高等学校化学研究 ›› 2022, Vol. 38 ›› Issue (1): 31-44.doi: 10.1007/s40242-021-1406-x
QIAO Junyi1, LIU Xinyao1,2, ZHANG Lirong1, LIU Yunling1
收稿日期:
2021-10-05
修回日期:
2021-11-18
出版日期:
2022-02-01
发布日期:
2022-01-20
通讯作者:
LIU Yunling
E-mail:yunling@jlu.edu.cn
基金资助:
QIAO Junyi1, LIU Xinyao1,2, ZHANG Lirong1, LIU Yunling1
Received:
2021-10-05
Revised:
2021-11-18
Online:
2022-02-01
Published:
2022-01-20
Contact:
LIU Yunling
E-mail:yunling@jlu.edu.cn
Supported by:
摘要: Metal-organic frameworks(MOFs) are a class of porous inorganic-organic hybrid materials, which are constructed from diverse inorganic building units and multi-functional organic ligands. Highly ordered pore structures and tailored functionalization have made MOF materials potential for applications in many fields. Among various MOF materials, 3p-block metal(Al, Ga, and In)-based MOFs exhibit higher chemical stability than divalent transition metal-based MOFs due to their higher valence. In this review, Al-MOFs and In-MOFs were mainly discussed from the perspective of categories of inorganic building blocks, coordination types, and numbers of organic ligands. This review will give intuitive guidance to the design and synthesis of novel 3p-block metal-based MOFs with potential applications.
QIAO Junyi, LIU Xinyao, ZHANG Lirong, LIU Yunling. Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective[J]. 高等学校化学研究, 2022, 38(1): 31-44.
QIAO Junyi, LIU Xinyao, ZHANG Lirong, LIU Yunling. Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective[J]. Chemical Research in Chinese Universities, 2022, 38(1): 31-44.
[1] Zhou H. C., Long J. R., Yaghi O. M., Chem. Rev., 2012, 112, 673 [2] James S. L., Chem. Soc. Rev., 2003, 32, 276 [3] Moghadam P. Z., Li A., Wiggin S. B., Tao A., Maloney A. G. P., Wood P. A., Ward S. C., Fairen-Jimenez D., Chem. Mater., 2017, 29, 2618 [4] Long J. R., Yaghi O. M., Chem. Soc. Rev., 2009, 38, 1213 [5] Eddaoudi M., Moler D. B., Li H. L., Chen B. L., Reineke T. M., O'Keeffe M., Yaghi O. M., Acc. Chem. Res., 2001, 34, 319 [6] Yaghi O. M., O'Keeffe M., Ockwig N. W., Chae H. K., Eddaoudi M., Kim J., Nature, 2003, 423, 705 [7] Tranchemontagne D. J., Mendoza-Cortes J. L., O'Keeffe M., Yaghi O. M., Chem. Soc. Rev., 2009, 38, 1257 [8] Suh M. P., Park H. J., Prasad T. K., Lim D. W., Chem. Rev., 2012, 112, 782 [9] He Y., Zhou W., Qian G., Chen B., Chem. Soc. Rev., 2014, 43, 5657 [10] Sumida K., Rogow D. L., Mason J. A., McDonald T. M., Bloch E. D., Herm Z. R., Bae T. H., Long J. R., Chem. Rev., 2012, 112, 724 [11] Li J. R., Kuppler R. J., Zhou H. C., Chem. Soc. Rev., 2009, 38, 1477 [12] Li J. R., Sculley J., Zhou H. C., Chem. Rev., 2012, 112, 869 [13] Lee J., Farha O. K., Roberts J., Scheidt K. A., Nguyen S. T., Hupp J. T., Chem. Soc. Rev., 2009, 38, 1450 [14] Yoon M., Srirambalaji R., Kim K., Chem. Rev., 2012, 112, 1196 [15] Kreno L. E., Leong K., Farha O. K., Allendorf M., van Duyne R. P., Hupp J. T., Chem. Rev., 2012, 112, 1105 [16] Cui Y., Yue Y., Qian G., Chen B., Chem. Rev., 2012, 112, 1126 [17] Hu Z., Deibert B. J., Li J., Chem. Soc. Rev., 2014, 43, 5815 [18] Horcajada P., Gref R., Baati T., Allan P. K., Maurin G., Couvreur P., Ferey G., Morris R. E., Serre C., Chem. Rev., 2012, 112, 1232 [19] Chaemchuen S., Xiao X., Klomkliang N., Yusubov M. S., Verpoort F., Nanomaterials, 2018, 8, 661 [20] Barthelet K., Marrot J., Riou D., Férey G., Angew. Chem. Int. Ed., 2002, 114, 291 [21] Chui S. S. Y., Lo. S. M. F., Charmant J. P. H., Orpen A. G., Williams I. D., Science, 1999, 283, 1148 [22] Li H. L., Eddaoudi M., O'Keeffe M., Yaghi O. M., Nature, 1999, 402, 276 [23] Eddaoudi M., Kim J., Rosi N., Vodak D., Wachter J., O'Keeffe M., Yaghi O. M., Science, 2002, 295, 469 [24] Seo J. S., Whang D. M., Lee H. Y., Jun S. I., Oh J. H., Jeon J. J., Kim K. M., Nature, 2000, 404, 982 [25] Serre C., Millange F., Surblé S., Férey G., Angew. Chem. Int. Ed., 2004, 116, 6445 [26] Cavka J. H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., Lillerud K. P., J. Am. Chem. Soc., 2008, 130, 13850 [27] Bai Y., Dou Y., Xie L. H., Rutledge W., Li J. R., Zhou H. C., Chem. Soc. Rev., 2016, 45, 2327 [28] Devic T., Serre C., Chem. Soc. Rev., 2014, 43, 6097 [29] Yuan S., Feng L., Wang K., Pang J., Bosch M., Lollar C., Sun Y., Qin J., Yang X., Zhang P., Wang Q., Zou L., Zhang Y., Zhang L., Fang Y., Li J., Zhou H. C., Adv. Mater., 2018, 30, e1704303 [30] Kalmutzki M. J., Diercks C. S., Yaghi O. M., Adv. Mater., 2018, 30, e1704304 [31] Zhang X., Chen Z., Liu X., Hanna S. L., Wang X., Taheri-Ledari R., Maleki A., Li P., Farha O. K., Chem. Soc. Rev., 2020, 49, 7406 [32] Liu B., Yao S., Shi C., Li G. H., Huo Q. S., Liu Y. L., Chem. Commun., 2016, 52, 3223 [33] Qin J. S., Du D. Y., Li M., Lian X. Z., Dong L. Z., Bosch M., Su Z. M., Zhang Q., Li S. L., Lan Y. Q., Yuan S., Zhou H. C., J. Am. Chem. Soc., 2016, 138, 5299 [34] Gao W. Y., Cai R., Pham T., Forrest K. A., Hogan A., Nugent P., Williams K., Wojtas L., Luebke R., Weseliński Ł. J., Zaworotko M. J., Space B., Chen Y. S., Eddaoudi M., Shi X., Ma S., Chem. Mater., 2015, 27, 2144 [35] Ye Y., Ma Z., Lin R. B., Krishna R., Zhou W., Lin Q., Zhang Z., Xiang S., Chen B., J. Am. Chem. Soc., 2019, 141, 4130 [36] Loiseau T., Serre C., Huguenard C., Fink G., Taulelle F., Henry M., Bataille T., Férey G., Chem. Eur. J., 2004, 10, 1373 [37] Loiseau T., Mellot-Draznieks C., Muguerra H., Férey G., Haouas M., Taulelle F., C. R. Chim., 2005, 8, 765 [38] Senkovska I., Hoffmann F., Fröba M., Getzschmann J., Böhlmann W., Kaskel S., Microporous Mesoporous Mater., 2009, 122, 93 [39] Wang H., Shi Z., Yang J., Sun T., Rungtaweevoranit B., Lyu H., Zhang Y. B., Yaghi O. M., Angew. Chem. Int. Ed., 2021, 60, 3417 [40] Lo S. H., Chien C. H., Lai Y. L., Yang C. C., Lee J. J., Raja D. S., Lin C. H., J. Mater. Chem. A, 2013, 1, 324 [41] Reinsch H., Kruger M., Marrot J., Stock N., Inorg. Chem., 2013, 52, 1854 [42] Volkringer C., Loiseau T., Guillou N., Férey G., Haouas M., Taulelle F., Audebrand N., Margiolaki I., Popov D., Burghammer M., Riekel C., Dalton Trans., 2021, 50, 11228 [43] Fan W., Wang X., Xu B., Wang Y., Liu D., Zhang M., Shang Y., Dai F., Zhang L., Sun D., J. Mater. Chem. A, 2018, 6, 24486 [44] Fateeva A., Chater P. A., Ireland C. P., Tahir A. A., Khimyak Y. Z., Wiper P. V., Darwent J. R., Rosseinsky M. J., Angew. Chem. Int. Ed., 2012, 51, 7440 [45] Volkringer C., Loiseau T., Haouas M., Taulelle F., Popov D., Burghammer M., Riekel C., Zlotea C., Cuevas F., Latroche M., Phanon D., Knöfelv C., Llewellyn P. L., Férey G., Chem. Mater., 2009, 21, 5783 [46] Wang Z. W., Chen M., Liu C. S., Wang X., Zhao H., Du M., Chem. Eur. J., 2015, 21, 17215 [47] Yu L., Dong X., Gong Q., Acharya S. R., Lin Y., Wang H., Han Y., Thonhauser T., Li J., J. Am. Chem. Soc., 2020, 142, 6925 [48] Reinsch H., van der Veen M. A., Gil B., Marszalek B., Verbiest T., de Vos D., Stock N., Chem. Mater., 2012, 25, 17 [49] Cho K. H., Borges D. D., Lee U. H., Lee J. S., Yoon J. W., Cho S. J., Park J., Lombardo W., Moon D., Sapienza A., Maurin G., Chang J. S., Nat. Commun., 2020, 11, 5112 [50] Ahnfeldt T., Guillou N., Gunzelmann D., Margiolaki I., Loiseau T., Férey G., Senker J., Stock N., Angew. Chem. Int. Ed., 2009, 48, 5163 [51] Gandara F., Furukawa H., Lee S., Yaghi O. M., J. Am. Chem. Soc., 2014, 136, 5271 [52] Reinsch H., Feyand M., Ahnfeldt T., Stock N., Dalton Trans., 2012, 41, 4164 [53] Reinsch H., Marszalek B., Wack J., Senker J., Gil B., Stock N., Chem. Commun., 2012, 48, 9486 [54] Kumagai H., Kitagawa S., Chem. Lett., 1996, 25, 471 [55] Abu-Nawwas A. A., Cano J., Christian P., Mallah T., Rajaraman G., Teat S. J., Winpenny R. E., Yukawa Y., Chem. Commun., 2004, 314 [56] Eshel M., Bino A., Felner I., Johnston D. C., Luban M., Miller L. L., Inorg. Chem., 2000, 39, 1376 [57] Laye R. H., Murrie M., Ochsenbein S., Bell A. R., Teat S. J., Raftery J., Gudel H. U., McInnes E. J., Chem. Eur. J., 2003, 9, 6215 [58] Stamatatos T. C., Christou A. G., Jones C. M., O'Callaghan B. J., Abboud K. A., O'Brien T. A., Christou G., J. Am. Chem. Soc., 2007, 129, 9840 [59] Helliwell M., Smith A. A., Teat S. J., Winpenny R. E. P., Inorg. Chim. Acta, 2003, 354, 49 [60] Férey G., Mellot-Draznieks C., Serre C., Millange F., Dutour J., Surblé S., Margiolaki I., Science, 2005, 309, 2040 [61] Serra-Crespo P., Ramos-Fernandez E. V., Gascon J., Kapteijn F., Chem. Mater., 2011, 23, 2565 [62] Volkringer C., Popov D., Loiseau T., Férey G., Burghammer M., Riekel C., Haouas M., Taulelle F., Chem. Mater., 2009, 21, 5695 [63] Feng D., Liu T. F., Su J., Bosch M., Wei Z., Wan W., Yuan D., Chen Y. P., Wang X., Wang K., Lian X., Gu Z. Y., Park J., Zou X., Zhou H. C., Nat. Commun., 2015, 6, 5979 [64] Lv H. J., Li Y. P., Xue Y. Y., Jiang Y. C., Li S. N., Hu M. C., Zhai Q. G., Inorg. Chem., 2020, 59, 4825 [65] Zhang J. W., Ji W. J., Hu M. C., Li S. N., Jiang Y. C., Zhang X. M., Qu P., Zhai Q. G., Inorg. Chem. Front., 2019, 6, 813 [66] Alezi D., Belmabkhout Y., Suyetin M., Bhatt P. M., Weselinski L. J., Solovyeva V., Adil K., Spanopoulos I., Trikalitis P. N., Emwas A. H., Eddaoudi M., J. Am. Chem. Soc., 2015, 137, 13308 [67] Belmabkhout Y., Pillai R. S., Alezi D., Shekhah O., Bhatt P. M., Chen Z., Adil K., Vaesen S., De Weireld G., Pang M., Suetin M., Cairns A. J., Solovyeva V., Shkurenko A., El Tall O., Maurin G., Eddaoudi M., J. Mater. Chem. A, 2017, 5, 3293 [68] Wang B., Zhang X., Huang H., Zhang Z., Yildirim T., Zhou W., Xiang S., Chen B., Nano Res., 2020, 14, 507 [69] Chen Z., Li P., Zhang X., Li P., Wasson M. C., Islamoglu T., Stoddart J. F., Farha O. K., J. Am. Chem. Soc., 2019, 141, 2900 [70] Chen Z. J., Li P. H., Anderson R., Wang X. J., Zhang X., Robinson L., Redfern L. R., Moribe S., Islamoglu T., Gómez-Gualdrón D. A., Yildirim T., Stoddart J. F., Farha O. K., Science, 2020, 368, 297 [71] Reinsch H., Krüger M., Wack J., Senker J., Salles F., Maurin G., Stock N., Microporous Mesoporous Mater., 2012, 157, 50 [72] Halis S., Inge A. K., Dehning N., Weyrich T., Reinsch H., Stock N., Inorg. Chem, 2016, 55, 7425 [73] Loiseau T., Lecroq L., Volkringer C., Marrot J., Férey G., Haouas M., Taulelle F., Bourrelly S., Llewellyn P. L., Latroche M., J. Am. Chem. Soc., 2006, 128, 10223 [74] Yang S. H., Lin X., Blake A. J., Thomas K. M., Hubberstey P., Champness N. R., Schröder M., Chem. Commun., 2008, 6108 [75] Gao Q., Jiang F. L., Wu M. Y., Huang Y. C., Yuan D. Q., Wei W., Hong M. C., CrystEngComm, 2009, 11, 918 [76] Zheng S. T., Zuo F., Wu T., Irfanoglu B., Chou C., Nieto R. A., Feng P. Y., Bu X. H., Angew. Chem. Int. Ed., 2011, 50, 1849 [77] Chen S. M., Zhang J., Wu T., Feng P. Y., Bu X. H., J. Am. Chem. Soc., 2009, 131, 16027 [78] Du M., Chen M., Yang X. G., Wen J., Wang X., Fang S. M., Liu C.-S., J. Mater. Chem. A, 2014, 2, 9828 [79] Hou S. L., Dong J., Jiao Z. H., Jiang X. L., Yang X.-P., Zhao B., Inorg. Chem. Front., 2018, 5, 1694 [80] Shi X., Zu Y., Jiang S., Sun F., Inorg. Chem., 2021, 60, 1571 [81] Gao X., Sun G., Ge F., Zheng H., Inorg. Chem., 2019, 58, 8396 [82] Zhai L., Yu J. W., Zhang J., Zhang W. W., Wang L., Ren X. M., Dalton Trans., 2019, 48, 12088 [83] Huang P., Chen C., Wu M., Jiang F., Hong M., Dalton Trans., 2019, 48, 5527 [84] Reinares-Fisac D., Aguirre-Diaz L. M., Iglesias M., Gutierrez-Puebla E., Gandara F., Monge M. A., Dalton Trans., 2019, 48, 2988 [85] Wang X. M., Fan R. Q., Qiang L. S., Wang P., Yang Y. L., Wang Y. L., Dalton Trans., 2014, 43, 16152 [86] Li X. Y., Chen D. S., Liu Y., Yu Z. Y., Xia Q. S., Xing H. Z., Sun W. D., CrystEngComm, 2016, 18, 3696 [87] Wan S., Li L., Liu J., Liu B., Li G., Zhang L., Liu Y., Cryst. Growth Des., 2020, 20, 3199 [88] Springer S. E., Mihaly J. J., Amirmokhtari N., Crom A. B., Zeller M., Feldblyum J. I., Genna D. T., Cryst. Growth Des., 2019, 19, 3124 [89] Du X., Fan R., Wang X., Qiang L., Wang P., Gao S., Zhang H., Yang Y., Wang Y., Cryst. Growth Des., 2015, 15, 2402 [90] Huang Y., Lin Z., Fu H., Wang F., Shen M., Wang X., Cao R., ChemSusChem, 2014, 7, 2647 [91] Yu P., Li Q., Hu Y., Liu N., Zhang L., Su K., Qian J., Huang S., Hong M., Chem. Commun., 2016, 52, 7978 [92] Huh S., Kwon T. H., Park N., Kim S. J., Kim Y., Chem. Commun., 2009, 4953 [93] Luo Y. H., Xie A. D., Chen W. C., Shen D., Zhang D. E., Tong Z. W., Lee C. S., J. Mater. Chem. C, 2019, 7, 14897 [94] Panda T., Kundu T., Banerjee R., Chem. Commun., 2012, 48, 5464 [95] Bai X. Y., Ji W. J., Li S. N., Jiang Y. C., Hu M. C., Zhai Q. G., Cryst. Growth Des., 2016, 17, 423 [96] Atallah H., M E. L. M., Jelle A., Lough A., Hmadeh M., Dalton Trans., 2018, 47, 799 [97] Zou L., Sun X., Yuan J., Li G., Liu Y., Inorg. Chem., 2018, 57, 10679 [98] Sun L., Xing H., Liang Z., Yu J., Xu R., Chem. Commun., 2013, 49, 11155 [99] Yi F. Y., Yang H. J., Zhao X., Feng P. Y., Bu X. H., Angew. Chem. Int. Ed., 2019, 58, 2889 [100] Liu Y. L., Kravtsov V. C., Beauchamp D. A., Eubank J. F., Eddaoudi M., J. Am. Chem. Soc., 2005, 127, 7266 [101] Liu Y., Kravtsov V., Larsen R., Eddaoudi M., Chem. Commun., 2006, 1488 [102] Liu Y., Kravtsov V., Eddaoudi M., Angew. Chem. Int. Ed., 2008, 47, 8446 [103] Wang S., Zhao T. T., Li G. H., Wojtas L., Huo Q. S., Eddaoudi M., Liu Y. L., J. Am. Chem. Soc., 2010, 132, 18038 [104] Liu Y., Eubank J. F., Cairns A. J., Eckert J., Kravtsov V., Luebke R., Eddaoudi M., Angew. Chem. Int. Ed., 2007, 46, 3278 [105] Qian J., Li Q., Liang L., Li T. T., Hu Y., Huang S., Dalton Trans., 2017, 46, 14102 [106] Zhou M., Ju Z., Yuan D., Chem. Commun., 2018, 54, 2998 [107] Liu X., Liu B., Li G., Liu Y., J. Mater. Chem. A, 2018, 6, 17177 [108] Reinares-Fisac D., Aguirre-Diaz L. M., Iglesias M., Snejko N., Gutierrez-Puebla E., Monge M. A., Gandara F., J. Am. Chem. Soc., 2016, 138, 9089 [109] Li H. P., Dou Z., Chen S. Q., Hu M., Li S., Sun H. M., Jiang Y., Zhai Q. G., Inorg. Chem., 2019, 58, 11220 [110] Ju Z., Yan S., Yuan D., Chem. Mater., 2016, 28, 2000 [111] Fan W., Liu X., Wang X., Li Y., Xing C., Wang Y., Guo W., Zhang L., Sun D., Inorg. Chem. Front., 2018, 5, 2445 [112] Liu X., Liu B., Eubank J. F., Liu Y., Mater. Chem. Front., 2020, 4, 182 [113] Yao S., Wang D., Cao Y., Li G., Huo Q., Liu Y., J. Mater. Chem. A, 2015, 3, 16627 [114] Verma G., Forrest K., Carr B. A., Vardhan H., Ren J., Pham T., Space B., Kumar S., Ma S., ACS Appl. Mater. Interfaces, 2021, 13, 52023 [115] Bratsos I., Tampaxis C., Spanopoulos I., Demitri N., Charalambopoulou G., Vourloumis D., Steriotis T. A., Trikalitis P. N., Inorg. Chem., 2018, 57, 7244 [116] Liu H.-Y., Gao G.-M., Bao F.-L., Wei Y.-H., Wang H.-Y., Polyhedron, 2019, 160, 207 [117] Pang J., Wu M., Qin J.-S., Liu C., Lollar C. T., Yuan D., Hong M., Zhou H.-C., Chem. Mater., 2019, 31, 8787 [118] Chen Z., Weselinski L. J., Adil K., Belmabkhout Y., Shkurenko A., Jiang H., Bhatt P. M., Guillerm V., Dauzon E., Xue D. X., O'Keeffe M., Eddaoudi M., J. Am. Chem. Soc., 2017, 139, 3265 [119] Gu X., Lu Z. H., Xu Q., Chem. Commun., 2010, 46, 7400 [120] Zhang Z. H., Wang Q., Xue D. X., Bai J., Chem. Asian J., 2019, 14, 3603 [121] Zhao X., Mao C., Luong K. T., Lin Q., Zhai Q. G., Feng P., Bu X., Angew. Chem. Int. Ed., 2016, 55, 2768 [122] Zhao X., Bu X., Wu T., Zheng S. T., Wang L., Feng P., Nat. Commun., 2013, 4, 2344 [123] Gándara F., Gomez-Lor B., Gutiérrez-Puebla E., Iglesias M., Monge M. A., Proserpio D. M., Snejko N., Chem. Mater., 2008, 20, 72 [124] Jin Z., Zhao H. Y., Zhao X. J., Fang Q. R., Long J. R., Zhu G. S., Chem. Commun., 2010, 46, 8612 [125] Stylianou K. C., Heck R., Chong S. Y., Bacsa J., Jones J. T. A., Khimyak Y. Z., Bradshaw D., Rosseinsky M. J., J. Am. Chem. Soc., 2010, 132, 4119 [126] Qian J. J., Jiang F. L., Yuan D. Q., Wu M. Y., Zhang S. Q., Zhang L. J., Hong M. C., Chem. Commun., 2012, 48, 9696 [127] Yang S. H., Sun J. L., Ramirez-Cuesta A. J., Callear S. K., David W. I. F., Anderson D. P., Newby R., Blake A. J., Parker J. E., Tang C. C., Schröder M., Nat. Chem., 2012, 4, 887 [128] Zheng S. T., Bu J. J., Wu T., Chou C. T., Feng P. Y., Bu X. H., Angew. Chem. Int. Ed., 2011, 50, 8858 [129] Lei J., Wang B., Li Y. P., Ji W. J., Wang K., Qi H., Chou P. T., Zhang M. M., Bian H., Zhai Q. G., ACS Appl. Mater. Interfaces, 2021, 13, 22457 [130] Zhang B., Guo P. Y., Ma L. N., Liu B., Hou L., Wang Y. Y., Inorg. Chem., 2020, 59, 5231 [131] He X., Wang X., Xiao T., Zhang S., Zhu D., Inorg. Chem., 2021, 60, 9 [132] Li Y. Z., Wang G. D., Lu Y. K., Hou L., Wang Y. Y., Zhu Z., Inorg. Chem., 2020, 59, 15302 [133] Sachan S. K., Anantharaman G., Inorg. Chem., 2021, 60, 9238 [134] Yuan Y., Li J., Sun X., Li G., Liu Y., Verma G., Ma S., Chem. Mater., 2019, 31, 1084 [135] Zheng B., Sun X., Li G., Cairns A. J., Kravtsov V. C., Huo Q., Liu Y., Eddaoudi M., Cryst. Growth Des., 2016, 16, 5554 [136] Zheng S. T., Bu J. T., Li Y. F., Wu T., Zuo F., Feng P. Y., Bu X. H., J. Am. Chem. Soc., 2010, 132, 17062 [137] Ramaswamy P., Wieme J., Alvarez E., Vanduyfhuys L., Itié J.-P., Fabry P., van Speybroeck V., Serre C., Yot P. G., Maurin G., J. Mater. Chem. A, 2017, 5, 11047 [138] Volkringer C, Meddouri M., Loiseau T., Guillou N., Marrot J., Férey G., Haouas M., Taulelle F., Audebrand N., Latroche M., Inorg. Chem., 2008, 47, 11892 [139] Hajjar R., Volkringer C., Loiseau T., Guillou N., Marrot J., Férey G., Margiolaki I., Fink G., Morais C.,Taulelle F., Chem. Mater., 2010, 23, 39 [140] Volkringer C., Loiseau T., Férey G., Morais C. M., Taulelle F., Montouillout V., Massiot D., Microporous Mesoporous Mater., 2007, 105, 111 [141] Loiseau T., Muguerra H., Haouas M., Taulelle F., Férey G., Solid State Sci., 2005, 7, 603 [142] Volkringer C., Loiseau T., Guillou N., Férey G., Elkaïm E., Solid State Sci., 2009, 11, 1507 [143] Volkringer C., Loiseau T., Guillou N., Férey G., Popov D., Burghammer M., Riekel C., Solid State Sci., 2013, 26, 38 [144] Zhang Y., Lucier B. E. G., McKenzie S. M., Arhangelskis M., Morris A. J., Friscic T., Reid J. W., Terskikh V. V., Chen M., Huang Y., ACS Appl. Mater. Interfaces, 2018, 10, 28582 [145] Abednatanzi S., Derakhshandeh P. G., Abbasi A., van der Voort P., Leus K., ChemCatChem, 2016, 8, 3672 [146] Liu Y.-Y., Decadt R., Bogaerts T., Hemelsoet K., Kaczmarek A. M., Poelman D., Waroquier M., van Speybroeck V., van Deun R., van der Voort P., J. Phys. Chem. C, 2013, 117, 11302 [147] Li Y. T., Zhang J. W., Lv H. J., Hu M. C., Li S. N., Jiang Y. C., Zhai Q. G., Inorg. Chem., 2020, 59, 10368 [148] Pang M., Cairns A. J., Liu Y., Belmabkhout Y., Zeng H. C., Eddaoudi M., J. Am. Chem. Soc., 2012, 134, 13176 [149] Sutar P., Suresh V. M., Jayaramulu K., Hazra A., Maji T. K., Nat. Commun., 2018, 9, 3587 |
[1] | WU Fan, LIU Pengxin. Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis[J]. 高等学校化学研究, 2022, 38(5): 1139-1145. |
[2] | WANG Wenyang, LIU Hanlin, YANG Caoyu, FAN Ting, CUI Chengqian, LU Xiaoquan, TANG Zhiyong, LI Guodong. Coordinating Zirconium Nodes in Metal-Organic Framework with Trifluoroacetic Acid for Enhanced Lewis Acid Catalysis[J]. 高等学校化学研究, 2022, 38(5): 1301-1307. |
[3] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy[J]. 高等学校化学研究, 2022, 38(4): 928-934. |
[4] | LI Jingkang, JIANG Yanxiao, YANG Jukun, SUN Ying, MA Pinyi, and SONG Daqian. Fabrication of the Metal-Organic Framework Membrane with Excellent Adsorption Properties for Paraben Based on Micro Fibrillated Cellulose[J]. 高等学校化学研究, 2022, 38(3): 790-797. |
[5] | GAO Huimin, SHI Rui, ZHU Youliang, QIAN Hujun and LU Zhongyuan. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties[J]. 高等学校化学研究, 2022, 38(3): 653-670. |
[6] | CHEN Juan, WANG Jiajia, CHEN Chongan and YANG Guoyu. Two New Borates Built by Different Types of {B9} Cluster Units[J]. 高等学校化学研究, 2022, 38(3): 744-749. |
[7] | ZHANG Ziqi, WANG Hanbo, LI Yuxin, XIE Minggang, LI Chunguang, LU Haiyan, PENG Yu, and SHI Zhan. Confined Pyrolysis Synthesis of Well-dispersed Cobalt Copper Bimetallic Three-dimensional N-Doped Carbon Framework as Efficient Water Splitting Electrocatalyst[J]. 高等学校化学研究, 2022, 38(3): 750-757. |
[8] | WEI Wanyuan, LI Mengwei, and CHEN Yulan. Flexible Broadband Light Absorbers with a Superhydrophobic Surface Fabricated by Ultraviolet-assisted Nanoimprint Lithography[J]. 高等学校化学研究, 2022, 38(3): 829-833. |
[9] | FU Yu, LI Yinhui, ZHANG Wenxiang, LUO Chen, JIANG Lingchang, MA Heping. Ionic Covalent Organic Framework: What Does the Unique Ionic Site Bring to Us?[J]. 高等学校化学研究, 2022, 38(2): 296-309. |
[10] | BI Shuai, MENG Fancheng, ZHANG Zixing, WU Dongqing, ZHANG Fan. Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs[J]. 高等学校化学研究, 2022, 38(2): 382-395. |
[11] | ZHANG Jianhui, LIU Jianchuan, LIU Yaozu, WANG Yujie, FANG Qianrong, QIU Shilun. A Two-dimensional Covalent Organic Framework for Iodine Adsorption[J]. 高等学校化学研究, 2022, 38(2): 456-460. |
[12] | YANG Miao, WANG Wenjing, SU Kongzhao, YUAN Daqiang. Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation[J]. 高等学校化学研究, 2022, 38(2): 428-432. |
[13] | HU Ji-Xiang, ZHANG Qian, XIA Bin, LIU Tao, PANG Jiandong, BU Xian-He. Photo Switchable Two-step Photochromism in a Series of Ln-Phosphonate(Ln=Dy, Gd, Tb, Y) Dinuclear Complexes[J]. 高等学校化学研究, 2022, 38(1): 58-66. |
[14] | LI Hengbo, WANG Kuikui, WU Mingyan, HONG Maochun. A Cage-based Porous Metal-Organic Framework for Efficient C2H2 Storage and Separation[J]. 高等学校化学研究, 2022, 38(1): 82-86. |
[15] | FAN Huimin, WANG Bingwu, WANG Zheming, GAO Song. A Unique Layered Cu-formate Hydrate of Cu(HCOO) 2·1/3H2O: Structures, Dehydration, and Thermal and Magnetic Properties[J]. 高等学校化学研究, 2022, 38(1): 107-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||