353(6303), 1019 [76] He J., Hoyano A., Energy Build., 2008, 40(6), 968 [77] Chen Y. P., Dang B. K., Fu J. Z., Wang C., Li C. C., Sun Q. F., Li H. Q., Nano Lett., 2021, 21(1), 397 [78] Bisetto A., Bortolin S., Del Col D., Exp. Therm. Fluid Sci., 2015, 68, 216 [79] Boyina K. S., Mahvi A. J., Chavan S., Park D., Kumar K., Lira M., Yu Y. X., Gunay A. A., Wang X. F., Miljkovic N., Int. J. Heat Mass Transfer, 2019, 145, 13 [80] Ghosh A., Beaini S., Zhang B. J., Ganguly R., Megaridis C. M., Langmuir, 2014, 30(43), 13103 [81] Lou D., Liu Q., Mei S., Yang S., Zhai Z., Zheng Z., Cheng J., Liu D., Surface Technology, 2019, 48(11), 202 [82] Mahapatra P. S., Ghosh A., Ganguly R., Megaridis C. M., Int. J. Heat Mass Transfer, 2016, 92, 877 [83] Moradi M., Chini S. F., Rahimian M. H., Aip Advances, 2020, 10(9), 6 [84] Yang K. S., Lin K. H., Tu C. W., He Y. Z., Wang C. C., Int. J. Heat Mass Transfer, 2017, 115, 1032 [85] Zhou D., Ji X., Dai C., Xu J., J. Mech. Eng., 2018, 54(10), 182 [86] Wang H., Zhao X., Wang J., Wang Z., Wang D., Tian J., Case Stud. Therm. Eng., 2021, 27, 101319 [87] Ludwicki J. M., Robinson F. L., Steen P. H., ACS Appl. Mater. Interfaces, 2020, 12(19), 22115 [88] Ji X. B., Zhou D. D., Dai C., Xu J. L., Int. J. Heat Mass Transfer, 2019, 132, 52 [89] Kang J.-Y., Kim T. K., Lee G. C., Jo H., Kim M. H., Park H. S., Ann. Nucl. Energy., 2019, 129, 375 [90] Kang J.-Y., Lee G. C., Kim M. H., Moriyama K., Park H. S., Int. J. Heat Mass Transfer, 2018, 117, 538 [91] Misyura S. Y., Int. Commun. Heat Mass Transfer, 2020, 112, 104474 [92] Shen C., Zhang C., Gao M., Li X., Liu Y., Ren L., Moita A. S., Int. J. Heat Fluid Flow, 2018, 74, 89 [93] Venkitesh V., Dash S., Int. J. Therm. Sci., 2022, 171, 107235 [94] Wang J. X., Birbarah P., Docimo D., Yang T. Y., Alleyne A. G., Miljkovic N., Phys. Rev. E, 2021, 103(2), 14 [95] Xie S., Ma X., Kong H., Bai S., Jiang M., Zhao J., Int. J. Heat Mass Transfer, 2021, 176, 121475 [96] Xu W., Zhang P., Int. J. Heat Mass Transfer, 2020, 154, 119642 [97] Zhang J.-Y., Fan L.-W., Li J.-Q., Yu Z.-T., Int. J. Heat Mass Transfer, 2020, 162, 120364 [98] Zhang J.-Y., Li J.-Q., Jiang L.-Y., Fan L.-W., Yu Z.-T., Int. J. Heat Mass Transfer, 2019, 138, 1117 [99] Benlattar M., Ibourk I., Adhiri R., Atmosphere, 2021, 12(9), 1198 [100] Liu C., Fan J., Bao H., Sol. Energy Mater. Sol. Cells, 2020, 216, 110700 |
[1] | YANG Shengqing, ZHAO Jinnan, CHEN Shuo, ZHAO Jingbo. Flexible Self-healing Cross-linked Polyamides Synthesized Through Bulk Michael Addition, Polycondensation, and Diels-Alder Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(4): 968-973. |
[2] | LI Xiaodong, SU Qing, LIU Ziqian, LUO Kexin, LI Guanghua, WU Qiaolin. A Triformylphloroglucinol-based Covalent Organic Polymer: Synthesis, Characterization and Its Application in Visible-light-driven Oxidative Coupling Reactions of Primary Amines [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1017-1023. |
[3] | ZHANG Yanmei, ZHANG Fan, ZHANG Xiang, XU Yingmei, QI Xiaohui, QUAN Chunshan. Assembly and Post-modification of Fe3O4@MIL-100(Fe) for Knoevenagel Condensation [J]. Chemical Research in Chinese Universities, 2018, 34(4): 655-660. |
[4] | HE Xinwei, WU Yuhao, FAN Chenli, LU Peng, ZUO Youpeng, SHANG Yongjia. Oleylamine-catalyzed Tandem Knoevenagel/Michael Addition of 1,3-Cyclohexanediones with Aromatic Aldehydes [J]. Chemical Research in Chinese Universities, 2018, 34(2): 186-190. |
[5] | WANG Qi, YANG Xiaohui, JIANG Yanqiu, HUO Hang, LI Defeng, LIN Kaifeng, XU Xianzhu. Easily Separated and Recyclable Amino-functionalized PorousSiO2 Beads with 3D Continuous Meso/Macropore Channels [J]. Chemical Research in Chinese Universities, 2018, 34(1): 13-18. |
[6] | ZHAO Yanping, ZHAO Jingbo, ZHANG Zhiyuan, ZHANG Junying. Aliphatic Segmented Poly(ether ester amide)s Synthesized from Hexanediamine, Sebacic Acid and Poly(ethylene glycol)s [J]. Chemical Research in Chinese Universities, 2016, 32(3): 505-511. |
[7] | TANG Duihai, ZHANG Weiran, WANG Yifan, MIAO Jing, QIAO Zhen'an, HUO Qisheng, ZHANG Lirong. co-Condensation Synthesis of Salicylaldimine Calcium Complex Containing Mesoporous Silica Nanoparticles as Carriers for Drug Release [J]. Chemical Research in Chinese Universities, 2014, 30(4): 531-537. |
[8] | SUN Huiyun, YIN Tiao, LI Yue, ZHAO Jingbo, ZHANG Zhiyuan, ZHANG Junying. Synthesis and Characterization of Biodegradable Alternating Polyesteramides from Mixed Diamidediols and Sebacic Acid [J]. Chemical Research in Chinese Universities, 2014, 30(1): 168-175. |
[9] | LI Yang, WANG Dequan, WANG Wei, LI Yanchun, HUANG Xuri, SUN Chiachung, JIN Mingxing. Evaporation-induced Morphology Pattern of Triblock Copolymer A5B10C5 in Thin Film:a Multibody DPD Simulation Study [J]. Chemical Research in Chinese Universities, 2014, 30(1): 144-148. |
[10] | FENG Lian-shun, LIU Ming-liang*, ZHANG Yi-bin and GUO Hui-yuan. New Way to Synthesize DW286―a Novel Fluoronaphthyridone Antibacterial Agent [J]. Chemical Research in Chinese Universities, 2011, 27(6): 981-983. |
[11] | TANG Jia, SONG Ji-yuan, WANG Ge*, YANG Mu and GUO Wan-chun. Novel, Green, Simple and Uncatalyzed Route for High Yield Preparation of Benzaldehyde Glycol Acetal [J]. Chemical Research in Chinese Universities, 2011, 27(5): 799-802. |
[12] | WANG Cui-e, JIN Jie, ZHANG Min, YU Shu-yan, SHANG Yong-jia* and HU Jin-song. Poly(ethylene glycol)-supported Piperazine——Synthesis and Application in Knoevenagel Condensation [J]. Chemical Research in Chinese Universities, 2010, 26(2): 263-267. |
[13] | YING An-guo, LIU Luo, WU Guo-feng, CHEN Xin-zhi*, YE Wei-dong*, ....... Knoevenagel Condensation Catalyzed by DBU Brönsted Ionic Liquid without Solvent [J]. Chemical Research in Chinese Universities, 2009, 25(6): 876-881. |
[14] | CAI Xi-mei, WANG Qi-fang and YAN Chao-guo*. Efficient Synthesis of Dicycloalkenopyridines: One-pot Multicomponent Condensation of Aldehydes with Cyclic Ketones [J]. Chemical Research in Chinese Universities, 2009, 25(5): 657-661. |
[15] | HE Rong-huan*, SUN Bao-ying, YANG Jing-shuai and CHE Quan-tong. Synthesis of Poly[2,2′-(m-phenylene)-5,5′-bibenzimidazole] andPoly(2,5-benzimidazole) by Microwave Irradiation [J]. Chemical Research in Chinese Universities, 2009, 25(4): 585-589. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||