Chemical Research in Chinese Universities ›› 2026, Vol. 42 ›› Issue (1): 184-211.doi: 10.1007/s40242-025-5152-3
• Review Article • Previous Articles Next Articles
ZHAO Xiaona1, HOU Changan1, SUN Banglun1, WANG Chuanjiao1, WANG Danhong1,2
Received:2025-07-19
Online:2026-02-01
Published:2026-01-28
Contact:
WANG Danhong,E-mail:dhwang@nankai.edu.cn
E-mail:dhwang@nankai.edu.cn
Supported by:ZHAO Xiaona, HOU Changan, SUN Banglun, WANG Chuanjiao, WANG Danhong. Research Progress of Porous Framework MOFs- and COFs-based Materials for Photocatalytic CO2 Reduction[J]. Chemical Research in Chinese Universities, 2026, 42(1): 184-211.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] Song X., Wu Y., Zhang X., Li X., Zhu Z., Ma C., Yan Y., Huo P., Yang G., Chemical Engineering Journal, 2021, 408, 127292. [2] Zhai R., Zhang L., Gu M., Zhao X., Zhang B., Cheng Y., Zhang J., Small, 2023, 19, 2207840. [3] Li P., Liu Y., Yan D., ChemSusChem, 2025, 18, e202401174. [4] Zhao L., Wang J., Yang W., Hou H., Yan R., Environ. Chem. Lett., 2023, 21, 1499. [5] Rodríguez‐Camargo A., Endo K., Lotsch B. V., Angew. Chem. Int. Ed., 2024, 63, e202413096. [6] Wan L., Chen R., Cheung D. W. F., Wu L., Luo J., J. Mater. Chem. A, 2023, 11, 12499. [7] Zhu Z., Zhu Y., Ren Z., Liu D., Yue F., Sheng D., Shao P., Huang X., Feng X., Yin A.-X., Xie J., Wang B., J. Am. Chem. Soc., 2024, 146, 1572. [8] She X., Wang Y., Xu H., Tsang S. C. E., Lau S. P., Angew. Chem. Int. Ed., 2022, 61, e202211396. [9] Ma W., He X., Wang W., Xie S., Zhang Q., Wang Y., Chem. Soc. Rev., 2021, 50, 12897. [10] Rhimi B., Zhou M., Yan Z., Cai X., Jiang Z., Nano-Micro Lett., 2024, 16, 64. [11] Yergaziyeva G., Kuspanov Z., Mambetova M., Khudaibergenov N., Makayeva N., Daulbayev C., Journal of CO2 Utilization, 2024, 80, 102682. [12] White J. L., Baruch M. F., Pander J. E., Hu Y., Fortmeyer I. C., Park J. E., Zhang T., Liao K., Gu J., Yan Y., Shaw T. W., Abelev E., Bocarsly A. B., Chem. Rev., 2015, 115, 12888. [13] Li N., Liu J., Dong B., Lan Y., Angew. Chem. Int. Ed., 2020, 59, 20779. [14] Liu M., Mu Y.-F., Yao S., Guo S., Guo X.-W., Zhang Z.-M., Lu T.-B., Applied Catalysis B: Environmental, 2019, 245, 496. [15] Wang F., Lu Z., Guo H., Zhang G., Li Y., Hu Y., Jiang W., Liu G., Chemistry A European J., 2023, 29, e202202716. [16] Chi X., Lan Z., Chen Q., Zhang X., Chen X., Zhang G., Wang X., Angew. Chem. Int. Ed., 2023, 62, e202303785. [17] Zhang Y., Song H., Wang Y., Song Y., Ren F., Jiang Q., Qian Q., Han B., Catal. Sci. Technol., 2025, 15, 3487. [18] Chang H., Zhou Y., Zhang S., Zheng X., Xu Q., Adv. Materials Inter., 2021, 8, 2100205. [19] Chen X., Wei Z., Li Y., Sun Q., Ding N., Zheng L., Liu S., Chen W., Li S., Pang S., Inorg. Chem., 2023, 62, 10572. [20] Usman M., Zeb Z., Ullah H., Suliman M. H., Humayun M., Ullah L., Shah S. N. A., Ahmed U., Saeed M., Journal of Environmental Chemical Engineering, 2022, 10, 107548. [21] Dhakshinamoorthy A., Li Z., Garcia H., Chem. Soc. Rev., 2018, 47, 8134. [22] Li Z., Paitandi R. P., Tsutsui Y., Matsuda W., Nobuoka M., Chen B., Ghosh S., Tanaka T., Suda M., Zhu T., Kageyama H., Miyake Y., Shinokubo H., Takagi M., Shimazaki T., Tachikawa M., Suzuki K., Kaji H., Ando Y., Ezaki T., Seki S., Proc. Natl. Acad. Sci. USA, 2025, 122, e2424314122. [23] Li Z., Yang C., Su Y., Cheng Y., Cui Y., Liu S., Fang Y., RSC Adv., 2023, 13, 31616. [24] Chen H., Zhao C., Chen X., Chemistry An Asian Journal, 2025, 20, e202500106. [25] Francis Kurisingal J., Kim H., Hyeak Choe J., Seop Hong C., Coordination Chemistry Reviews, 2022, 473, 214835. [26] Fan Z., Cai Y., Yang Z., Zhang X., Shao R., Zhong S., Zhao L., Liu D., Bai S., Applied Catalysis B: Environment and Energy, 2024, 351, 123979. [27] Ali S., Ismail P. M., Khan M., Dang A., Ali S., Zada A., Raziq F., Khan I., Khan M. S., Ateeq M., Khan W., Bakhtiar S. H., Ali H., Wu X., Shah M. I. A., Vinu A., Yi J., Xia P., Qiao L., Nanoscale, 2024, 16, 4352. [28] Yuan Z., Zhu X., Gao X., An C., Wang Z., Zuo C., Dionysiou D. D., He H., Jiang Z., Environmental Science and Ecotechnology, 2024, 20, 100368. [29] Zhong K., Sun P., Xu H., Small, 2024, 21, 2310677. [30] Deng F., Peng J., Li X., Luo X., Ganguly P., Pillai S. C., Ren B., Ding L., Dionysiou D. D., Journal of Cleaner Production, 2023, 416, 137957. [31] Liang X., Wang X., Zhang X., Lin S., Ji M., Liu Q., Wang M., ACS Catal., 2024, 14, 4648. [32] Ma Y., Zhang Y., Xie G., Huang Z., Peng L., Yu C., Xie X., Qu S., Zhang N., ACS Catal., 2024, 14, 1468. [33] Anus A., Park S., Chemical Engineering Journal, 2024, 486, 150213. [34] Sadanandan A. M., Yang J.-H., Devtade V., Singh G., Dharmarajan N., Fawaz M., Lee J. M., Tavakkoli E., Jeon C.-H., Kumar P., Vinu A., Progress in Materials Science, 2024, 142, 101242. [35] Deng A., Sun Y., Gao Z., Yang S., Liu Y., He H., Zhang J., Liu S., Sun H., Wang S., Nano Energy, 2023, 108, 108228. [36] Gong L.-J., Liu L.-Y., Zhao S.-S., Yang S.-L., Si D.-H., Wu Q.-J., Wu Q., Huang Y.-B., Cao R., Chemical Engineering Journal, 2023, 458, 141360. [37] Gong Y., Mei J., Shi W., Liu J., Zhong D., Lu T., Angew. Chem. Int. Ed., 2024, 63, e202318735. [38] Fu P., Chen C., Wu C., Meng B., Yue Q., Chen T., Yin W., Chi X., Yu X., Li R., Wang Y., Zhang Y., Luo W., Liu X., Han Y., Wang J., Xi S., Zhou Y., Angew. Chem. Int. Ed., 2025, 64, e202415202. [39] Zhao L., Bian J., Zhang X., Bai L., Xu L., Qu Y., Li Z., Li Y., Jing L., Advanced Materials, 2022, 34, 2205303. [40] Xie S., Deng C., Huang Q., Zhang C., Chen C., Zhao J., Sheng H., Angew. Chem. Int. Ed., 2023, 62, e202216717. [41] Wang S., Wang J., Wang Y., Sui X., Wu S., Dai W., Zhang Z., Ding Z., Long J., ACS Catal., 2024, 14, 10760. [42] Li H., Eddaoudi M., O’Keeffe M., Yaghi O. M., Nature, 1999, 402, 276. [43] Cote A. P., Benin A. I., Ockwig N. W., O’Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310, 1166. [44] Zeng J.-Y., Wang X.-S., Xie B.-R., Li Q.-R., Zhang X.-Z., J. Am. Chem. Soc., 2022, 144, 1218. [45] Millward A. R., Yaghi O. M., J. Am. Chem. Soc., 2005, 127, 17998. [46] Rowsell J. L. C., Spencer E. C., Eckert J., Howard J. A. K., Yaghi O. M., Science, 2005, 309, 1350. [47] Eddaoudi M., Kim J., Rosi N., Vodak D., Wachter J., O’Keeffe M., Yaghi O. M., Science, 2002, 295, 469. [48] Eddaoudi M., Li H., Yaghi O. M., J. Am. Chem. Soc., 2000, 122, 1391. [49] Kong X., He T., Zhou J., Zhao C., Li T., Wu X., Wang K., Li J., Small, 2021, 17, 2005357. [50] Zhang P., Tuerhong R., Yu Y., Lan Y., Zhang Y., Su X., Han L., J. Mater. Chem. C, 2025, 13, 5439. [51] Zhao H., Duan J., Zhang Z., Wang W., ChemCatChem, 2022, 14, e202101733. [52] Zhu C., Gong C., Cao D., Ma L., Liu D., Zhang L., Li Y., Peng Y., Yuan G., Angew. Chem. Int. Ed., 2025, 64, e202504348. [53] Yin H., Liu Z., Yan X., Jiang N., Zhang Z., Hao S., Song Y., Li Z., Bai L., Jing L., Applied Catalysis B: Environment and Energy, 2025, 372, 125289. [54] Francis Kurisingal J., Kim H., Hyeak Choe J., Seop Hong C., Coordination Chemistry Reviews, 2022, 473, 214835. [55] Ping Y., Wang C., Hou C., Shang Z., Wang D., Mater. Horiz., 2025, 12, 4724. [56] Hussain M. Z., Yang Z., Huang Z., Jia Q., Zhu Y., Xia Y., Advanced Science, 2021, 8, 2100625. [57] Liu K.-G., Bigdeli F., Panjehpour A., Larimi A., Morsali A., Dhakshinamoorthy A., Garcia H., Coordination Chemistry Reviews, 2023, 493, 215257. [58] Liang J., Yu H., Shi J., Li B., Wu L., Wang M., Advanced Materials, 2023, 35, 2209814. [59] Rhimi B., Liu Z., Liu Z., Zhou M., Shi W., Jiang Z., Coordination Chemistry Reviews, 2025, 537, 216706. [60] Shen Y., Pan T., Wang L., Ren Z., Zhang W., Huo F., Advanced Materials, 2021, 33, 2007442. [61] Cai Z., Liu H., Dai J., Li B., Yang L., Wang J., Zhu H., Nat. Commun., 2025, 16, 2601. [62] Chen J., Yuan D., Wang Y., Adv. Funct. Materials, 2023, 33, 2304071. [63] Chen M., Zhao H., Zhang K., Zhu H., Duan H., Ren X.-M., Inorg. Chem. Front., 2025, 12, 2698. [64] Lei T., Mi Y., Wei Z., Li S., Pang S., Dalton Trans., 2023, 52, 1761. [65] Cheng D., Ding L., Gong C., Zhang L., Ma L., Peng Y., Yuan G., ACS Materials Lett., 2025, 7, 1235. [66] Meng Y., Luo Y., Shi J., Ding H., Lang X., Chen W., Zheng A., Sun J., Wang C., Angew. Chem. Int. Ed., 2020, 59, 3624. [67] Li Q., Li X., Zhang B., Jiang B., Adv. Funct. Materials, 2025, 35, 2506421. [68] Lin W., Lin F., Lin J., Xiao Z., Yuan D., Wang Y., J. Am. Chem. Soc., 2024, 146, 16229. [69] Chen F., Zheng H., Yusran Y., Li H., Qiu S., Fang Q., Chem. Soc. Rev., 2025, 54, 484. [70] He Z., Goulas J., Parker E., Sun Y., Zhou X., Fei L., Catalysis Today, 2023, 409, 103. [71] Bika P., Papailias I., Giannakopoulou T., Tampaxis C., Steriotis T. A., Trapalis C., Dallas P., Catalysts, 2023, 13, 1331. [72] Lin F., Lin W., Lin J., Xiao Z., Hui Y., Chen J., Wang Y., J. Mater. Chem. A, 2025, 13, 3287. [73] Mohata S., Majumder P., Banerjee R., Chem. Soc. Rev., 2025, 54, 6062. [74] Ou S., Zhou M., Chen W., Zhang Y., Liu Y., ChemSusChem, 2022, 15, e202200184. [75] Dong M., Li W., Zhou J., You S., Sun C., Yao X., Qin C., Wang X., Su Z., Chin. J. Chem., 2022, 40, 2678. [76] Wang L., Mao J., Huang G., Zhang Y., Huang J., She H., Liu C., Liu H., Wang Q., Chemical Engineering Journal, 2022, 446, 137011. [77] Ran L., Li Z., Ran B., Cao J., Zhao Y., Shao T., Song Y., Leung M. K. H., Sun L., Hou J., J. Am. Chem. Soc., 2022, 144, 17097. [78] López-Magano A., Daliran S., Oveisi A. R., Mas-Ballesté R., Dhakshinamoorthy A., Alemán J., Garcia H., Luque R., Advanced Materials, 2023, 35, 2209475. [79] Qin L., Sun D., Ma D., Wang Z., Liu Y., Li Q., Song F., Wu K., Gan L., Zhou T., Zhang J., Advanced Materials, 2025, 37, 2504205. [80] Wagner A., Sahm C. D., Reisner E., Nat. Catal., 2020, 3, 775. [81] Xiong X., Zhao Y., Shi R., Yin W., Zhao Y., Waterhouse G. I. N., Zhang T., Science Bulletin, 2020, 65, 987. [82] Huang Q., Niu Q., Li X.-F., Liu J., Sun S.-N., Dong L.-Z., Li S.-L., Cai Y.-P., Lan Y.-Q., Sci. Adv., 2022, 8, eadd5598. [83] Huang Z.-W., Hu K.-Q., Li X.-B., Bin Z.-N., Wu Q.-Y., Zhang Z.-H., Guo Z.-J., Wu W.-S., Chai Z.-F., Mei L., Shi W.-Q., J. Am. Chem. Soc., 2023, 145, 18148. [84] Zhou J., Li J., Kan L., Zhang L., Huang Q., Yan Y., Chen Y., Liu J., Li S.-L., Lan Y.-Q., Nat. Commun., 2022, 13, 4681. [85] Hu M., Liu J., Song S., Wang W., Yao J., Gong Y., Li C., Li H., Li Y., Yuan X., Fang Z., Xu H., Song W., Li Z., ACS Catal., 2022, 12, 3238. [86] Zhou D., Chen Q., Zhang J., Wang T., Liu Z., Angew. Chem. Int. Ed., 2025, 64, e202500329. [87] Hou Y., Zhou P., Liu F., Lu Y., Tan H., Li Z., Tong M., Ni J., Angew. Chem. Int. Ed., 2024, 63, e202318562. [88] Hariri R., Dehghanpour S., Applied Organom Chemis, 2021, 35, e6422. [89] Fu Y., Sun D., Chen Y., Huang R., Ding Z., Fu X., Li Z., Angew. Chem. Int. Ed., 2012, 51, 3364. [90] Chen E., Qiu M., Zhang Y., Zhu Y., Liu L., Sun Y., Bu X., Zhang J., Lin Q., Advanced Materials, 2018, 30, 1704388. [91] He Y., Li C., Chen X.-B., Shi Z., Feng S., ACS Appl. Mater. Interfaces, 2022, 14, 28977. [92] Dong Y., Jiang Y., Ni S., Guan G., Zheng S., Guan Q., Pei L., Yang Q., Small, 2024, 20, 2308005. [93] Zhang L., Zhou G., Chen G., Wang H., Zhao Q., Yin W., Yi J., Zhu X., Wang X., Ning X., Chemical Engineering Journal, 2024, 497, 154701. [94] Feng H., Lv L., Huang Y., Li T., Liu Y., Wang Y., Journal of Colloid and Interface Science, 2025, 684, 283. [95] Chen L., Wang H.-F., Li C., Xu Q., Chem. Sci., 2020, 11, 5369. [96] Li J., Huang H., Xue W., Sun K., Song X., Wu C., Nie L., Li Y., Liu C., Pan Y., Jiang H.-L., Mei D., Zhong C., Nat Catal, 2021, 4, 719. [97] Huang Z., Zhang T., Ma Y., Xie G., Liao L., Yu C., Xie X., Zhang N., Materials Today Energy, 2025, 49, 101834. [98] Feng J., Li W., Chen T., Zeng Z., Tian M., Ji W., Guo Y., Min S., Liu X., Advanced Science, 2025, 12, 2411673. [99] Huang R., Ma P., Zhang Y., Chen K., Wang L., Wang R., Shi X., Yu Y., Applied Catalysis B: Environment and Energy, 2025, 367, 125120. [100] Zhang T., Sun X., Weng S., Zhang S., Xu C., Gao X., Zhu N., Journal of Molecular Structure, 2025, 1321, 140190. [101] Gu L., Deng G., Huang R., Shi X., Nanoscale, 2022, 14, 15821. [102] Hou Y., Ma H., Zhu D., Li R., Zhao Z., Li C.-X., Cui C.-X., Wang J.-C., Dalton Trans., 2025, 54, 405. [103] Cui J.-X., Wang L.-J., Feng L., Meng B., Zhou Z.-Y., Su Z.-M., Wang K., Liu S., J. Mater. Chem. A, 2021, 9, 24895. [104] Song W., Chen S., Ren X., Su X., Song C., Li Y., Chen L., Bai F., Small, 2025, 21, 2409117. [105] Ma R., Zhang Y., Yu F., Wei S., Xing Y., Qiao C., Xia Z., Yang Q., Xie G., Chen S., ACS Catal., 2025, 15, 3046. [106] Geng W., Xiong Y., Chen C., Ning S., Xiong Z., Deng S., Tan Y., Song X., Pan M., Mayor M., Su C., Angew. Chem. Int. Ed., 2025, 64, e202505546. [107] Zhang Y., Cao L., Bai G., Lan X., Small, 2023, 19, 2300035. [108] Guo K., Zhu X., Peng L., Fu Y., Ma R., Lu X., Zhang F., Zhu W., Fan M., Chemical Engineering Journal, 2021, 405, 127011. [109] Wang W., Zhang X., Lv G., Yan T., Li J., Huang H., Applied Catalysis B: Environment and Energy, 2025, 372, 125299. [110] Rath B. B., Krause S., Lotsch B. V., Adv. Funct. Materials, 2024, 34, 2309060. [111] Dai N., Qian Y., Wang D., Huang J., Guan X., Lin Z., Yang W., Wang R., Huang J., Zang S.-Q., Jiang H.-L., Precision Chemistry, 2024, 2, 600. [112] Zhang Y.-K., Zhao L., Terent’ev A. O., He L.-N., J. Mater. Chem. A, 2025, 13, 1407. [113] Shanavaz H., Yogesh Kumar K., Prashanth M. K., Jhaa G., Parashuram L., Alharethy F., Raghu M. S., Jeon B.-H., Microporous and Mesoporous Materials, 2024, 364, 112876. [114] Lu M., Li Q., Liu J., Zhang F.-M., Zhang L., Wang J.-L., Kang Z.-H., Lan Y.-Q., Applied Catalysis B: Environmental, 2019, 254, 624. [115] Yuan X., Xiao D., Zhao C., Zhang C., Small, 2025, 21, 2411316. [116] Skorjanc T., Shetty D., Mahmoud M. E., Gándara F., Martinez J. I., Mohammed A. K., Boutros S., Merhi A., Shehayeb E. O., Sharabati C. A., Damacet P., Raya J., Gardonio S., Hmadeh M., Kaafarani B. R., Trabolsi A., ACS Appl. Mater. Interfaces, 2022, 14, 2015. [117] Liu J., Li J., Lin Z., Ye S., Lin W., Yang X., Gao S., Cao R., Small, 2025, 21, 2411315. [118] Xu N., Diao Y., Qin X., Xu Z., Ke H., Zhu X., Dalton Trans., 2020, 49, 15587. [119] Spies L., Carmo M. E. G., Döblinger M., Xu Z., Xue T., Hartschuh A., Bein T., Schneider J., Patrocinio A. O. T., Small, 2025, 21, 2500550. [120] Wang W., Chen D., Li F., Xiao X., Xu Q., Chem, 2024, 10, 86. [121] Guo F., Wei Y.-P., Wang S.-Q., Zhang X.-Y., Wang F.-M., Sun W.-Y., J. Mater. Chem. A, 2019, 7, 26490. [122] Jiang Y., Yu Y., Zhang X., Weinert M., Song X., Ai J., Han L., Fei H., Angew. Chem. Int. Ed., 2021, 60, 17388. [123] Mu Q., Zhu W., Li X., Zhang C., Su Y., Lian Y., Qi P., Deng Z., Zhang D., Wang S., Zhu X., Peng Y., Applied Catalysis B: Environmental, 2020, 262, 118144. [124] Ikreedeegh R. R., Tasleem S., Hossen A., Fuel, 2024, 360, 130561. [125] Ding L., Ding Y., Bai F., Chen G., Zhang S., Yang X., Li H., Wang X., Inorg. Chem., 2023, 62, 2289. [126] Hou Y., Zhang Y., Jiao S., Qin J., Liu L., Xie Z., Guan Z., Yang J., Li Q., Fu X., J. Mater. Chem. A, 2025, 13, 5007. [127] Mu Q., Su Y., Wei Z., Sun H., Lian Y., Dong Y., Qi P., Deng Z., Peng Y., Journal of Catalysis, 2021, 397, 128. [128] Xu X., Labidi A., Luo T., Gao T., Nuraje N., Zvereva I., Wang C., J. Mater. Chem. A, 2025, 13, 11389. [129] Saadh M. J., Mustafa M. A., Altalbawy F. M. A., Ballal S., Prasad G. V. S., Al-saray M. J., Abbas J. K., Al-Maliky M. A., Mohammed S. K., Alam M. M., Elawady A., Journal of Molecular Structure, 2025, 1325, 140830. [130] Cai Z., Liu H., Dai J., Li B., Yang L., Wang J., Zhu H., Nat. Commun., 2025, 16, 2601. [131] Choi K. M., Kim D., Rungtaweevoranit B., Trickett C. A., Barmanbek J. T. D., Alshammari A. S., Yang P., Yaghi O. M., J. Am. Chem. Soc., 2017, 139, 356. [132] Becerra J., Nguyen D.-T., Gopalakrishnan V.-N., Do T.-O., ACS Appl. Energy Mater., 2020, 3, 7659. [133] Zhao Y., Cui Y., Xie L., Geng K., Wu J., Meng X., Hou H., Inorg. Chem., 2023, 62, 1240. [134] Liu Y., Lv L., Feng H., Liu H., Wang Y., ACS Appl. Nano Mater., 2024, 7, 27846. [135] Yang X., Lan X., Zhang Y., Li H., Bai G., Applied Catalysis B: Environmental, 2023, 325, 122393. [136] An X., Bian J., Zhu K., Liu R., Liu H., Qu J., Chemical Engineering Journal, 2022, 442, 135279. [137] Wang X., Wang Z., Liu Y., Peng W., Fu X., Zhou J., Han L., Hua Y., Zhou Z.-Y., Dalton Trans., 2025, 54, 1625. |
| [1] | WANG Siyu, DAI Yutong, ZHANG Jing, TONG Yiling, YANG Jingru, LIU Songyao, DAI Zhifeng, MENG Xiangju. Construction of Functional Metal-Organic Frameworks and Their Applications in the Biomedical Field [J]. Chemical Research in Chinese Universities, 2026, 42(1): 63-83. |
| [2] | LUO Yingqi, YANG Xiaoxiao, SUN Hejia, WANG Ning, LIU Yonghong, LI Yunfeng. Enhanced Photocatalytic Antibiotic Degradation Through BiOBr/TiO2 Heterojunction Engineering: Synergistic Charge Separation and Band Alignment Effects [J]. Chemical Research in Chinese Universities, 2026, 42(1): 283-293. |
| [3] | WANG Zicong, LI Xi, LIU Yunlong, WU Xiangsi, WU Xianwen, XIA Wu. In situ-illuminated XPS Investigation of S-Scheme Inorganic/Organic Hybrid Nanofiber Photocatalysts for Efficient CO2 Photoreduction [J]. Chemical Research in Chinese Universities, 2026, 42(1): 343-350. |
| [4] | YU Junhao, ZHU Rongjiao, LI Rongjin. Chiral Covalent Organic Frameworks for Circularly Polarized-light Detection: A Review [J]. Chemical Research in Chinese Universities, 2025, 41(6): 1586-1606. |
| [5] | YANG Yufei, ZHAO Yi, YIN Lifang, ZHAO Jiaying, GAO Qiang, SU Tan, ZHANG Heyang, YIN Yajun, SU Zhongmin, ZOU Luyi. Mechanistic Insights into S-Doped g-C3N4 for Enhanced Photocatalytic Performance: A Theoretical Study [J]. Chemical Research in Chinese Universities, 2025, 41(5): 1067-1075. |
| [6] | WANG Kangning, YANG Tingting, Graham DAWSON, ZHANG Jinfeng, SHAO Chunfeng, DAI Kai. NiB as a Non-noble Metal Cocatalyst Electronic Bridge to Enhance the Photocatalytic Hydrogen Production of Cd3(C3N3S3)2 [J]. Chemical Research in Chinese Universities, 2025, 41(4): 716-725. |
| [7] | LIU Chuang, GAO Tengyuan, WANG Guohong, CHENG Qiang, WANG Kai. Efficient CO2 Photoreduction into Solar Fuels over MoO3-x/COF S-Scheme Photocatalyst [J]. Chemical Research in Chinese Universities, 2025, 41(4): 726-733. |
| [8] | YU Hong, ZHANG Xuening, CHEN Qian, ZHOU Pan-Ke, XU Fei, WANG Hongqiang, CHEN Xiong. Linkage Conversion in Pyrene-based Covalent Organic Frameworks for Promoted Photocatalytic Hydrogen Peroxide Generation in a Biphasic System [J]. Chemical Research in Chinese Universities, 2025, 41(4): 734-740. |
| [9] | SUN Banglun, HOU Changan, ZHAO Xiaona, WANG Chuanjiao, WANG Danhong. Ru Nanoparticles on Mo-MOF with a[Mo8O26(1-Meim)2]4- Structure for Visible Light Photocatalytic Nitrogen Fixation [J]. Chemical Research in Chinese Universities, 2025, 41(4): 771-780. |
| [10] | MENG Aoyun, LI Juan, CAO Qianqian, LI Zhenhua, LI Wen, LI Zhen, ZHANG Jinfeng, FU Junwei. BiOBr/Cd0.805Zn0.195S Nanocomposite with S-Scheme Heterojunction for Efficient and Stable Photocatalytic Hydrogen Evolution Without Co-catalysts [J]. Chemical Research in Chinese Universities, 2025, 41(4): 790-798. |
| [11] | TANG Liguang, XU Huan, XU Yangrui, CHENG Yu, CHU Yansong, FENG Sheng, LIU Haixia, LIU Xinlin, SONG Minshan, LU Ziyang. Cu Sites Synergistic Double Heterojunction Engineering for Enhancing CO2 Photoreduction [J]. Chemical Research in Chinese Universities, 2025, 41(4): 812-821. |
| [12] | WU Jingyao, ZHAO Qiang, LV Yujing, WANG Shuo, WANG Pengzhao, LONG Jinlin, WANG Ying. Pyridine Nitrogen-modified Covalent Organic Frameworks for Photocatalytic One-step 2e-H2O2 Production [J]. Chemical Research in Chinese Universities, 2025, 41(4): 822-830. |
| [13] | REN Qiao, FANG Yijie, ZHANG Yuke, DI Zhiping, DONG Longzhang YAN Yong. Modulating the Host-guest Interactions in a Microporous Methyl-functionalized Pillar-layered Framework for Natural Gas Valorization [J]. Chemical Research in Chinese Universities, 2025, 41(4): 831-838. |
| [14] | YAN Shaohan, WANG Lijing, SHAN Pengnian, LIN Xue, SHI Weilong. Enhanced Photocatalytic Hydrogen Generation via Up-conversion in Y2O3:Yb3+, Er3+ Nanoparticles Under Near-infrared Light Irradiation [J]. Chemical Research in Chinese Universities, 2025, 41(4): 859-867. |
| [15] | GUO Xin, LIU Jiayue, YANG Xueying, JIN Zhiliang, Noritatsu Tsubaki. Construction of ZnCdSe/Triazine-Graphdiyne S-Scheme Heterojunction for Boosting Photocatalytic Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2025, 41(4): 893-902. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

