高等学校化学研究 ›› 2022, Vol. 38 ›› Issue (1): 18-30.doi: 10.1007/s40242-021-1394-x
LIU Ru-Shuai, XU Shuang, HAO Guang-Ping, LU An-Hui
收稿日期:
2021-09-28
修回日期:
2021-10-25
出版日期:
2022-02-01
发布日期:
2021-10-25
通讯作者:
HAO Guang-Ping, LU An-Hui
E-mail:guangpinghao@dlut.edu.cn;anhuilu@dlut.edu.cn
基金资助:
LIU Ru-Shuai, XU Shuang, HAO Guang-Ping, LU An-Hui
Received:
2021-09-28
Revised:
2021-10-25
Online:
2022-02-01
Published:
2021-10-25
Contact:
HAO Guang-Ping, LU An-Hui
E-mail:guangpinghao@dlut.edu.cn;anhuilu@dlut.edu.cn
Supported by:
摘要: The urgency of dealing with global climate change caused by greenhouse gas(GHG) emissions is increasing as the carbon dioxide(CO2) concentration in the atmosphere has reached a record high value of 416 ppm(parts per million). Technologies that remove CO2 from the surrounding air(direct air capture, DAC) could result in negative carbon emissions, and thus attracts increasing attention. The steady technical progress in adsorption-based CO2 separation greatly advanced the DAC, which largely relies on advanced sorbent materials. This review focuses on the latest development of porous solids for air capture; first discussed the main types of sorbents for air capture, which include porous carbons, zeolites, silica materials, and metal-organic frameworks(MOFs), particularly their modified counterparts. Then, we evaluated their performances, including uptake and selectivity under dry and humid CO2 streams for practical DAC application. Finally, a brief outlook on remaining challenges and potential directions for future DAC development is given.
LIU Ru-Shuai, XU Shuang, HAO Guang-Ping, LU An-Hui. Recent Advances of Porous Solids for Ultradilute CO2 Capture[J]. 高等学校化学研究, 2022, 38(1): 18-30.
LIU Ru-Shuai, XU Shuang, HAO Guang-Ping, LU An-Hui. Recent Advances of Porous Solids for Ultradilute CO2 Capture[J]. Chemical Research in Chinese Universities, 2022, 38(1): 18-30.
[1] Chen C. J., Sun X. F., Yan X. P., Wu Y. H., Liu H. Z., Zhu Q. G., Bediako B. B. A., Han B. X., Angew. Chem. Int. Ed., 2020, 59, 11123 [2] Shi J., Wang Y. D., Yang W. M., Tang Y., Xie Z. K., Chem. Soc. Rev., 2015, 44, 8877 [3] https://www.esrl.noaa.gov/gmd/ccgg/trends/, accessed on 2021-08-25 [4] Soldi R., Cavallini S., Friedl J., Volpe M., Zuccaro C. P., A New Skills Agenda for Europe, Brussels, 2014 [5] Solomon S., Qin D., Manning M., Averyt K., Marquis M., Tignor M.M.B., Climate Change 2007-the Physical Science Basis:Working GroupIContribution to the Fourth Assessment Report of the IPCC, Cambridge University Press, Cambridge, 2007 [6] International Energy Agency, Energy Technology Perspectives, https://www.iea.org/, accessed on 2016 [7] Bert M., Ogunlade D., Heleen D. C., Manuela L., Leo M., IPCC, Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, New York, 2005 [8] Samanta A., Zhao A., Shimizu G. K. H., Sarkar P., Gupta R., Ind. Eng. Chem. Res., 2012, 51, 1438 [9] Choi S., Drese J. H., Jones C. W., ChemSusChem, 2009, 2, 796 [10] Oschatz M., Antonietti M., Energy Environ. Sci., 2018, 11, 57 [11] Siegelman R. L., Kim E. J., Long J. R., Nat. Mater., 2021, 20, 1060 [12] Hao G.-P., Jin Z.-Y., Sun Q., Zhang X.-Q., Zhang J.-T., Lu A.-H., Energy Environ. Sci., 2013, 6, 3740 [13] Zhang L.-H., Li W.-C., Liu H., Wang Q.-G., Tang L., Hu Q.-T., Xu W. J., Qiao W.-H., Lu Z.-Y., Lu A.-H., Angew. Chem. Int. Ed., 2018, 57, 1632 [14] Jones C. W., Annu. Rev. Chem. Biomol. Eng., 2011, 2, 31 [15] Goeppert A., Czaun M., Surya Prakash G. K., Olah G. A., Energy Environ. Sci., 2012, 5, 7833 [16] Lackner K. S., Ziock H., Grimes P., In Proceedings of the 24th Annual Technical Conference on Coal Utilization & Fuel Systems, Clearwater, FL, 1999 [17] United Nations, Adoption of the Paris Agreement, United Nations, 2015 [18] Masson-Delmotte V., Zhai P., Pçrtner H.-O., Roberts D., Skea J., Shukla P. R., Pirani A., Moufouma-Okia W., Pöan C., Pidcock R., Connors S., Matthews J. B. R., Chen Y., Zhou X., Gomis M. I., Lonnoy E., Maycock, Tignor M., Waterfield T., Global Warming of 1.5℃, Geneva, 2018 [19] National Research Council, Climate Intervention:Carbon Dioxide Removal and Reliable Sequestration, The National Academies Press, Washington, DC, 2015 [20] https://carbonengineering.com/, accessed on 2021-08-25 [21] Stolaroff J. K., Keith D. Lowry W., G. V., Environ. Sci. Technol., 2008, 42, 2728 [22] Shi X. Y., Xiao H., Azarabadi H., Song J. Z., Wu X. L., Chen X., Lackner K. S., Angew. Chem. Int. Ed., 2020, 59, 2 [23] Khraisheh M., Mukherjee S., Kumar A., Momani F. A., Walker G., J. Zaworotko M., J. Environ. Manage., 2020, 255, 109874 [24] Liu J., Wei Y. J., Zhao Y. L., ACS Sustainable Chem. Eng., 2019, 7, 82 [25] Wilcox J., Psarras P. C., Liguori S., Environ. Res. Lett., 2017, 12, 065001 [26] Keith D. W., Holmes G., St. Angelo D., Heidel K., Joule, 2018, 2, 1573 [27] Brethomé F. M., Williams N. J., Seipp C. A., Kidder M. K., Custelcean R., Nat. Energy, 2018, 3, 553 [28] Bui M., Adjiman C. S., Bardow A., Anthony E. J., Boston A., Brown S., Fennell P. S., Fuss S., Galindo A., Hackett L. A., Hallett J. P., Herzog H. J., Jackson G., Kemper J., Krevor S., Maitland G. C., Matuszewski M., Metcalfe I. S., Petit C., Puxty G., Reimer J., Reiner D. M. Rubin E. S., Scott S. A., Shah N., Smit B., Trusler J. P. M., Webley P., Wilcoxx J., Dowel N. M., Energy Environ. Sci., 2018, 11, 1062 [29] Stephanie A. D., Sunho C., Watcharop C., Christopher W. J., Acc. Chem. Res., 2015, 48, 2680 [30] Oyenekan B. A., Rochelle G. T., AIChE J., 2007, 53, 3144 [31] Jennifer W., Panithita R., Abby K., Guenther G., Jia J. H., Energy Environ. Sci., 2014, 7, 1769 [32] Caplow M., J. Am. Chem. Soc., 1968, 90, 6795 [33] Laddha S. S., Danckwerts P. V., Chem. Eng. Sci., 1981, 36, 479 [34] Pinto M. L., Mafra L., Guil J. M., Pires J., Rocha J., Chem. Mater., 2011, 23, 1387 [35] Zhai Y. X., Chuang S. S. C., Energy Technol., 2017, 5, 510 [36] D'Alessandro D. M., Smit B., Long J. R., Angew. Chem. Int. Ed., 2010, 49, 6058 [37] Yang Z. Z., He L. N., Zhao Y. N., Li B., Yu B., Energy Environ. Sci., 2011, 4, 3971 [38] Didas S. A., Choi S., Chaikittisilp W., Jones C. W., Acc. Chem. Res., 2015, 48, 2680 [39] Sanz-Pérez E. S., Murdock C. R., Didas S. A., Jones C. W., Chem. Rev., 2016, 116, 11840 [40] Goeppert A., Zhang H., Sen R., Dang H., Prakash G. K. S., ChemSusChem, 2019, 12, 1712 [41] Peters M., Köhler B., Kuckshinrichs W., Leitner W., Markewitz P., Müller T. E., ChemSusChem, 2011, 4, 1216 [42] Wang T., Ge K., Liu J., Fang M. X., Adv. Mater. Res., 2014, 960, 308 [43] Hao G.-P., Li W.-C., Qian D., Wang G.-H., Zhang W.-P., Zhang T., Wang A.-Q., Sch€uth F., Bongard H.-J., Lu A.-H., J. Am. Chem. Soc., 2011, 133, 11378 [44] Ke Q. L., Sun T. J., Wei X. L., Guo Y., Xu S. T., Wang S. D., Chem. Eng. J., 2019, 359, 344 [45] Zhou Y., Zhang J. L., Wang L., Cui X. L., Liu X. L., Wong S. S., An H., Yan N., Xie J. Y., Yu C., Zhang P. X., Du Y. H., Xi S. B., Zheng L. R., Cao X. Z., Wu Y. J., Wang Y. X., Wang C. Q., Wen H. M., Chen L., Xing H. B., Wang J., Science, 2021, 373, 315 [46] Shi Z. L., Tao Y., Wu J. S., Zhang C. Z., He H. L., Long L. L., Lee Y. J., Li T., Zhang Y.-B., J. Am. Chem. Soc., 2020, 142, 2750 [47] Xu S., Li W.-C., Wang C.-T., Tang L., Hao G.-P., Lu A.-H., Angew. Chem. Int. Ed., 2021, 60, 6339 [48] Yuan Y.-F., Wang Y.-S., Zhang X.-L., Li W.-C., Hao G.-P., Han L., Lu A.-H., Angew. Chem. Int. Ed., 2021, 60, 19063 [49] Du J., Li W.-C., Ren Z.-X., Guo L.-P., Lu A.-H., J Energ Eng, 2020, 42, 56 [50] Balahmar N., Al-Jumialy A. S., Mokay R., J. Mater. Chem. A, 2017, 5, 12330 [51] Alhwaige A. A., Ishida H., Qutubuddin S., ACS Sustainable Chem. Eng., 2016, 4, 1286 [52] Zhang P. X., Zhong Y., Wang J. D. J., Xu M., Deng Q., Zeng Z. L., Deng S. G., Chem. Eng. J., 2019, 355, 963 [53] Suo X., Xia L., Yang Q. W., Zhang Z. G., Bao Z. B., Ren Q. L., Yang Y. W., Xing H. B., J. Mater. Chem. A, 2017, 5, 14114 [54] Liu R.-S., Shi X.-D., Wang Ch.-T., Gao Y.-Z., Xu S., Hao G.-P., Chen S. Y., Lu A.-H., ChemSusChem, 2021, 14, 1428 [55] Yang M., Ma C., Xu M. M., Wang S. J., Xu L. Z., Curr. Pollut. Rrp., 2019, 5, 272 [56] Lee T. S., Cho J. H., Chi S. H., Build Environ., 2015, 92, 209 [57] Shekhah O., Belmabkhout Y., Chen Z. J., Guillerm V., Cairns A., Adil K., Eddaoudi M., Nat Commun., 2014, 5, 4228 [58] Zhang Z. S., Zhou J., Xing W., Xue Q. Z., Yan Z. F., Zhuo S. P., Zhang S. Q., Phys. Chem. Chem. Phys., 2013, 15, 2523 [59] Keller L., Ohs B., Lenhart J., Abduly L., Blanke P., Wessling M., Carbon, 2018, 126, 338 [60] Xu X. C., Andrésen J. M., Miller B. G., Scaroni A. W., Song C. S., Microporous Mesoporous Mater., 2003, 62, 29 [61] Wang D. X., Ma X. L., Sentorun-Shalaby C., Song C. S., Ind. Eng. Chem. Res., 2012, 51, 3048 [62] Keller L., Ohs B., Lenhart J., Abduly L., Wessling M., Chem. Eng. J., 2019, 359, 476 [63] Sanz-Pérez E.S., Arencibia A., Calleja G., Sanz R., Microporous Mesoporous Mater., 2018, 260, 235 [64] Meng Y., Jiang J., Gao Y., Yan F., Liu N., Aihemaiti A., J. CO2 Util., 2018, 27, 89 [65] Wang J. T., Wang M., Zhao B. B., Qiao W. M., Long D. H., Ling L. C., Ind. Eng. Chem. Res., 2013, 52, 5437 [66] Wang J. T., Huang H. H., Wang M., Yao L. W., Qiao W. M., Long D. H, Ling L. C., Ind. Eng. Chem. Res., 2015, 54, 5319 [67] Wang J. T., Long D. H., Zhou H. H., Chen Q. J., Liu X. J., Ling L. C., Energy Environ. Sci., 2012, 5, 5742 [68] Peng H.-L., Zhang J.-B., Zhang J.-Y., Zhong F.-Y., Wu P.-K., Huang K., Fan J.-P., Liu F. J., Chem. Eng. J., 2019, 359, 1159 [69] Kuwahara Y., Kang D. Y., Copeland J. R., Brunelli N. A., Didas S. A., Bollini P., Sievers C., Kamegawa T., Yamashita H., Jones C. W., J. Am. Chem. Soc., 2012, 134, 10757 [70] Datta S. J., Khumnoon C., Lee Z. H., Moon W. K., Docao S., Nguyen T. H., Hwang I. C., Moon D., Oleynikov P., Terasaki O., Yoon K. B., Science, 2015, 350, 3020 [71] Santori G., Charalambous C., Ferrari M.-C., Brandani S., Energy, 2018, 162, 1158 [72] Wilson S. M. W., Tezel F. H., Ind. Eng. Chem. Res., 2020, 59, 8783 [73] Stuckert N. R., Yang R. T., Environ. Sci. Technol., 2011, 45, 10257 [74] Brandani F., Ruthven D. M., Ind. Eng. Chem. Res., 2004, 43, 8339 [75] Mukherjee S., Sikdar N., O'Nolan D., Franz D. M., Gascón V., Kumar A., Kumar N., Scott H. S., Madden D. G., Kruger P E., Space B., Zaworotko M. J., Sci. Adv., 2019, 5, eaax9171 [76] Kitagawa S., Kitaura R., Noro S.-I., Angew. Chem., Int. Ed., 2004, 43, 2334 [77] Yaghi O. M., O'Keeffe M., Ockwig N. W., Chae H. K., Eddaoudi M., Kim J., Nature, 2003, 423, 705 [78] Mason J. A., Sumida K., Herm Z. R., Krishna R., Long J. R., Energy Environ. Sci., 2011, 4, 3030 [79] Kumar A., Madden D. G., Lusi M., Chen K.-J., Emma A. D., Curtin T., Perry IV J. J., Zaworotko M. J., Angew. Chem., Int. Ed., 2015, 54, 14372 [80] Liu Q., Ning L., Zheng S., Tao M., Shi Y., He Y., Sci. Rep., 2013, 3, 2916 [81] Boutin A., Coudert F.-X., Springuel-Huet M.-A., Neimark A. V., Férey G., Fuchs A. H., J. Phys. Chem. C, 2010, 114, 22237 [82] Llewellyn P. L., Bourrelly S., Serre C., Vimont A., Daturi M., Hamon L., Weireld G. D., Chang J.-S., Hong D.-Y., Hwang Y. K., Jhung S. H., Férey G., Langmuir, 2008, 24, 7245 [83] Braun M. E., Steffek C. D., Kim J., Rasmussen P. G., Yaghi O. M., Chem. Commun., 2001, 2532 [84] Kim E. J., Siegelman R. L., Jiang H. Z. H., Forse A. C., Lee J.-H., Martell J. D., Milner P. J., Falkowski M. J. Neaton J. B., Reimer J. A., Weston S. C., Long J. R., Science, 2020, 369, 392 [85] Dinakar B., C. Forse A., Jiang H. Z. H., Zhu Z. T., Lee Jung-H., Kim E. J., Parker S. T., Pollak C. J., Siegelman R. L., Milner P. J., Reimer J. A., Long J. R., J. Am. Chem. Soc., 2021, 143, 15258 [86] Liao P.-Q., Chen X.-W., Liu S.-Y., Li X.-Y., Xu Y.-T., Tang M. N., Rui Z. B., Ji H. B., Zhang J.-P., Chen X.-M., Chem. Sci., 2016, 7, 6528 [87] G. Madden D., Albadarin A. B., O'Nolan D., Cronin P., Perry J. J., Solomon S., Curtin T., Khraisheh M., Zaworotko M. J., Walker G. M., ACS Appl. Mater. Interfaces, 2020, 12, 33759 [88] Lin Y. C., Lin H., Wang H. M., Suo Y. G., Li B. H., Kong C. L., Chen L., J. Mater. Chem. A, 2014, 2, 14658 [89] Darunte L. A., Oetomo A. D., Walton K. S., Sholl D. S., Jones C. W., ACS Sustainable Chem. Eng., 2016, 4, 5761 [90] McDonald T. M., Lee W. R., Mason J. A., Wiers B. M., Hong C. S., Long J. R., J. Am. Chem. Soc., 2012, 134, 7056 [91] McDonald T. M., Mason J. A., Kong X., Bloch E. D., Gygi D., Dani A., CrocellàV, Giordanino F., Odoh S. O., Drisdell W. S., Vlaisavljevich B., Dzubak A. L., Poloni R., Schnell S. K., Planas N., Lee K., Pascal T., Wan L. F., Prendergast D., Neaton J. B., Smit B., Kortright J. B., Gagliardi L., Bordiga S., Reimer J. A., Long J. R., Nature, 2015, 519, 303 [92] Milner P. J., Siegelman R. L., Forse A. C., Gonzalez M. I., Runčevski T., Martell J. D., Reimer J. A., Long J. R., J. Am. Chem. Soc., 2017, 139, 13541 [93] Flaig R. W., Popp T. M. O., Fracaroli A. M., Kapustin E. A., Kalmutzki M. J., Altamimi R. M., Fathieh F., Reimer J. A., Yaghi O. M., J. Am. Chem. Soc., 2017, 139, 12125 [94] Chand S., Pal A., Das M. C., Chem. Eur. J., 2018, 24, 5982 [95] Koizumi H., Chiba H., Sugihara A., Iwamura M., Nozaki K., Ishitani O., Chem. Sci., 2019, 10, 3080 [96] Ghanbari T., Abnisa F., Daud W. M. A. W., Sci. Total Environ., 2020, 707, 135090 [97] Su X., Bromberg L., Martis V., Simeon F., Huq A., Hatton T. A., ACS Appl. Mater. Interfaces, 2017, 9, 11299 [98] Jiang Y., Tan P., Qi S.-C., Liu X.-Q., Yan J.-H., Fan F., Sun L.-B., Angew. Chem. Int. Ed., 2019, 58, 6600 [99] Li S., Chung Y. G., Simon C. M., Snurr R. Q., J. Phys. Chem. Lett., 2017, 8, 6135 [100] Nugent P., Belmabkhout Y., Burd S. D., Cairns A. J., Luebke R., Forrest K., Pham T., Ma S. Q., Space B., Wojtas L., Eddaoudi M., Zaworotko M. J., Nature, 2013, 495, 80 [101] Bhatt P. M., Belmabkhout Y., Cadiau A., Adil K., Shekhah O., Shkurenko A., Barbour L. J., Eddaoudi M., J. Am. Chem. Soc., 2016, 138, 9301 [102] Guo M. Z., Wu H., Lv L., Meng H., Yun J., Jin J. S., Mi J. G., ACS Appl. Mater. Interfaces, 2021, 13, 21775 [103] Belmabkhout Y., Bhatt P. M., Adil K., Pillai R. S., Cadiau A., Shkurenko A., Maurin G., Liu G. P., Koros W. J., Eddaoudi M. , Nat. Energy, 2018, 3, 1059 [104] Masoomi M. Y., Stylianou K. C., Morsali A., Retailleau P., Maspoch D., Cryst. Growth Des., 2014, 14, 2092 [105] Vaidhyanathan R., S. Iremonger S., Shimizu G. K. H., Boyd P. G., Alavi S., Woo T. K., Science, 2010, 330, 650 [106] Banerjee A., Nandi S., Nasa P., Vaidhyanathan R., Chem. Commun., 2016, 52, 1851 [107] Madden D. G., O'Nolan D., Chen K.-J., Hua C., Kumar A., Pham T., Forrest K. A., Space B., Perry J. J., Khraishehc M., Zaworotko M. J., Chem. Commun., 2019, 55, 3219 [108] Burtch N. C., Jasuja H., Walton K. S., Chem. Rev., 2014, 114, 10575 [109] Shekhah O., Belmabkhout Y., Adil K., Bhatt P. M., Cairns A. J., Eddaoudi M., Chem. Commun., 2015, 51, 13595 [110] Zhang Z. Q., Ding Q., Peh S. B., Zhao D., Cui J. Y., Cui X. L., Xing H. B., Chem. Commun., 2020, 56, 7726 [111] Yang P. P., Gai S. L., Lin J., Chem. Soc. Rev., 2012, 41, 3679 [112] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Nature, 1992, 359, 710 [113] Narayan R., Nayak U. Y., Raichur A. M., Garg S., Pharmaceutics, 2018, 10, 118 [114] Kumar D. R., Rosu C., Sujan A. R., Sakwa-Novak M. A., Ping E. W., Jones C. W., ACS Sustainable Chem. Eng., 2020, 8, 10971 [115] Park S. J., Lee J. J., Hoyt C. B., Kumar D. R., Jones C. W., Adsorption, 2020, 26, 89 [116] Moni P., Chaves W. F., Wilhelm M., Rezwan K., J. Colloid Interface Sci., 2019, 542, 91 [117] Sayari A., Liu Q., Mishra P., ChemSusChem, 2016, 9, 1 [118] Wang X. X., Fujii M., Wang X. X., Song C. S., Ind. Eng. Chem. Res., 2020, 59, 7267 [119] Chaikittisilp W., Khunsupat R., Chen T. T., Jones C. W., Ind. Eng. Chem. Res., 2011, 50, 14203 [120] Choi S., Gray M. L., Jones C. W., ChemSusChem, 2011, 4, 628 [121] Goeppert A., Meth S., Prakash G. S., Olah G. A., Energy Environ. Sci., 2010, 3, 1949 [122] Park S. J., Lee J. J., Hoyt C. B., Kumar D. R., Jones C. W., Adsorption, 2020, 26, 89 [123] Holewinski A., Sakwa-Novak M. A., Jones C. W., J. Am. Chem. Soc., 2015, 137, 11749 [124] Heydari-Gorji A., Belmabkhout Y., Sayari A., Langmuir, 2011, 27, 12411 [125] Chen Z. H., Deng S. B., Wei H. R., Wang B., Huang J., Yu G., Front. Environ. Sci. Eng., 2013, 7, 326 [126] Son W.-J., Choi J.-S., Ahn W.-S., Microporous Mesoporous Mater., 2008, 113, 31 [127] Kwon H. T., Sakwa-Novak M. A., Pang S. H., Sujan A. R., Ping E. W., Jones C. W., Chem. Mater., 2019, 31, 5229 [128] Tang Q. P., Jiang W., Hu G. S., Chem. Res. Chinese Universities, 2017, 33(4), 666 [129] Anyanwu J.-T., Wang Y. R., Yang R. T., Ind. Eng. Chem. Res., 2020, 59, 7072 [130] Yue M. B., Chun Y., Cao Y., Dong X., Zhu J. H., Adv. Funct. Mater., 2006, 16, 1717 [131] Heydari-Gorji A., Sayari A., Chem. Eng. J., 2011, 137, 72 [132] Heydari-Gorji A., Belmabkhout Y., Sayari A., Langmuir, 2011, 27, 12411 [133] Kuwahara Y., Kang D. Y., Copeland J. R., Brunelli N. A., Didas S. A., Sievers P. B. C., Kamegawa T., Yamashita H., Jones C. W., J. Am. Chem. Soc., 2012, 134, 10757 [134] Kuwahara Y., Kang D. Y., Copeland J. R., Bollini P., Sievers C., Kamegawa T., Yamashita H., Jones C. W., Chem. Eur. J., 2012, 18, 16649 [135] Rosu C., Pang S. H., Sujan A. R., Sakwa-Novak M. A., Ping E. W., Jones C. W., ACS Appl. Mater. Interfaces, 2020, 12, 38085 [136] Zhang L., Wang X. X., Fujii M., Yang L. J., Song C. S., J. Energ Eng., 2017, 26, 1030 [137] Ko Y. G., Lee H. J., Oh H. C., Choi U. S., J. Hazard. Mater., 2013, 250, 53 [138] Belmabkhout Y., Sayari A., Adsorption, 2009, 15, 318 [139] Harlick P. J. E., Sayari A., Ind. Eng. Chem. Res., 2007, 46, 446 [140] Lee J. J., Chen Chia-H., Shimon D., Hayes S. E., Sievers C., Jones C. W., J. Phys. Chem. C, 2017, 121, 23480 [141] Alkhabbaz M. A., Bollini P., Foo G. S., Sievers C., Jones C. W., J. Am. Chem. Soc., 2014, 136, 13170 [142] Belmabkhout Y., Serna-Guerrero R., Sayari A., Ind. Eng. Chem. Res., 2010, 49, 359 [143] Didas S. A., Kulkarni A. R., Sholl D. S., Jones C. W., ChemSusChem, 2012, 5, 2058 [144] Choi S., Drese J. H., Eisenberger P. M., Jones C. W., Sci. Technol., 2011, 45, 2420 [145] Hicks J. C., Drese J. H., Fauth D. J., Gray M. L., Qi G. G., Jones C. W., J. Am. Chem. Soc., 2008, 130, 2902 [146] Li W., Choi S., Drese J. H., Hornbostel M., Krishnan G., Eisenberger P. M., Jones C. W., ChemSusChem, 2010, 3, 899 [147] Chaikittisilp W., Lunn J. D., Shantz D. F., Jones C. W., Chem. Eur. J., 2011, 17, 10556 [148] Al-Janabi N., Hill P., Torrente-Murciano L., Garforth A., Gorgojo P., Siperstein F., Fan X., Chem. Eng. J., 2015, 281, 669 [149] Yu J., Chuang S. S. C., Energy Fuels, 2016, 30, 7579 [150] Goeppert A., Czaun M., May R. B., Surya Prakash G. K., Olah G. A., Narayanan S. R., J. Am. Chem. Soc., 2011, 133, 20164 [151] Didas S. A., Sakwa-Novak M. A., Foo G. S., Sievers C., Jones C. W., J. Phys. Chem. Lett., 2014, 5, 4194 [152] https://ww2.arb.ca.gov/our-work/programs/low-carbon-fuel-standard, accessed on 2021-08-25 |
[1] | YANG Zhichen, KANG Xiaoting, ZOU Bo, YUAN Xuna, LI Yajie, WU Qin, GUO Yupeng. Development of the Self-doping Porous Carbon and Its Application in Supercapacitor Electrode[J]. 高等学校化学研究, 2022, 38(4): 1065-1072. |
[2] | SONG Jialong, WANG Zitao, LIU Yaozu, TUO Chao, WANG Yujie, FANG Qianrong, and QIU Shilun. A Three-dimensional Covalent Organic Framework for CO2 Uptake and Dyes Adsorption[J]. 高等学校化学研究, 2022, 38(3): 834-837. |
[3] | WANG Guangbo, XIE Kehui, ZHU Fucheng, KAN Jinglan, LI Sha, GENG Yan, DONG Yubin. Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture[J]. 高等学校化学研究, 2022, 38(2): 409-414. |
[4] | DI Zhengyi, MAO Yining, YUAN Heng, ZHOU Yan, JIN Jun, LI Cheng-Peng. Covalent Organic Frameworks(COFs) for Sequestration of99TcO4–[J]. 高等学校化学研究, 2022, 38(2): 290-295. |
[5] | QIN Xudong, TANG Xiaohui, MA Yu, XU Hong, XU Qing, YANG Weiting, GU Cheng. Decorating Covalent Organic Frameworks with High-density Chelate Groups for Uranium Extraction[J]. 高等学校化学研究, 2022, 38(2): 433-439. |
[6] | ZHANG Jianhui, LIU Jianchuan, LIU Yaozu, WANG Yujie, FANG Qianrong, QIU Shilun. A Two-dimensional Covalent Organic Framework for Iodine Adsorption[J]. 高等学校化学研究, 2022, 38(2): 456-460. |
[7] | WANG Yuwen, CHENG Tiexin, ZHOU Guangdong. Study on the Mechanism of Asphaltenes Reducing Oil-Water Interfacial Tension[J]. 高等学校化学研究, 2022, 38(2): 616-621. |
[8] | SHI Chao, WANG Jiaze, LI Lin, LI Yi. High-throughput Screening of Aluminophosphate Zeolites for Adsorption Heat Pump Applications[J]. 高等学校化学研究, 2022, 38(1): 161-166. |
[9] | MA Yuying, HE Dayong, LIU Jiadi, WANG Yuannan, YANG Mei, WANG Hao, QIU Ju, LI Wenyan, LI Yongxin, WANG Ce. Adsorption and Visible Light Photocatalytic Degradation of Electrospun PAN@W18O49 Nanofibers[J]. 高等学校化学研究, 2021, 37(3): 428-435. |
[10] | LI Wenyan, LI Yanzi, LIU Jiadi, CHAO Shen, YANG Tianyi, LI Lijuan, WANG Ce, LI Xiang. A Novel Hollow Carbon@MnO2 Electrospun Nanofiber Adsorbent for Efficient Removal of Pb2+ in Wastewater[J]. 高等学校化学研究, 2021, 37(3): 496-504. |
[11] | LUO Kexin, SU Qing, JU Pengyao, LI Xiaodong, LIU Ziqian, SUN Xiaoman, LI Guanghua, WU Qiaolin. Polyfunctional Conjugated Microporous Polymers for Applications in Direct C-H Arylation of Unactivated Arenes and Aqueous Adsorption of Aromatic Amines[J]. 高等学校化学研究, 2020, 36(6): 1302-1309. |
[12] | WANG Yuannan, LI Wenyan, CHAO Shen, LI Yanzi, LI Xiang, HE Dayong, WANG Ce. Preparation of MnO2 Loaded Hydrothermal Carbon-coated Electrospun PAN Fiber Membranes for Highly Efficient Adsorption and Separation of Cationic Dye[J]. 高等学校化学研究, 2020, 36(6): 1292-1301. |
[13] | MANSOURI Said, MAJDOUBI Hicham, HADDAJI Younesse, TAMRAOUI Youssef, EL ACHABY Mounir, MANOUN Bouchaib, ABOURRICHE Abdelkrim, HANNACHE Hassan, OUMAM Mina. Optimization Studies of Porous Carbon Preparation from Oil Shale Using Response Surface Methodology and Its Application for Phenol Adsorption[J]. 高等学校化学研究, 2020, 36(6): 1339-1347. |
[14] | LI Ying, PAN Bo, MIAO Hongyan, XU Humin, LIU Xuefeng, SHI Gang. Single and Binary Dye Adsorption of Methylene Blue and Methyl Orange in Alcohol Aqueous Solution via Rice Husk Based Activated Carbon: Kinetics and Equilibrium Studies[J]. 高等学校化学研究, 2020, 36(6): 1272-1278. |
[15] | LIU Junbo, ZHAO Wensi, TANG Shanshan, JIN Ruifa. Theoretical Design and Adsorption Properties of Molecularly Imprinted Polymers Obtained from Chloramphenicol and Acrylamide[J]. 高等学校化学研究, 2020, 36(5): 915-920. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||