[1] Valdes A. M., Walter J., Segal E., Spector T. D., BMJ, 2018, 361, k2179. [2] Zheng S., Chang W., Liu W., Liang G., Xu Y., Lin F., Journal of Chemical Information and Modeling, 2019, 59, 1215. [3] Zhang Y., Liu X., Li F., Yin J., Yang H., Li X., Liu X., Chai X., Niu T., Zeng S., Jia Q., Zhu F., Nucleic Acids Res., 2024, 52, D1355. [4] Fan H. X., Sheng S., Zhang F., CNS Neurosci. Ther., 2022, 28, 1675. [5] Kim J., Lee H. K., Front. Immunol., 2021, 12, 807648. [6] Libertucci J., Young V. B., Nat. Microbiol., 2019, 4, 35. [7] Weersma R. K., Zhernakova A., Fu J., Gut, 2020, 69, 1510. [8] Klünemann M., Andrejev S., Blasche S., Mateus A., Phapale P., Devendran S., Vappiani J., Simon B., Scott T. A., Kafkia E., Nature, 2021, 597, 533. [9] Forslund K., Hildebrand F., Nielsen T., Falony G., Le Chatelier E., Sunagawa S., Prifti E., Vieira-Silva S., Gudmundsdottir V., Krogh Pedersen H., Nature, 2015, 528, 262. [10] Freedberg D. E., Toussaint N. C., Chen S. P., Ratner A. J., Whittier S., Wang T. C., Wang H. H., Abrams J. A., Gastroenterology, 2015, 149, 883. [11] Wang S., Ju D., Zeng X., Biomedicines, 2024, 12, 194. [12] Yin J., Chen X., Li X., Kang G., Wang P., Song Y., Ijaz U. Z., Yin H., Huang H., Frontiers in Cellular and Infection Microbiology, 2022, 12, 920986. [13] Kipf T. N., Welling M., arXiv e-prints, 2016, arXiv:1609.02907. [14] Chen M., Wei Z., Huang Z., Ding B., Li Y., Simple and Deep Graph Convolutional Networks, International Conference on Machine Learning, PMLR, 2020, 1725. [15] Zhang S., Tong H., Xu J., Maciejewski R., Computational Social Networks, 2019, 6, 1. [16] Yang H., Ding Y., Tang J., Guo F., Knowledge-based Systems, 2022, 238, 107888. [17] Long Y., Wu M., Kwoh C. K., Luo J., Li X., Bioinformatics, 2020, 36, 4918. [18] Hitchings R., Kelly L., Trends in Pharmacological Sciences, 2019, 40, 495. [19] Zimmermann M., Zimmermann-Kogadeeva M., Wegmann R., Goodman A. L., Science, 2019, 363, eaat9931. [20] Tang J., Wu X., Mou M., Wang C., Wang L., Li F., Guo M., Yin J., Xie W., Wang X., Wang Y., Ding Y., Xue W., Zhu F., Nucleic Acids Research, 2021, 49, D715. [21] Hua M., Yu S., Liu T., Yang X., Wang H., Interdiscip. Sci., 2022, 14, 669. [22] Zeng X., Yang X., Fan J., Tan Y., Ju L., Shen W., Wang Y., Wang X., Chen W., Ju D., Nucleic Acids Research, 2021, 49, D776. [23] Sun Y., Zhang D., Cai S., Frontiers in Cellular and Infection Microbiology, 2018, 8, 424. [24] Rajput A., Thakur A., Sharma S., Kumar M., Nucleic Acids Res., 2018, 46, D894. [25] Andersen P. I., Ianevski A., Lysvand H., Vitkauskiene A., Oksenych V., Bjoras M., Telling K., Lutsar I., Dumpis U., Irie Y., Tenson T., Kantele A., Kainov D. E., Int. J. Infect. Dis., 2020, 93, 268. [26] Davis A. P., Grondin C. J., Johnson R. J., Sciaky D., Wiegers J., Wiegers T. C., Mattingly C. J., Nucleic Acids Research, 2021, 49, D1138. [27] Lipscomb C. E., Bulletin of The Medical Library Association, 2000, 88, 265. [28] Yao G., Zhang W., Yang M., Yang H., Wang J., Zhang H., Wei L., Xie Z., Li W., Genomics, Proteomics & Bioinformatics, 2020, 18, 760. [29] Norouzi M., Fleet D. J., Salakhutdinov R., Hamming Distance Metric Learning, Proceedings of the 26th International Conference on Neural Information Processing Systems, 2012, 1061. [30] Valdeolivas A., Tichit L., Navarro C., Perrin S., Odelin G., Levy N., Cau P., Remy E., Baudot A., Bioinformatics, 2019, 35, 497. [31] Ghulam A., Lei X., Guo M., Bian C., IEEE Access, 2020, 8, 72021. [32] Liu T. H., Zhang C. Y., Zhang H., Jin J., Li X., Liang S. Q., Xue Y. Z., Yuan F. L., Zhou Y. H., Bian X. W., Wei H., Imeta, 2024, 3, e199. [33] Zhou Z., Zhuo L., Fu X., Zou Q., Briefings in Bioinformatics, 2024, 25, bbad483. [34] Tian Z., Yu Y., Fang H., Xie W., Guo M., Brief. Bioinform., 2023, 24, bbac634. [35] Deng L., Huang Y., Liu X., Liu H., Bioinformatics, 2022, 38, 1118. [36] Li J., Miao B., Wang S., Dong W., Xu H., Si C., Wang W., Duan S., Lou J., Bao Z., Briefings in Bioinformatics, 2022, 23, bbac261. [37] Diviccaro S., Cioffi L., Piazza R., Caruso D., Melcangi R. C., Giatti S., Biomolecules, 2023, 13, 1325. [38] Pryor R., Norvaisas P., Marinos G., Best L., Thingholm L. B., Quintaneiro L. M., De Haes W., Esser D., Waschina S., Lujan C., Cell, 2019, 178, 1299. [39] Cui J., Ramesh G., Wu M., Jensen E. T., Crago O., Bertoni A. G., Gao C., Hoffman K. L., Sheridan P. A., Wong K. E., Diabetes, 2022, 71, 2438. [40] Huang Y.-H., Wu Y.-H., Tang H.-Y., Chen S.-T., Wang C.-C., Ho W. -J., Lin Y.-H., Liu G.-H., Lin P.-Y., Lo C.-J., Pharmaceutics, 2022, 14, 1857. [41] Mueller N. T., Differding M. K., Zhang M., Maruthur N. M., Juraschek S. P., Miller III E. R., Appel L. J., Yeh H.-C., Diabetes Care, 2021, 44, 1462. [42] Dikeocha I. J., Al-Kabsi A. M., Miftahussurur M., Alshawsh M. A., The FASEB Journal, 2022, 36, e22350. [43] Wang X., Zhang Y., Li Z., Duan Z., Guo M., Wang Z., Zhu F., Xue W., Nucleic Acids Res., 2024, 52, W272. [44] Li Y., Li F., Duan Z., Liu R., Jiao W., Wu H., Zhu F., Xue W., Nucleic Acids Res., 2025, 53, D595. [45] Zheng L., Shi S., Lu M., Fang P., Pan Z., Zhang H., Zhou Z., Zhang H., Mou M., Huang S., Tao L., Xia W., Li H., Zeng Z., Zhang S., Chen Y., Li Z., Zhu F., Genome Biol., 2024, 25, 41. [46] Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., Gable A. L., Fang T., Doncheva N. T., Pyysalo S., Bork P., Jensen L. J., von Mering C., Nucleic Acids Research, 2023, 51, D638. [47] UniProt C., Nucleic Acids Research, 2023, 51, D523. [48] Kanehisa M., Furumichi M., Sato Y., Kawashima M., Ishiguro-Watanabe M., Nucleic Acids Research, 2023, 51, D587. [49] Caspi R., Billington R., Keseler I. M., Kothari A., Krummenacker M., Midford P. E., Ong W. K., Paley S., Subhraveti P., Karp P. D., Nucleic Acids Research, 2020, 48, D445. [50] Wuyts S., Alves R., Zimmermann-Kogadeeva M., Nishijima S., Blasche S., Driessen M., Geyer P. E., Hercog R., Kartal E., Maier L., Muller J. B., Garcia Santamarina S., Schmidt T. S. B., Sevin D. C., Telzerow A., Treit P. V., Wenzel T., Typas A., Patil K. R., Mann M., Kuhn M., Bork P., Molecular Systems Biology, 2023, 19, e11525. |