高等学校化学研究 ›› 2022, Vol. 38 ›› Issue (4): 866-878.doi: 10.1007/s40242-022-2084-z
TANG Tianwei1, LIU Yinghuan1, JIANG Ying1,2
收稿日期:
2022-03-10
修回日期:
2022-04-10
出版日期:
2022-08-01
发布日期:
2022-07-01
通讯作者:
JIANG Ying
E-mail:yingjiang@bnu.edu.cn
基金资助:
TANG Tianwei1, LIU Yinghuan1, JIANG Ying1,2
Received:
2022-03-10
Revised:
2022-04-10
Online:
2022-08-01
Published:
2022-07-01
Contact:
JIANG Ying
E-mail:yingjiang@bnu.edu.cn
Supported by:
摘要: Highly selective, sensitive, and stable biosensors are essential for the molecular level understanding of many physiological activities and diseases. Electrochemical aptamer-based (E-AB) sensor is an appealing platform for measurement in biological system, attributing to the combined advantages of high selectivity of the aptamer and high sensitivity of electrochemical analysis. This review summarizes the latest development of E-AB sensors, focuses on the modification strategies used in the fabrication of sensors and the sensing strategies for analytes of different sizes in biological system, and then looks forward to the challenges and prospects of the future development of electrochemical aptamer-based sensors.
TANG Tianwei, LIU Yinghuan, JIANG Ying. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors[J]. 高等学校化学研究, 2022, 38(4): 866-878.
TANG Tianwei, LIU Yinghuan, JIANG Ying. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors[J]. Chemical Research in Chinese Universities, 2022, 38(4): 866-878.
[1] Hulanicki A., Glab S., Ingman F., Pure Appl. Chem., 1991, 63, 1247 [2] Justino C. I. L., Duarte A. C., Santos T. A. P. R., Trends Analyt. Chem., 2016, 85, 36 [3] Matsuda M., Terai K., Pathol. In., 2020, 70, 379 [4] Wang M. X., Li L. Y., Zhang L. M., Zhao J. G., Jiang Z. Q., Wang W. Z., Anal. Chem., 2022, 94, 431 [5] Kirsch J., Siltanen C., Zhou Q., Revzin A., Simonian A., Chem. Soc. Rev., 2013, 42, 8733 [6] Siontorou C. G., Georgopoulos K. N., Trends Environ. Anal. Chem., 2021, 32, e00146 [7] Zhu Y., Zhang Q., Li X., Pan H., Wang J. T., Zhao Z. J., Sens. Actuators B Chem., 2019, 293, 53 [8] Tu J. B., Rodriguez R. M. T., Wang M. Q., Gao W., Adv. Funct. Mater., 2020, 30, 1906713 [9] Qi X., Wang S. Y., Jiang Y., Liu P. P., Li Q. C., Hao W., Han J. B., Zhou Y. X., Huang X., Liang P., Water Res., 2021, 198, 117164 [10] Kalimuthu P., Kruse T., Bernhardt P. V., Electrochim. Acta, 2021, 386,138480 [11] Ronkainen N. J., Halsall H. B., Heineman W. R., Chem. Soc. Rev., 2010, 39, 1747 [12] Ramanathan K., Danielsson B., Biosens. Bioelectron., 2001, 16, 417 [13] Lei Z. L., Guo B., Adv. Sci., 2022, 9, 2102924 [14] Kauffmann J. M., Guilbault G. G., Methods Biochem. Anal., 1992, 36, 63 [15] Therriault D., Nat. Nanotechnol., 2007, 2, 393 [16] Turner A. P. F., Chem. Soc. Rev., 2013, 42, 3184 [17] Mokhtarzadeh A., Eivazzadeh Keihan R., Pashazadeh P., Hejazi M., Gharaatifar N., Hasanzadeh M., Baradaran B., de la Guardia M., Trends Analyt. Chem., 2017, 97, 445 [18] Inda M. E., Lu T. K., Annu. Rev. Microbiol.,2020, 74, 337 [19] Bollella P., Katz E., Sensors, 2020, 20, 3517 [20] Kwon O. S., Song H. S., Park T. H., Jang J., Chem. Rev., 2019, 119, 36 [21] Zhu C. Z., Yang G. H., Li H., Du D., Lin Y. H., Anal. Chem., 2015, 87, 230 [22] Sempionatto J. R., Montiel V. R. V., Vargas E., Teymourian H., Wang J.,ACS Sens., 2021, 6, 1745 [23] Baldo T. A., de Lima L. F., Mendes L. F., de Araujo W. R., Paixao T. R. L. C., Coltro W. K. T.,ACS Appl. Electron. Mater., 2021, 3, 68 [24] Paniel N., Baudart J., Hayat A., Barthelmebs L., Methods, 2013, 64, 229 [25] Zhou W., Huang P. J. J., Ding J., Liu J., Analyst, 2014, 139, 2627 [26] Toh S. Y., Citartan M., Gopinath S. C. B., Tang T. H., Biosens. Bioelectron., 2015, 64, 392 [27] Labib M., Sargent E. H., Kelley S. O., Chem. Rev., 2016, 116, 9001 [28] Muzyka K., Saqib M., Liu Z., Zhang W., Xu G., Biosens. Bioelectron., 2017, 92, 241 [29] Yang F., Li Q., Wang L., Zhang G. J., Fan C.,ACS Sens., 2018, 3, 903 [30] Sameiyan E., Bagheri E., Ramezani M., Alibolandi M., Abnous K., Taghdisi S. M., Biosens. Bioelectron., 2019, 143, 111662 [31] Zhang K., Li H. Y., Wang W. J., Cao J. X., Gan N., Han H. Y.,ACS Sens., 2020, 5, 3721 [32] Jiang Z. W., Zhao T. T., Li C. M., Li Y. F., Huang C. Z.,ACS Appl. Mater. Interfaces, 2021, 13, 49754 [33] An J. E., Kim K. H., Park S. J., Seo S. E., Kim J., Ha S., Bae J., Kwon O. S.,ACS Sens., 2022, 7, 99 [34] Ellington A. D., Szostak J. W., Nature, 1990, 346, 818 [35] Robertson D. L., Joyce G. F., Nature, 1990, 344, 467 [36] Gold L., J. Biol. Chem., 1995, 270, 13581 [37] Tuerk C., Gold L., Science, 1990, 249, 505 [38] Singer B. S., Shtatland T., Brown D., Gold L., Nucleic Acids Res., 1997, 25, 781 [39] Gopinath S. C. B., Anal. Bioanal. Chem., 2007, 387, 171 [40] Keefe A. D., Cload S. T., Curr. Opin. Chem. Biol., 2008, 12, 448 [41] Jayasena S. D., Clin. Chem., 1999, 45, 1628 [42] Ilgu M., Nilsen Hamilton M., Analyst, 2016, 141, 1551 [43] Rothlisberger P., Hollenstein M., Adv. Drug Del. Rev., 2018, 134, 3 [44] Wu Y., Belmonte I., Sykes K. S., Xiao Y., White R. J., Anal. Chem., 2019, 91, 15335 [45] Kleinjung F., Klussmann S., Erdmann V. A., Scheller F. W., Furste J. P., Bier F. F., Anal. Chem., 1998, 70, 328 [46] Xiao Y., Piorek B. D., Plaxco K. W., Heeger A. J., J. Am. Chem. Soc., 2005, 127, 17990 [47] Du Y., Li B. L., Wang E. K., Acc. Chem. Res., 2013, 46, 203 [48] Zhang Y., Lai B. S., Juhas M., Molecules, 2019, 24, 941 [49] Wang L., Xu M., Han L., Zhou M., Zhu C. Z., Dong S. J., Anal. Chem., 2012, 84, 7301 [50] Ma K., Li X., Xu B., Tian W. J., Anal. Chim. Acta, 2021, 1188, 338859 [51] Nekrasov N., Jaric S., Kireev D., Emelianov A. V., Orlov A. V., Gadjanski I., Nikitin P. I., Akinwande D., Bobrinetskiy I., Biosens. Bioelectron., 2022, 200, 113890 [52] Chai S. C., Cao X., Xu F. R., Zhai L., Qian H. J., Chen Q., Wu L. X., Li H. L.,ACS Nano, 2019, 13, 7135 [53] Wang Y., Gong C. J., Zhu Y., Wang Q. Q., Geng L. P., Electrochim. Acta, 2021, 393, 139054 [54] Rahmati Z., Roushani M., Hosseini H., Talanta, 2022, 237, 122924 [55] Hori S., Herrera A., Rossi J. J., Zhou J., Cancers, 2018, 10, 9 [56] Omer M., Andersen V. L., Nielsen J. S., Wengel J., Kjems J., Mol. Ther. Nucleic Acids, 2020, 22, 994 [57] Shigdar S., Schrand B., Giangrande P. H., de Franciscis V., Mol. Ther., 2021, 29, 2396 [58] Chen K., Liu B., Yu B., Zhong W., Lu Y., Zhang J. N., Liao J., Liu J., Pu Y., Qiu L. P., Zhang L. Q., Liu H. X., Tan W. H., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9, e1438 [59] Fattal E., Hillaireau H., Ismail S. I., Adv. Drug Del. Rev., 2018, 134, 1 [60] Gunaratne R., Kumar S., Frederiksen J. W., Stayrook S., Lohrmann J. L., Perry K., Bompiani K. M., Chabata C. V., Thalji N. K., Ho M. D., Arepally G., Camire R. M., Krishnaswamy S., Sullenger B. A., Nat. Biotechnol., 2018, 36, 606 [61] Gooch J., Daniel B., Parkin M., Frascione N., Trends Analyt. Chem., 2017, 94, 150 [62] Aydindogan E., Balaban S., Evran S., Coskunol H., Timur S., Biosensors, 2019, 9, 118 [63] Satoh T., Kouroki S., Kitamura Y., Ihara T., Matsumura K., Iwase S., Anal. Methods, 2020, 12, 2703 [64] Dunn M. R., Jimenez R. M., Chaput J. C., Nat. Rev. Chem., 2017, 1, 1 [65] Keefe A. D., Pai S., Ellington A., Nat. Rev. Drug Discov., 2010, 9, 537 [66] Wu L. L., Wang Y. D., Xu X., Liu Y. L., Lin B. Q., Zhang M. X., Zhang J. L., Wan S., Yang C. Y., Tan W. H., Chem. Rev., 2021, 121, 12035 [67] Thevenot D. R., Toth K., Durst R. A., Wilson G. S., Anal. Lett., 2001, 34, 635 [68] Ikebukuro K., Kiyohara C., Sode K., Biosens. Bioelectron., 2005, 20, 2168 [69] Xue Y. F., Ji W. L., Jiang Y., Yu P., Mao L. Q., Angew. Chem. Int. Ed., 2021, 60, 23777 [70] Jolly P., Miodek A., Yang D. K., Chen L. C., Lloyd M. D., Estrela P.,ACS Sens., 2016, 1, 1308 [71] Wang G. X., Han R., Li Q., Han Y. F., Luo X. L., Anal. Chem., 2020, 92, 7186 [72] Su S., Ma J. F., Xu Y. Q., Pan H. M., Zhu D., Chao J., Weng, L. X., Wang L. H.,ACS Appl. Mater. Interfaces, 2020, 12, 48133 [73] Bang G. S., Cho S., Kim B. G., Biosens. Bioelectron., 2005, 21, 863 [74] Odeh F., Nsairat H., Alshaer W., Ismail M. A., Esawi E., Qaqish B., Al Bawab A., Ismail S. I., Molecules, 2020, 25, 3 [75] Feigon J., Dieckmann T., Smith F. W., Chem. Biol., 1996, 3, 611 [76] Piganeau N., Schroeder R., Chem. Biol., 2003, 10, 103 [77] Ruff K. M., Snyder T. M., Liu D. R., J. Am. Chem. Soc., 2010, 132, 9453 [78] Shi H. W., Wu M. S., Du Y., Xu J. J., Chen H. Y., Biosens. Bioelectron., 2014, 55, 459 [79] Yang S. H., Zhang F. F., Wang Z. H., Liang Q. L., Biosens. Bioelectron., 2018, 112, 186 [80] Upan J., Youngvises N., Tuantranont A., Karuwan C., Banet P., Aubert P. H., Jakmunee J., Sci. Rep., 2021, 11, 1 [81] Taghdisi S. M., Danesh N. M., Nameghi M. A., Rarnezani M., Alibolandi M., Abnous K., Biosens. Bioelectron., 2019, 133, 230 [82] Zhang X., Lazenby R. A., Wu Y., White R. J., Anal. Chem., 2019, 91, 11467 [83] Tivon Y., Falcone G., Deiters A., Angew. Chem. Int. Ed., 2021, 60, 15899 [84] Zhang H. F., Luo F., Wang P. L., Guo L. H., Qiu B., Lin Z. Y., Biosens. Bioelectron., 2019, 129, 36 [85] Liu X. H., Luo L. J., Li L. B., Di Z. X., Zhang J. Y., You T. Y., Electrochim. Acta, 2019, 319, 849 [86] Adachi T., Nakamura Y., Molecules, 2019, 24, 4229 [87] Ni S. J., Zhuo Z. J., Pan Y. F., Yu Y. Y., Li F. F., Liu J., Wang L. Y.,ACS Appl. Mater. Interfaces, 2021, 13, 9500 [88] Taghdisi S. M., Danesh N. M., Emrani A. S., Ramezani M., Abnous K., Biosens. Bioelectron., 2015, 73, 245 [89] Yang J. M., Li X. L., Jiang B. Y., Yuan R., Xiang Y., Anal. Chem., 2020, 92, 7893 [90] Mehennaoui S., Poorahong S., Jimenez G. C., Siaj M., Sci. Rep., 2019, 9, 1 [91] Zeng R. J., Su L. S., Luo Z. B., Zhang L. J., Lu M. H., Tang D. P.,Anal. Chim. Acta, 2018, 1038, 21 [92] Minunni M., Tombelli S., Gullotto A., Luzi E., Mascini M., Biosens. Bioelectron., 2004, 20, 1149 [93] Zamani M., Robson J. M., Fan A., Bono M. S., Furst A. L., Klapperich C. M.,ACS Cent. Sci., 2021, 7, 963 [94] Yu H., Chen Z., Liu Y., Alkhamis O., Song Z., Xiao Y., Angew. Chem. Int. Ed., 2021, 60, 2993 [95] Wang J., Zhou H. S., Anal. Chem., 2008, 80, 7174 [96] Huang K. J., Liu Y. J., Zhang J. Z., Cao J. T., Liu Y. M., Biosens. Bioelectron., 2015, 67, 184 [97] Tabrizi M. A., Shamsipur M., Saber R., Sarkar S., Sherkatkhameneh N., Electrochim. Acta, 2017, 246, 1147 [98] Qiang L., Zhang Y., Guo X., Gao Y. K., Han Y., Sun J., Han L., RSC Adv., 2020, 10, 15293 [99] Zhang C. Y., Wang C. W., Xiao R., Tang L, Huang J, Wu D, Liu S. W., Wang Y., Zhang D., Wang S. Q., Chen X. M., J. Mater. Chem B, 2018, 6, 3751 [100] Chen M., Wu D. M., Tu S. H., Yang C. Y., Chen D. J., Xu Y., Sci. Rep., 2021, 11, 3666 [101] Vajhadin F., Mazloum Ardakani M., Shahidi M., Moshtaghioun S. M., Haghiralsadat F., Ebadi A., Amini A., Biosens. Bioelectron., 2022, 195, 113626 [102] Cheng S. T., Liu H. M., Zhang H., Chu G. L., Guo Y. M., Sun X., Sens. Actuators B Chem., 2020, 304, 127367 [103] Malecka K., Ferapontova E. E.,ACS Appl. Mater. Interfaces, 2021, 13, 37979 [104] Azadbakht A., Roushani M., Abbasi A. R., Derikvand Z., Anal. Biochem., 2016, 507, 47 [105] Azadbakht A., Roushani M., Abbasi A. R., Derikvand Z., Anal. Biochem., 2016, 512, 58 [106] Raouafi A., Sanchez A., Raouafi N., Villalonga R., Sens. Actuators B Chem., 2019, 297, 126762 [107] Jia F., Duan N., Wu S. J., Dai R. T., Wang Z. P., Li X. M., Mikrochim. Acta, 2016, 183, 337 [108] Li Z. J., Yin J. F., Gao C. H., Sheng L. Y., Meng A., Mikrochim. Acta, 2019, 186, 1 [109] Li J. J., Si Y. P., Park Y. E, Choi J., Jung S. M., Lee J. E., Lee H. Y., Mikrochim. Acta, 2021, 188, 146 [110] Szymczyk A., Soliwodzka K., Moskal M., Rozanowski K., Ziolkowski R., Sens. Actuators B:Chem., 2022, 354, 131086 [111] Ma Y. B., Liu J. S., Li H. D., Biosens. Bioelectron., 2017, 92, 21 [112] Ding S., Mosher C., Lee X. Y., Das S. R., Cargill A. A., Tang X., Chen B., McLamore E. S., Gomes C., Hostetter J. M., Claussen J. C.,ACS Sens., 2017, 2, 210 [113] Xiao Q., Feng J. R., Li J. W., Feng M. M., Huang S., Analyst, 2018, 143, 4764 [114] Meng X. Z., Gu H. W., Yi H. C., He Y. Q., Chen Y., Sun W. Y., Anal. Chim. Acta, 2020, 1125, 1 [115] Liu X. P., Huang B., Mao C. J., Chen J. S., Jin B. K., Talanta, 2021, 233, 122546 [116] Xu X. X., Makaraviciute A., Kumar S., Wen C. Y., Sjodin M., Abdurakhmanov E., Danielson U. H., Nyholm L., Zhang Z., Anal. Chem., 2019, 91, 14697 [117] Aliakbarinodehi N., Jolly P., Bhalla N., Miodek A., De Micheli G., Estrela P., Carrara S., Sci. Rep., 2017, 7, 1 [118] Li Y. F., Liu L. L., Fang X. L., Bao J. C., Han M., Dai Z. H., Electrochim. Acta, 2012, 65, 1 [119] Wang Y. F., Sha H. F., Ke H., Xiong X., Jia N. Q., Electrochim. Acta, 2018, 290, 90 [120] Pur M. R. K., Hosseini M., Faridbod F., Ganjali M. R., Hosseinkhani S., Sens. Actuators B Chem., 2018, 257, 87 [121] Li Y., Han R., Chen M., Zhang L. Y., Wang G. X., Luo X. L., Anal. Chem., 2021, 93, 4326 [122] Lasserre P., Balansethupathy B., Vezza V. J., Butterworth A., Macdonald A., Blair E. O., McAteer L., Hannah S., Ward A. C., Hoskisson P. A., Longmuir A., Setford S., Farmer E. C. W., Murphy M. E., Flynn H., Corrigan D. K., Anal. Chem., 2022, 94, 2126 [123] Yasun E., Li C., Barut I., Janvier D., Qiu L. P., Cui C., Tan W. H., Nanoscale, 2015, 7, 10240 [124] Klose A. M., Miller B. L., Sensors, 2020, 20, 5745 [125] Izrailev S., Stepaniants S., Balsera M., Oono Y., Schulten Y., Biophys. J., 1997, 72, 1568 [126] Zhang J. T., Lakshmipriya T., Gopinath S. C. B.,ACS Omega, 2020, 5, 25899 [127] Ming T., Cheng Y., Xing Y., Luo J. P., Mao G., Liu J. T., Sun S., Kong F. L., Jin H. Y., Cai X. X.,ACS Appl. Mater. Interfaces, 2021, 13, 46317 [128] Zhang Y., Zheng B., Zhu C. F., Zhang X., Tan C. L., Li H., Chen B., Yang J. Z., Chen J., Huang Y., Wang L. H., Zhang H., Adv. Mater., 2015, 27, 935 [129] Zhou Y. L., Li F., Wu H. W., Chen Y., Yin H. S., Ai S. Y., Wang J., Sens. Actuators B Chem., 2019, 296, 126664 [130] Hou H. F., Jin Y., Wei H., Ji W. L., Xue Y. F., Hu J. B., Zhang M. N., Jiang Y., Mao L. Q., Angew. Chem. Int. Ed., 2020, 59, 18996 [131] Khan S., Burciu B., Filipe C. D. M., Li Y., Dellinger K., Didar T. F.,ACS Nano, 2021, 15, 13943 [132] Zhang W., Wang L., Yang Y. S., Gaskin P., Teng K. S.,ACS Sens., 2019, 4, 1138 [133] Rayappa M. K., Viswanathan P. A., Rattu G., Krishna P. M., J. Agric. Food Chem., 2021, 69, 4578 [134] Jin Y., Li X., Jiang Y., Chem. Nano. Mat., 2021, 7, 489 [135] Erfani A., Seaberg J., Aichele C. P., Ramsey J. D., Biomacromolecules, 2020, 21, 2557 [136] Madhurantakam S., Karnam J. B., Brabazon D., Takai M., Ul Ahad I., Rayappan J. B. B., Krishnan U. M.,ACS Chem. Neurosci., 2020, 11, 4024 [137] Somerson J., Plaxco K. W., Molecules, 2018, 23, 912 [138] Jin J., Ji W. L., Li L. J., Zhao G., Wu W. J., Wei H., Ma F. R., Jiang Y., Mao L. Q., J. Am. Chem. Soc., 2020, 142, 19012 [139] Yu H. X., Alkhamis O., Canoura J., Liu Y. Z., Xiao Y., Angew. Chem. Int. Ed., 2021, 60, 16800 [140] Shen M. M., Kan X. W., Electrochim. Acta, 2021, 367, 137433 [141] Walsh R., Ho U., Wang X. L., DeRosa M. C., Can. J. Chem., 2015, 93, 572 [142] Talemi R. P., Mousavi S. M., Afruzi H., Mater. Sci. Eng. for Biological Applications, 2017, 73, 700 [143] Tabb J., Rapoport E., Han I., Lombardi J., Green O., Nanomedicine, 2022, 41, 102528 [144] Liu X. X., Liu J. W., View, 2021, 2, 20200102 [145] Jin H., Zhao C. Q., Gui R. J., Gao X. H., Wang Z. H., Anal. Chim. Acta, 2018, 1025, 154 [146] Liu S., Xing X. R., Yu J. H., Lian W. J., Li J, Cui M., Huang J. D., Biosens. Bioelectron., 2012, 36, 186 [147] Wang W. T., Wang W., Davis J. J., Luo X. L., Mikrochim. Acta, 2015, 182, 1123 [148] Martos I. A., Moller A., Ferapontova E. E.,ACS Chem. Neurosci., 2019, 10, 1706 [149] Zhou J. W., Wang W. Y., Yu P., Xiong E. H., Zhang X. H., Chen J. H., RSC Adv., 2014, 4, 52250 [150] Taheri R. A., Eskandari K., Negandary M., Microchem. J., 2018, 143, 243 [151] Sui C. J., Zhou Y. L., Wang M. Y., Yin H. S., Wang P., Ai S. Y., Sens. Actuators B:Chem., 2018, 266, 514 [152] Wu L. D., Xu Z. Y., Meng Q. Y., Xiao Y. S., Cao Q., Rathi B. Liu H., Han G., Zhang J., Yan J., Anal. Chim. Acta, 2020, 1099, 39 [153] Kwon J., Lee Y., Lee T., Ahn J. H., Anal. Chem., 2020, 92, 5524 [154] Wang C., Zhao Q., Biosens. Bioelectron., 2020, 167, 112478 [155] Miao X. M., Li Z. B., Zhu A. H., Feng Z. Z., Tian J., Peng X., Biosens. Bioelectron., 2016, 83, 39 [156] Geng X., Zhang M. T., Long H. Y., Hu Z. H., Zhao B. Y., Feng L. Y., Du J. Y., Anal. Chim. Acta, 2021, 1145, 124 [157] Ren Q., Mou J. S., Guo Y. M., Wang H. Q., Cao X. Y., Zhang F. F., Biosens. Bioelectron., 2020, 166, 112448 [158] Jin H., Gui R. J., Gao X. H., Sun Y. J., Biosens. Bioelectron., 2019, 145, 111732 [159] Vogiazi V., de la Cruz A. A., Varughese E. A., Heineman W. R., White R. J., Dionysiou D. D.,ACS ES&T Eng., 2021, 1, 1597 [160] Tabrizi M. A., Shamsipur M., Saber R., Sarkar S., Ebrahimi V., Biosens. Bioelectron., 2017, 98, 113 [161] Ma C., Liu H. Y., Zhang L. N., Li H., Yan M., Song X. R., Yu J. H., Biosens. Bioelectron., 2018, 99, 8 [162] Xing Y. C., Chen X. X., Jin B. X., Chen P. P., Huang C. B., Jin Z. G., Langmuir, 2021, 37, 3612 [163] Canovas R., Daems E., Campos R., Schellinck S., Madder A., Martins J. C., Sobott F., De Wael K., Talanta, 2022, 239, 123121 [164] Feng D. F., Tan X. C., Wu Y. Y., Ai C. H., Luo Y. N., Chen Q.Y., Han H. Y., Biosens. Bioelectron., 2019, 129, 100 [165] Wang H. Z., Wang Y., Liu S., Yu J. H., Guo Y. N., Xu Y., Huang J. D., Biosens. Bioelectron., 2016, 80, 471 [166] Wang X., Dong S., Gai P., Duan R., Li F., Biosens. Bioelectron., 2016, 82, 49 [167] Starr M. B., Shi J., Wang X. D., Angew. Chem. Int. Ed., 2012, 51, 5962 [168] Chorsi M. T., Curry E. J., Chorsi H. T., Das R., Baroody J., Purohit P. K., Ilies H., Nguyen T. D., Adv. Mater., 2019, 31, 1802084 [169] Qian W. Q., Yang W. Y., Zhang Y., Bowen C. R., Yang Y., Nanomicro Lett., 2020, 12, 149 [170] Mahapatra S. D., Mohapatra P. C., Aria A. I., Christie G., Mishra Y. K., Hofmann S., Thakur V. K., Adv. Sci., 2021, 8, 2100864 [171] Tian Y. L., Zhu P., Chen Y. T., Bai X. Y., Du L. P., Chen W., Wu C. S., Wang P., Sens. Actuators B Chem., 2021, 346, 130446 [172] Fernandez Leiro R., Scheres S. H. W., Nature, 2016, 537, 339 [173] Singh S., Halder A., Sinha O., Chakrabarty N., Chatterjee T., Adhikari A., Singh P., Shikha D., Ghosh R., Banerjee A., Das Mahapatra P. P., Mandhar A., Bhattacharyya M., Bose S., Ahmed S. A., Alharbi A., Hameed A. M., Pal S. K., Front. Oncol., 2020, 10, 529132 [174] Li F. Q., Yang W. Q., Zhao B. R., Yang S., Tang Q. Y., Chen X. J., Dai H. L., Liu P., Adv. Sci., 2022,9, 2102804 [175] Han K., Liu T., Wang Y. H., Miao P., Rev. Anal. Chem, 2016, 35, 201 [176] Famulok M., Mayer G., Acc. Chem. Res., 2011, 44, 1349 [177] Song K. M., Lee S., Ban C., Sensors, 2012, 12, 612 [178] Citartan M., Ch'ng E. S., Rozhdestvensky T. S., Tang T. H., Microchem. J., 2016, 128, 187 [179] Gao X. Y., Qi L., Liu K., Meng C. C., Li Y. C., Yu H. Z., Anal. Chem., 2020, 92, 6229 [180] Nie Y. M., Yuan X. D., Zhang P., Chai Y. Q., Yuan R., Anal. Chem., 2019, 91, 3452 [181] Yuce M., Ullah N., Budak H., Analyst, 2015, 140, 5379 [182] Chen A. L., Yan M. M., Yang S. M., Trends Analyt. Chem., 2016, 80, 581 [183] Wang T., Chen C. Y., Larcher L. M., Barrero R. A., Veedu R. N., Biotechnol. Adv., 2019, 37, 28 [184] Shen J. W., Li Y. B., Gu H. S., Xia F., Zuo X. L., Chem. Rev., 2014, 114, 7631 [185] Yoon S., Rossi J. J., Adv. Drug Del. Rev., 2018, 134, 22 [186] Debiais M., Lelievre A., Smietana M., Mueller S., Nucleic Acids Res., 2020, 48, 3400 [187] Chung S., Moon J. M., Choi J., Hwang H., Shim Y. B., Biosens. Bioelectron., 2018, 117, 480 [188] Yang C. N., Tian Y., Wang B. Y., Guo Q. F., Nie G. M., Sens. Actuators B Chem., 2021, 338, 129870 [189] You M., Yang S., An Y., Zhang F., He P. G., J. Electroanal. Chem., 2020, 862, 114017 [190] Asdaq S. M. B., Ikbal A. M. A., Sahu R. K., Bhattacharjee B., Paul T., Deka B., Fattepur S., Widyowati R., Vijaya J., Al Mohaini M., Alsalman A. J., Imran M., Nagaraja S., Nair A. B., Attimarad M., Venugopala K. N., Nanomaterials, 2021, 11, 1841 [191] Seo H. B., Gu M. B., J. Bio. Eng., 2017, 11, 1 [192] Tabrizi M. A., Shamsipur M., Saber R., Sarkar S., Anal. Chim. Acta, 2017, 985, 61 [193] Zhou Y. L., Zhang H. Q., Liu L. T., Li C. M., Chang Z., Zhu X., Ye B. X., Xu M. T., Sci. Rep., 2016, 6, 35186 [194] Hwang J., Seo Y., Jo Y., Son J., Choi J., Sci. Rep., 2016, 6, 34778 [195] Walia S., Chandrasekaran A. R., Chakraborty B., Bhatia D.,ACS Appl. Bio Mater., 2021, 4, 5392 [196] Hartshorn C. M., Bradbury M. S., Lanza G. M., Nel A. E., Rao J., Wang A. Z., Wiesner U. B., Yang L., Grodzinski P.,ACS Nano, 2018, 12, 24 [197] Manochehry S., McConnell E. M., Li Y., Sci. Rep., 2019, 9, 1 [198] Boyacioglu O., Stuart C. H., Kulik G., Gmeiner W. H., Mol. Ther. Nucleic Acids, 2013, 2, e107 [199] Mairal T., Nadal P., Svobodova M., O'Sullivan C. K., Biosens. Bioelectron., 2014, 54, 207 [200] Zhang Z., Pandey R., Li J., Gu J., White D., Stacey H. D., Ang J. C., Steinberg C. J., Capretta A., Filipe C. D. M., Mossman K., Balion C., Miller M. S., Salena B. J., Yamamura D., Soleymani L., Brennan J. D., Li Y., Angew. Chem. Int. Ed., 2021, 60, 24266 [201] Vasudevan M., Tai M. J. Y., Perumal V., Gopinath S. C. B., Murthe S. S., Ovinis M., Mohamed N. M., Joshi N., Biotechnol. Appl. Biochem., 2021, 68, 1386 [202] Zeng R. J., Su L. S., Luo Z. B., Zhang L. J., Lu M. H., Tang D. P., Anal. Chim. Acta, 2018, 1038, 21 [203] Kim G., Kim J., Kim S. M., Kato T., Yoon J., Noh S., Park E. Y., Park C., Lee T., Choi J. W., Sens. Actuators B Chem., 2022, 352, 131060 [204] Wang Q. P., Zheng H. Y., Gao X. Y., Lin Z. Y., Chen G. N., Chem. Commun., 2013, 49, 11418 [205] Yang X., Lv J. J., Yang Z. H., Yuan R., Chai Y. Q., Anal. Chem., 2017, 89, 11636 [206] Yu H. Y., Zhao Z., Xiao B. C., Deng M. H., Wang Z. L., Li Z. Q., Zhang H. B., Zhang L., Qian J. W., Li J. H., Anal. Chem., 2021, 93, 13673 [207] Schoukroun Barnes L. R., Wagan S., White R. J., Anal. Chem., 2014, 86, 1131 |
[1] | CHEN Sisi, ZHANG Lei, YUAN Quan, TAN Jie. Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation[J]. 高等学校化学研究, 2022, 38(4): 847-855. |
[2] | CHANG Kaili, SUN Peng, DONG Xin, ZHU Chunnan, LIU Xiaojun, ZHENG Dongyun, LIU Chao. Aptamers as Recognition Elements for Electrochemical Detection of Exosomes[J]. 高等学校化学研究, 2022, 38(4): 879-885. |
[3] | HU Lingling, LIU Ke, REN Guolan, LIANG Jiangong, WU Yuan. Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation[J]. 高等学校化学研究, 2022, 38(4): 894-901. |
[4] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy[J]. 高等学校化学研究, 2022, 38(4): 928-934. |
[5] | SHEN Congcong, CHEN Yuehua, FENG Beidou, CHI Hongying, ZHANG Hua. Polypyrrole Hollow Nanotubes Loaded with Au and Fe3O4 Nanoparticles for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid[J]. 高等学校化学研究, 2022, 38(4): 941-948. |
[6] | YIN Fangfei, CAO Nan, XIANG Xuelin, FENG Hao, LI Fan, LI Min, XIA Qiang, ZUO Xiaolei. DNA Framework-based Topological Aptamer for Differentiating Subtypes of Hepatocellular Carcinoma Cells[J]. 高等学校化学研究, 2021, 37(4): 919-924. |
[7] | XIONG Jin'en, LI Shuang, LI Yi, CHEN Yingli, LIU Yu, GAN Junlan, JU Jiahui, XIAN Yaoling, XIONG Xiaohui. Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food[J]. 高等学校化学研究, 2020, 36(5): 787-794. |
[8] | CAO Mengyao, SUN Yueyang, XIAO Mingshu, LI Li, LIU Xiaohui, JIN Hong, PEI Hao. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy[J]. 高等学校化学研究, 2020, 36(2): 254-260. |
[9] | QIN Xinyuan, SU Yuanye, TAN Jie, YUAN Quan. Artificial Nucleotide-containing Aptamers Used in Tumor Therapy[J]. 高等学校化学研究, 2020, 36(2): 164-170. |
[10] | TIAN Jinmiao, CHEN Sikai, WANG Xiang, LI Juan. Evolution of Artificial Base Pairs with Hydrogen Bond Complementarity[J]. 高等学校化学研究, 2020, 36(2): 151-156. |
[11] | WANG Chengke, TAN Rong, LI Jiangyu, ZHANG Zexiang. Double Magnetic Separation-assisted Fluorescence Method for Sensitive Detection of Ochratoxin A[J]. 高等学校化学研究, 2019, 35(3): 382-389. |
[12] | LIU Zhongcheng, ZHANG Yanfen, XIE Yao, SUN Ying, BI Kewei, CUI Zhe, ZHAO Lijian, FAN Wufang. An Aptamer-based Colorimetric Sensor for Streptomycin and Its Application in Food Inspection[J]. 高等学校化学研究, 2017, 33(5): 714-720. |
[13] | RAO Xin-yi, ZHANG Jia-jia, CUI Jing, HU Ying, LIU Ting, CHAI Jing-feng, CHENG Gui-fang, HE Pin-gang, FANG Yu-zhi. Au Nanoparticle-DNAzyme Dual Catalyst System for Sensitively Colorimetric Detection of Thrombin[J]. 高等学校化学研究, 2013, 29(5): 868-873. |
[14] | LIAO Qie-gen, WANG Jian, LONG Yun-fei and LI Yuan-fang*. Spectrofluorometry of Ions and Small Molecules Based on Conformational Changes of Specific Oligonucleotides with o-Phthalaldehyde-β-mercaptoethanol[J]. 高等学校化学研究, 2010, 26(3): 360-365. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||