高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (2): 164-170.doi: 10.1007/s40242-019-0033-2
QIN Xinyuan2, SU Yuanye1, TAN Jie1, YUAN Quan1,2
收稿日期:
2019-10-31
修回日期:
2019-11-14
出版日期:
2020-04-01
发布日期:
2019-11-29
通讯作者:
TAN Jie, YUAN Quan
E-mail:yuanquan@whu.edu.cn;tanjie0416@hnu.edu.cn
基金资助:
QIN Xinyuan2, SU Yuanye1, TAN Jie1, YUAN Quan1,2
Received:
2019-10-31
Revised:
2019-11-14
Online:
2020-04-01
Published:
2019-11-29
Contact:
TAN Jie, YUAN Quan
E-mail:yuanquan@whu.edu.cn;tanjie0416@hnu.edu.cn
Supported by:
摘要: The high pharmaceutical cost and multi-drug resistance in tumor therapeutic agents hinder the further application of chemotherapy in tumor therapy. Artificial modified nucleic acid aptamers have the advantages of high binding affinity, programmability, and easy synthesis. Thus, the rational design of artificial modified aptamers is expected to provide a versatile platform for the optimization of chemotherapy agents. In this review, we summarize the modification strategies and the application of the artificial modified nucleotide-containing aptamers, aiming to provide a promising step toward aptamer-related chemotherapeutic agents.
QIN Xinyuan, SU Yuanye, TAN Jie, YUAN Quan. Artificial Nucleotide-containing Aptamers Used in Tumor Therapy[J]. 高等学校化学研究, 2020, 36(2): 164-170.
QIN Xinyuan, SU Yuanye, TAN Jie, YUAN Quan. Artificial Nucleotide-containing Aptamers Used in Tumor Therapy[J]. Chemical Research in Chinese Universities, 2020, 36(2): 164-170.
[1] | Tian T., Li J., Xie C., Sun Y., Lei H., Liu X., Xia J., Shi J., Wang L., Lu W., Fan C., ACS Applied Materials & Interfaces, 2018, 10(4), 3414 |
[2] | Zeng X., Luo M., Liu G., Wang X., Tao W., Lin Y., Ji X., Nie L., Mei L., Advanced Science, 2018, 5(10), 1800510 |
[3] | Bian Q., Wang W., Wang S., Wang G., ACS Applied Materials & Interfaces, 2016, 8(40), 27360 |
[4] | Wang J., Wang Y., Hu X., Zhu C., Ma Q., Liang L., Li Z., Yuan Q., Analytical Chemistry, 2019, 91(1), 823 |
[5] | Wang J., Shen H., Huang C., Ma Q., Tan Y., Jiang F., Ma C., Yuan Q., Nano Research, 2016, 10(1), 145 |
[6] | Hu X., Wang Y., Tan Y., Wang J., Liu H., Wang Y., Yang S., Shi M., Zhao S., Zhang Y., Yuan Q., Advanced Materials, 2017, 29(15), 1605235 |
[7] | Wang J., Wei Y., Hu X., Fang Y. Y., Li X., Liu J., Wang S., Yuan Q., Journal of the American Chemical Society, 2015, 137(33), 10576 |
[8] | Zhang H., Li B., Sun Z., Zhou H., Zhang S., Chemical Science, 2017, 8(12), 8025 |
[9] | Qiu L., Chen T., Ocsoy I., Yasun E., Wu C., Zhu G., You M., Han D., Jiang J., Yu R., Tan W., Nano Letters, 2015, 15(1), 457 |
[10] | He J., Dong J., Hu Y., Li G., Hu Y., Nanoscale, 2019, 11(13), 6089 |
[11] | Chandrasekaran R., Lee A. S., Yap L. W., Jans D. A., Wagstaff K. M., Cheng W., Nanoscale, 2016, 8(1), 187 |
[12] | Jiang Y., Pan X., Chang J., Niu W., Hou W., Kuai H., Zhao Z., Liu J., Wang M., Tan W., Journal of the American Chemical Society, 2018, 140(22), 6780 |
[13] | Song Y., Tang C., Yin C., Biomaterials, 2018, 150, 1 |
[14] | Ren X., Gelinas A. D., von Carlowitz I., Janjic N., Pyle A. M., Nature Communications, 2017, 8(1), 810 |
[15] | Zhao N., Pei S. N., Qi J., Zeng Z., Iyer S. P., Lin P., Tung C. H., Zu Y., Biomaterials, 2015, 67, 42 |
[16] | Zhang J., Chen R., Fang X., Chen F., Wang Y., Chen M., Nano Research, 2015, 8(1), 201 |
[17] | Cogoi S., Jakobsen U., Pedersen E. B., Vogel S., Xodo L. E., Scientific Reports, 2016, 6, 38468 |
[18] | Setoguchi K., Cui L., Hachisuka N., Obchoei S., Shinkai K., Hyodo F., Kato K., Wada F., Yamamoto T., Harada-Shiba M., Obika S., Nakano K., Molecular Therapy. Nucleic Acids, 2017, 9, 170 |
[19] | Yang Y., Yang X., Yang Y., Yuan Q., Carbon, 2018, 129, 380 |
[20] | Tao W., Zeng X., Wu J., Zhu X., Yu X., Zhang X., Zhang J., Liu G., Mei L., Theranostics, 2016, 6(4), 470 |
[21] | Tagalakis A. D., Maeshima R., Yu-Wai-Man C., Meng J., Syed F., Wu L. P., Aldossary A. M., McCarthy D., Moghimi S. M., Hart S. L., Acta Biomaterialia, 2017, 51, 351 |
[22] | Hwang D. W., Kim H. Y., Li F., Park J. Y., Kim D., Park J. H., Han H. S., Byun J. W., Lee Y. S., Jeong J. M., Char K., Lee D. S., Biomaterials, 2017, 121, 144 |
[23] | Huang K. W., Lai Y. T., Chern G. J., Huang S. F., Tsai C. L., Sung Y. C., Chiang C. C., Hwang P. B., Ho T. L., Huang R. L., Shiue T. Y., Chen Y., Wang S. K., Biomacromolecules, 2018, 19(6), 2330 |
[24] | Li J., Hong C. Y., Wu S. X., Liang H., Wang L. P., Huang G., Chen X., Yang H. H., Shangguan D., Tan W., Journal of the American Chemical Society, 2015, 137(35), 11210 |
[25] | Jing P., Cao S., Xiao S., Zhang X., Ke S., Ke F., Yu X., Wang L., Wang S., Luo Y., Zhong Z., Cancer Letters, 2016, 383(2), 230 |
[26] | Chen D., Li B., Cai S., Wang P., Peng S., Sheng Y., He Y., Gu Y., Chen H., Biomaterials, 2016, 100, 1 |
[27] | Zhang Y., Hou Z., Ge Y., Deng K., Liu B., Li X., Li Q., Cheng Z., Ma P., Li C., Lin J., ACS Applied Materials & Interfaces, 2015, 7(37), 20696 |
[28] | Li F., Mei H., Gao Y., Xie X., Nie H., Li T., Zhang H., Jia L., Biomaterials, 2017, 145, 56 |
[29] | Peng L. H., Zhang Y. H., Han L. J., Zhang C. Z., Wu J. H., Wang X. R., Gao J. Q., Mao Z. W., ACS Applied Materials & Interfaces, 2015, 7(33), 18628 |
[30] | Hili R., Niu J., Liu D. R., Journal of the American Chemical Society, 2013, 135(1), 98 |
[31] | Zhao F., Zhou J., Su X., Wang Y., Yan X., Jia S., Du B., Small, 2017, 13(20), 1603990 |
[32] | Wang R., Lu D., Bai H., Jin C., Yan G., Chemical Science, 2016, 7(3), 2157 |
[33] | Wang R. W., Wang C. M., Cao Y., Zhu Z., Yang C. Y., Chemical Science, 2014, 5(10), 4076 |
[34] | Kimoto M., Yamashige R., Matsunaga K., Yokoyama S., Hirao I., Nature Biotechnology, 2013, 31(5), 453 |
[35] | Matsunaga K. I., Kimoto M., Hirao I., Journal of the American Chemical Society, 2017, 139(1), 324 |
[36] | Biondi E., Lane J. D., Das D., Dasgupta S., Piccirilli J. A., Hoshika S., Bradley K. M., Krantz B. A., Benner S. A., Nucleic. Acids Research, 2016, 44(20), 9565 |
[37] | Labenski V., Suerth J. D., Barczak E., Heckl D., Levy C., Bernadin O., Charpentier E., Williams D. A., Fehse B., Verhoeyen E., Schambach A., Biomaterials, 2016, 97, 97 |
[38] | Hou W., Liu Y., Jiang Y., Wu Y., Cui C., Wang Y., Zhang L., Teng I. T., Tan W., Nanoscale, 2018, 10(23), 10986 |
[39] | Chen W., Liu X., Xiao Y., Tang R., Small, 2015, 11(15), 1775 |
[40] | Khaled S. Z., Cevenini A., Yazdi I. K., Parodi A., Evangelopoulos M., Corbo C., Scaria S., Hu Y., Haddix S. G., Corradetti B., Salvatore F., Tasciotti E., Biomaterials, 2016, 87, 57 |
[41] | Kanlikilicer P., Ozpolat B., Aslan B., Bayraktar R., Gurbuz N., Rodriguez-Aguayo C., Bayraktar E., Denizli M., Gonzalez-Villasana V., Ivan C., Lokesh G. L. R., Amero P., Catuogno S., Haemmerle M., Wu S. Y., Mitra R., Gorenstein D. G., Volk D. E., de Franciscis V., Sood A. K., Lopez-Berestein G., Molecular Therapy. Nucleic Acids, 2017, 9, 251 |
[42] | Zhang F., Correia A., Makila E., Li W., Salonen J., Hirvonen J. J., Zhang H., Santos H. A., ACS Applied Materials & Interfaces, 2017, 9(11), 10034 |
[43] | Abnous K., Danesh N. M., Ramezani M., Yazdian-Robati R., Alibolandi M., Taghdisi S. M., Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13(6), 1933 |
[44] | Li N., Xiang M. H., Liu J. W., Tang H., Jiang J. H., Analytical Chemistry, 2018, 90(21), 12951 |
[45] | Li Y., Liu R., Shi Y., Zhang Z., Zhang X., Theranostics, 2015, 5(6), 583 |
[46] | Ozes A. R., Wang Y., Zong X., Fang F., Pilrose J., Nephew K. P., Scientific Reports, 2017, 7(1), 894 |
[47] | Wang S., Sun C., Li J., Zhang E., Ma Z., Xu W., Li H., Qiu M., Xu Y., Xia W., Xu L., Yin R., Cancer Letters, 2017, 408, 112 |
[48] | Wan J., Geng S., Zhao H., Peng X., Xu J., Wei M., Mao J., Zhou Y., Zhu Q., Zhao Y., Yang X., Nanoscale, 2018, 10(42), 20020 |
[49] | He B., Wang Y., Shao N., Chang H., Cheng Y., Acta Biomaterialia, 2015, 22, 111 |
[50] | Fan X., Sun L., Wu Y., Zhang L., Yang Z., Scientific Reports, 2016, 6, 25799 |
[51] | Matsunaga K., Kimoto M., Hanson C., Sanford M., Young H. A., Hirao I., Scientific Reports, 2015, 5, 18478 |
[52] | Cogoi S., Zorzet S., Rapozzi V., Geci I., Pedersen E. B., Xodo L. E., Nucleic Acids Research, 2013, 41(7), 4049 |
[53] | Xie H., Zhan H., Gao Q., Li J., Zhou Q., Chen Z., Liu Y., Ding M., Xiao H., Liu Y., Huang W., Cai Z., Cancer Letters, 2018, 422, 94 |
[54] | McNamara J. O., Kolonias D., Pastor F., Mittler R. S., Chen L., Giangrande P. H., Sullenger B., Gilboa E., The Journal of Clinical Investigation, 2008, 118(1), 376 |
[55] | Seo Y. E., Suh H. W., Bahal R., Josowitz A., Zhang J., Song E., Cui J., Noorbakhsh S., Jackson C., Bu T., Piotrowski-Daspit A., Bindra R., Saltzman W. M., Biomaterials, 2019, 201, 87 |
[56] | Sun Q., Kang Z., Xue L., Shang Y., Su Z., Sun H., Ping Q., Mo R., Zhang C., Journal of the American Chemical Society, 2015, 137(18), 6000 |
[57] | Durso M., Gaglione M., Piras L., Mercurio M. E., Terreri S., Olivieri M., Marinelli L., Novellino E., Incoronato M., Grieco P., Orsini G., Tonon G., Messere A., Cimmino A., European Journal of Medicinal Chemistry, 2016, 111, 15 |
[58] | Dassie J. P., Liu X. Y., Thomas G. S., Whitaker R. M., Thiel K. W., Stockdale K. R., Meyerholz D. K., McCaffrey A. P., McNamara J. O., Giangrande P. H., Nature Biotechnology, 2009, 27(9), 839 |
[59] | Westerlund K., Vorobyeva A., Mitran B., Orlova A., Tolmachev V., Karlstrom A. E., Altai M., Biomaterials, 2019, 203, 73 |
[60] | Gasparello J., Manicardi A., Casnati A., Corradini R., Gambari R., Finotti A., Sansone F., Scientific Reports, 2019, 9(1), 3036 |
[61] | Li L., Hu X., Zhang M., Ma S., Yu F., Zhao S., Liu N., Wang Z., Wang Y., Guan H., Pan X., Gao Y., Zhang Y., Liu Y., Yang Y., Tang X., Li M., Liu C., Li Z., Mei X., Molecular Therapy. Nucleic Acids, 2017, 8, 169 |
[62] | Gupta A., Quijano E., Liu Y., Bahal R., Scanlon S. E., Song E., Hsieh W. C., Braddock D. E., Ly D. H., Saltzman W. M., Glazer P. M., Molecular Therapy. Nucleic Acids, 2017, 9, 111 |
[63] | Chen W. H., Yang S. S., Fadeev M., Cecconello A., Nechushtai R., Willner I., Nanoscale, 2018, 10(10), 4650 |
[64] | Kratschmer C., Levy M., Molecular Therapy. Nucleic Acids, 2018, 10, 227 |
[65] | Wang K., Yao H., Meng Y., Wang Y., Yan X., Huang R., Acta Biomaterialia, 2015, 16, 196 |
[66] | He X., Chen X., Liu L., Zhang Y., Lu Y., Zhang Y., Chen Q., Ruan C., Guo Q., Li C., Sun T., Jiang C., Advanced Science, 2018, 5(5), 1701070 |
[67] | Li L. L., Xie M., Wang J., Li X., Wang C., Yuan Q., Pang D. W., Lu Y., Tan W., Chemical Communications, 2013, 49(52), 5823 |
[68] | Yang Y., Liu J., Sun X., Feng L., Zhu W., Liu Z., Chen M., Nano Research, 2015, 9(1), 139 |
[69] | Kong L., Qiu J., Sun W., Yang J., Shen M., Wang L., Shi X., Biomaterials Science, 2017, 5(2), 258 |
[70] | Zhan Y., Ma W., Zhang Y., Mao C., Shao X., Xie X., Wang F., Liu X., Li Q., Lin Y., ACS Applied Materials & Interfaces, 2019, 11(17), 15354 |
[71] | Taghavi S., Ramezani M., Alibolandi M., Abnous K., Taghdisi S. M., Cancer Letters, 2017, 400, 1 |
[72] | Yuan Q., Wu Y., Wang J., Lu D., Zhao Z., Liu T., Zhang X., Tan W., Angewandte Chemie, 2013, 52(52), 13965 |
[73] | Pi F., Zhang H., Li H., Thiviyanathan V., Gorenstein D. G., Sood A. K., Guo P., Nanomedicine : Nanotechnology, Biology, and Medicine, 2017, 13(3), 1183 |
[74] | Ma Y., Zhao W., Li Y., Pan Y., Wang S., Zhu Y., Kong L., Guan Z., Wang J., Zhang L., Yang Z., Biomaterials, 2019, 197, 182 |
[75] | Bertucci A., Prasetyanto E. A., Septiadi D., Manicardi A., Brognara E., Gambari R., Corradini R., de Cola L., Small, 2015, 11(42), 5687 |
[1] | CHEN Sisi, ZHANG Lei, YUAN Quan, TAN Jie. Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation[J]. 高等学校化学研究, 2022, 38(4): 847-855. |
[2] | TANG Tianwei, LIU Yinghuan, JIANG Ying. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors[J]. 高等学校化学研究, 2022, 38(4): 866-878. |
[3] | CHANG Kaili, SUN Peng, DONG Xin, ZHU Chunnan, LIU Xiaojun, ZHENG Dongyun, LIU Chao. Aptamers as Recognition Elements for Electrochemical Detection of Exosomes[J]. 高等学校化学研究, 2022, 38(4): 879-885. |
[4] | HU Lingling, LIU Ke, REN Guolan, LIANG Jiangong, WU Yuan. Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation[J]. 高等学校化学研究, 2022, 38(4): 894-901. |
[5] | TU Tingting, HUAN Shuangyan, KE Guoliang, ZHANG Xiaobing. Functional Xeno Nucleic Acids for Biomedical Application[J]. 高等学校化学研究, 2022, 38(4): 912-918. |
[6] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy[J]. 高等学校化学研究, 2022, 38(4): 928-934. |
[7] | YIN Fangfei, CAO Nan, XIANG Xuelin, FENG Hao, LI Fan, LI Min, XIA Qiang, ZUO Xiaolei. DNA Framework-based Topological Aptamer for Differentiating Subtypes of Hepatocellular Carcinoma Cells[J]. 高等学校化学研究, 2021, 37(4): 919-924. |
[8] | XIONG Jin'en, LI Shuang, LI Yi, CHEN Yingli, LIU Yu, GAN Junlan, JU Jiahui, XIAN Yaoling, XIONG Xiaohui. Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food[J]. 高等学校化学研究, 2020, 36(5): 787-794. |
[9] | CAO Mengyao, SUN Yueyang, XIAO Mingshu, LI Li, LIU Xiaohui, JIN Hong, PEI Hao. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy[J]. 高等学校化学研究, 2020, 36(2): 254-260. |
[10] | TIAN Jinmiao, CHEN Sikai, WANG Xiang, LI Juan. Evolution of Artificial Base Pairs with Hydrogen Bond Complementarity[J]. 高等学校化学研究, 2020, 36(2): 151-156. |
[11] | WANG Chengke, TAN Rong, LI Jiangyu, ZHANG Zexiang. Double Magnetic Separation-assisted Fluorescence Method for Sensitive Detection of Ochratoxin A[J]. 高等学校化学研究, 2019, 35(3): 382-389. |
[12] | LIU Zhongcheng, ZHANG Yanfen, XIE Yao, SUN Ying, BI Kewei, CUI Zhe, ZHAO Lijian, FAN Wufang. An Aptamer-based Colorimetric Sensor for Streptomycin and Its Application in Food Inspection[J]. 高等学校化学研究, 2017, 33(5): 714-720. |
[13] | RAO Xin-yi, ZHANG Jia-jia, CUI Jing, HU Ying, LIU Ting, CHAI Jing-feng, CHENG Gui-fang, HE Pin-gang, FANG Yu-zhi. Au Nanoparticle-DNAzyme Dual Catalyst System for Sensitively Colorimetric Detection of Thrombin[J]. 高等学校化学研究, 2013, 29(5): 868-873. |
[14] | LIAO Qie-gen, WANG Jian, LONG Yun-fei and LI Yuan-fang*. Spectrofluorometry of Ions and Small Molecules Based on Conformational Changes of Specific Oligonucleotides with o-Phthalaldehyde-β-mercaptoethanol[J]. 高等学校化学研究, 2010, 26(3): 360-365. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||