高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (3): 343-350.doi: 10.1007/s40242-020-0113-3
WANG Yuheng1,2, CHANG Yilin1, ZHANG Jianqi1, LU Guanghao2, WEI Zhixiang1,3
收稿日期:
2020-04-15
修回日期:
2020-05-15
出版日期:
2020-06-01
发布日期:
2020-05-30
通讯作者:
ZHANG Jianqi, WEI Zhixiang
E-mail:zhangjq@nanoctr.cn;weizx@nanoctr.cn
基金资助:
WANG Yuheng1,2, CHANG Yilin1, ZHANG Jianqi1, LU Guanghao2, WEI Zhixiang1,3
Received:
2020-04-15
Revised:
2020-05-15
Online:
2020-06-01
Published:
2020-05-30
Contact:
ZHANG Jianqi, WEI Zhixiang
E-mail:zhangjq@nanoctr.cn;weizx@nanoctr.cn
Supported by:
摘要: The semitransparent flexible organic solar cell takes advantages of flexibility, transparency, color adjustment property, which is more conducive to integrate on buildings and mobile terminals. Ascribing to the developments of narrow band gap donors and the new non-fullerene acceptors, the power conversion efficiency of semitransparent flexible organic solar cells has been achieved 10% to 12% with average visible transmittance of 17% to 21%. This review summarizes the molecular design of the most representative active layer materials, and discusses the characterization of semitransparent parameters paradigms, then we discuss how to optimize the device in combination with optical simulation, and finally list the recent development of semitransparent flexible electrodes of ITO-free organic solar cells, and give our perspectives on the next step direction.
WANG Yuheng, CHANG Yilin, ZHANG Jianqi, LU Guanghao, WEI Zhixiang. Semitransparent Flexible Organic Solar Cells[J]. 高等学校化学研究, 2020, 36(3): 343-350.
WANG Yuheng, CHANG Yilin, ZHANG Jianqi, LU Guanghao, WEI Zhixiang. Semitransparent Flexible Organic Solar Cells[J]. Chemical Research in Chinese Universities, 2020, 36(3): 343-350.
[1] | Yuan J., Zhang Y., Zhou L., Zhang G., Yip H. L., Lau T. K., Lu X., Zhu C., Peng H., Johnson P. A., Joule, 2019, 3(4), 1140 |
[2] | Liu Q., Jiang Y., Jin K., Qin J., Xu J., Li W., Xiong J., Liu J., Xiao Z., Sun K., Yang S., Zhang X., Ding L., Sci. Bull., 2020, 65(4), 272 |
[3] | Hu Z., Wang Z., An Q., Zhang F., Sci. Bull., 2020, 65(2), 131 |
[4] | Bai Y., Zhao C., Chen X., Zhang S., Zhang S., Hayat T., Alsaedi A., Tan Z. A., Hou J., Li Y., J. Mater. Chem. A, 2019, 7(26), 15887 |
[5] | Azzouzi M., Kirchartz T., Nelson J., Trends in Chemistry, 2019, 1(1), 49 |
[6] | Liu S., Yuan J., Deng W., Luo M., Xie Y., Liang Q., Zou Y., He Z., Wu H., Cao Y. J. N. P., Nat. Photonics., 2020, 14(5), 305 |
[7] | Nakano K., Chen Y., Xiao B., Han W., Huang J., Yoshida H., Zhou E., Tajima K. J. N. C., Nat. Commun., 2019, 10(1), 1 |
[8] | Firdaus Y., le Corre V. M., Khan J. I., Kan Z., Laquai F., Beaujuge P. M., Anthopoulos T. D., Adv. Sci., 2019, 6(9), 1802028 |
[9] | Sun Y., Chang M., Meng L., Wan X., Gao H., Zhang Y., Zhao K., Sun Z., Li C., Liu S., Nat. Electron., 2019, 2(11), 513 |
[10] | Chen X., Xu G., Zeng G., Gu H., Chen H., Xu H., Yao H., Li Y., Hou J., Li Y., Adv. Mater., 2020, 32(14), 1908478 |
[11] | Cui Y., Yao H., Hong L., Zhang T., Tang Y., Lin B., Xian K., Gao B., An C., Bi P., Ma W., Hou J., Natl. Sci. Rev., 2019, DOI:10.1093/nsr/nwz200 |
[12] | Sun L., Zeng W., Xie C., Hu L., Dong X., Qin F., Wang W., Liu T., Jiang X., Jiang Y., Adv. Mater., 2020, 32, 1907840 |
[13] | Ravishankar E., Booth R. E., Saravitz C., Sederoff H., Ade H. W., O'Connor B. T., Joule, 2020, 4(2), 490 |
[14] | Krebs F. C., Espinosa N., Hösel M., Søndergaard R. R., Jørgensen M., Adv. Mater., 2014, 26(1), 29 |
[15] | Yan T., Song W., Huang J., Peng R., Huang L., Ge Z., Adv. Mater., 2019, 31(39), 1902210 |
[16] | Qian Y., Zhang X., Qi D., Xie L., Chandran B. K., Chen X., Huang W., Sci. China Mater., 2016, 59(7), 589 |
[17] | Song W., Fanady B., Peng R., Hong L., Wu L., Zhang W., Yan T., Wu T., Chen S., Ge Z., Adv. Energy Mater., 2020, 10, 1907840 |
[18] | Yan T., Song W., Huang J., Peng R., Huang L., Ge Z., Adv. Mater., 2019, 31(39), 1902210 |
[19] | Li Y., Lin J. D., Che X., Qu Y., Liu F., Liao L., Forrest S. R., J. Am. Chem. Soc., 2017, 139(47), 17114 |
[20] | Lee S., Lee Y., Park J., Choi D., Nano Energy, 2014, 9, 88 |
[21] | Cutting C. L., Bag M., Venkataraman D., J. Mater. Chem. C, 2016, 4(43), 10367 |
[22] | Apostolou G., Reinders A., Verwaal M., Energy. Sci. Eng., 2016, 4(1), 69 |
[23] | Zamarayeva A. M., Ostfeld A. E., Wang M., Duey J. K., Deckman I., Lechêne B. P., Davies G., Steingart D. A., Arias A. C., Sci. Adv., 2017, 3(6), e1602051 |
[24] | Hamedi M. M., Herland A., Zhang F., Pei Q., Adv. Mater., 2019, 31(22), 1901940 |
[25] | Landerer D., Bahro D., Röhm H., Koppitz M., Mertens A., Manger F., Denk F., Heidinger M., Windmann T., Colsmann A., Energy. Technol-Ger, 2017, 5(11), 1936 |
[26] | Huang S., Liu Y., Zhao Y., Ren Z., Guo C. F., Adv. Funct. Mater., 2019, 29(6), 1805924 |
[27] | Zhang G., Xia R., Chen Z., Xiao J., Zhao X., Liu S., Yip H., Cao Y., Adv. Energy Mater., 2018, 8(25), 1801609 |
[28] | Li Y., Xu G., Cui C., Li Y., Adv. Energy Mater., 2018, 8(21), 1701791 |
[29] | Dai S., Zhan X., Adv. Energy Mater., 2018, 8(21), 1800002 |
[30] | Brus V. V., Lee J., Luginbuhl B. R., Ko S., Bazan G. C., Nguyen T., Adv. Mater., 2019, 31(30), 1900904 |
[31] | Zheng Z., Yao H., Ye L., Xu Y., Zhang S., Hou J., Mater. Today, 2019, DOI:org/10.1016/j.mattod.2019.10.023 |
[32] | Pettersson L. A. A., Roman L. S., Inganas O., J. Appl. Phys., 1999, 86(1), 487 |
[33] | Wang Y., Zhang Y., Lu G., Feng X., Xiao T., Xie J., Liu X., Ji J., Wei Z., Bu L., ACS Appl. Mater. Interfaces, 2018, 10(16), 13741 |
[34] | Xia R., Brabec C. J., Yip H. L., Cao Y., Joule, 2019, 3(9), 2241 |
[35] | Xia R., Gu H., Liu S., Zhang K., Yip H. L., Cao Y., Solar RRL, 2019, 3(1), 1800270 |
[36] | Yang C., Liu D., Bates M., Barr M. C., Lunt R. R., Joule, 2019, 3(8), 1803 |
[37] | Traverse C. J., Pandey R., Barr M. C., Lunt R. R., Nat. Energy, 2018, 3(2), 157 |
[38] | Xu W., Gao F., Mater. Horizons, 2018, 5(2), 206 |
[39] | Xiao Z., Jia X., Ding L., Sci. Bull., 2017, 62(23), 1562 |
[40] | Fu H. T., Wang Z. H., Sun Y. M., Angew. Chem., Int. Ed., 2019, 58(14), 4442 |
[41] | Lin Y., Wang J., Zhang Z. G., Bai H., Li Y., Zhu D., Zhan X., Adv. Mater., 2015, 27(7), 1170 |
[42] | Wang W., Yan C. Q., Lau T. K., Wang J. Y., Liu K., Fan Y., Lu X. H., Zhan X. W., Adv. Mater., 2017, 29(31), 1701308 |
[43] | Jia B., Dai S., Ke Z., Yan C., Ma W., Zhan X., Chem. Mater., 2018, 30(1), 239 |
[44] | Tong Y., Xiao Z., Du X., Zuo C., Li Y., Lv M., Yuan Y., Yi C., Hao F., Hua Y., Lei T., Lin Q., Sun K., Zhao D., Duan C., Shao X., Li W., Yip H. L., Xiao Z., Zhang B., Bian Q., Cheng Y., Liu S., Cheng M., Jin Z., Yang S., Ding L., Sci. China:Chem., 2020, DOI:10.1360/SSC-2020-0018 |
[45] | Perdigón-Toro L., Zhang H., Markina A., Yuan J., Hosseini S. M., Wolff C. M., Zuo G., Stolterfoht M., Zou Y., Gao F., Adv. Mater., 2020, 32(9), 1906763 |
[46] | Qian D., Ye L., Zhang M., Liang Y., Li L., Huang Y., Guo X., Zhang S., Tan Z. A., Hou J., Macromolecules, 2012, 45(24), 9611 |
[47] | Lin Y., Adilbekova B., Firdaus Y., Yengel E., Faber H., Sajjad M., Zheng X., Yarali E., Seitkhan A., Bakr O. M., El-Labban A., Schwingenschlogl U., Tung V., McCulloch I., Laquai F., Anthopoulos T. D., Adv. Mater., 2019, 31(46), 1902965 |
[48] | Qian D., Ye L., Zhang M., Liang Y., Li L., Huang Y., Guo X., Zhang S., Tan Z., Hou J., Macromolecules, 2012, 45(24), 9611 |
[49] | Huang W., Li M., Zhang L., Yang T., Zhang Z., Zeng H., Zhang X., Dang L., Liang Y., Chem. Mater., 2016, 28(16), 5887 |
[50] | Ye L., Jiao X., Zhou M., Zhang S., Yao H., Zhao W., Xia A., Ade H., Hou J., Adv. Mater., 2015, 27(39), 6046 |
[51] | Zhao Y., Wang G., Wang Y., Xiao T., Adil M. A., Lu G., Zhang J., Wei Z., Solar RRL, 2019, 3(3), 1800333 |
[52] | Adil M. A., Zhang J., Wang Y., Yu J., Yang C., Lu G., Wei Z., Nano Energy, 2020, 68, 104271 |
[53] | Chou K. W., Yan B., Li R., Li E. Q., Zhao K., Anjum D. H., Alvarez S., Gassaway R., Biocca A., Thoroddsen S. T., Adv. Mater., 2013, 25(13), 1923 |
[54] | Liu T., Gao W., Wang Y. L., Yang T., Ma R. J., Zhang G. Y., Zhong C., Ma W., Yan H., Yang C. L., Adv. Funct. Mater., 2019, 29(26), 9 |
[55] | Pan M. A., Lau T. K., Tang Y., Wu Y. C., Liu T., Li K., Chen M. C., Lu X., Ma W., Zhan C., J. Mater. Chem. A, 2019, 7(36), 20713 |
[56] | Bai Y., Zhao C., Chen X., Zhang S., Zhang S., Hayat T., Alsaedi A., Tan Z. A., Hou J., Li Y., J. Mater. Chem. A, 2019, 7(36), 20713 |
[57] | Hou J., Ingans O., Friend R. H., Gao F., Nat. Mater., 2018, 17(2), 119 |
[58] | Liu J., Chen S., Qian D., Gautam B., Yang G., Zhao J., Bergqvist J., Zhang F., Ma W., Ade H., Nat. Energy, 2016, 1(7), 16089 |
[59] | He Z., Zhong C., Su S., Xu M., Wu H., Cao Y., Nat. Photon., 2012, 6(9), 591 |
[60] | Li T., Dai S., Ke Z., Yang L., Wang J., Yan C., Wei M., Zhan X., Adv. Mater., 2018, 30(10), 1705969 |
[61] | Cui Y., Yang C. Y., Yao H. F., Zhu J., Wang Y. M., Jia G. X., Gao F., Hou J. H., Adv. Mater., 2017, 29(43), 1703080 |
[62] | Zhang J., Xu G., Tao F., Zeng G., Zhang M., Yang Y. M., Li Y., Li Y., Adv. Mater., 2019, 31(10), 1807159 |
[63] | Inganas O., Adv. Mater., 2018, 30(35), 1800388 |
[64] | Xue Q. F., Xia R. X., Brabec C. J., Yip H. L., Energy Environ. Sci., 2018, 11(7), 1688 |
[65] | Hedley G. J., Ruseckas A., Samuel I. D. W., Chem. Rev., 2017, 117(2), 796 |
[66] | Meyer A., Ade H., J. Appl. Phys., 2009, 106(11), 113101 |
[67] | Mertens A., Mescher J., Bahro D., Koppitz M., Colsmann A., Opt. Express, 2016, 24(10), A898 |
[68] | Liu Q., Gerling L. G., Bernal-Texca F., Toudert J., Li T., Zhan X., Martorell J., Adv. Energy Mater., 2020, 10, 1904196 |
[69] | Li X., Xia R., Yan K., Yip H., Chen H., Li C., Chin. Chem. Lett., 2019, DOI:org/10.1016/j.cclet.2019.08.046 |
[70] | Kim J. H., Jung S. Y., Jeong I. K., J. Opt. Soc. Korea, 2012, 16(1), 6 |
[71] | Bergqvist J., Arwin H., Inganas O., ACS Photonics, 2018, 5(8), 3023 |
[72] | Betancur R., Romero-Gomez P., Martinez-Otero A., Elias X., Maymo M., Martorell J., Nat. Photon., 2013, 7(12), 995 |
[73] | Xue Q., Xia R., Brabec C. J., Yip H. L., Energy Environ. Sci., 2018, 11(7), 1688 |
[74] | Tabor D. P., Roch L. M., Saikin S. K., Kreisbeck C., Sheberla D., Montoya J. H., Dwaraknath S., Aykol M., Ortiz C., Tribukait H. J. N. R. M., Nat. Rev. Mater., 2018, 3(5), 5 |
[75] | Majeed N., Saladina M., Krompiec M., Greedy S., Deibel C., MacKenzie R. C. I., Adv. Funct. Mater., 2020, 30(7), 1907259 |
[76] | Xiao T., Wang J., Yang S., Zhu Y., Li D., Wang Z., Feng S., Bu L., Zhan X., Lu G., J. Mater. Chem. A, 2020, 8(1), 401 |
[77] | Zuo L., Zhang S., Shi M., Li H., Chen H., Mater. Chem. Front., 2017, 1(2), 304 |
[78] | Sun C., Xia R., Shi H., Yao H., Liu X., Hou J., Huang F., Yip H. L., Cao Y., Joule, 2018, 2(9), 1816 |
[79] | Wen L., Chen Q., Sun F., Song S., Jin L., Yu Y., Sci. Rep., 2014, 4, 7036 |
[80] | Zuo L., Zhang S., Li H., Chen H., Adv. Mater., 2015, 27(43), 6983 |
[81] | Liu Y., Cheng P., Li T., Wang R., Li Y., Chang S. Y., Zhu Y., Cheng H. W., Wei K. H., Zhan X., Sun B., Yang Y., ACS Nano, 2019, 13(2), 1071 |
[82] | Bi Y. G., Liu Y. F., Zhang X. L., Yin D., Wang W. Q., Feng J., Sun H. B., Adv. Opt. Mater., 2019, 7(6), 1800778 |
[83] | Zhao G., Song M., Chung H. S., Kim S. M., Lee S. G., Bae J. S., Bae T. S., Kim D., Lee G. H., Han S. Z., Lee H. S., Choi E. A., Yun J., ACS Appl. Mater. Interfaces, 2017, 9(44), 38695 |
[84] | Choi K., Kim J., Noh Y., Na S., Kim H., Sol. Energy Mat. Sol. C, 2013, 110, 147 |
[85] | Park H., Chang S., Zhou X., Kong J., Palacios T., Gradecak S., Nano Lett., 2014, 14(9), 5148 |
[86] | Jeon I., Cui K., Chiba T., Anisimov A., Nasibulin A. G., Kauppinen E. I., Maruyama S., Matsuo Y., J. Am. Chem. Soc., 2015, 137(25), 7982 |
[87] | Lu S., Lin J., Liu K., Yue S., Ren K., Tan F., Wang Z., Jin P., Qu S., Wang Z., Acta Mater., 2017, 130, 208 |
[88] | Huseynova G., Kim Y. H., Lee J. H., Lee J., J. Inf. Disp., 2020, 21, 71 |
[89] | Kang H., Jung S., Jeong S., Kim G., Lee K., Nat. Commun., 2015, 6, 6503 |
[90] | Cui H., Song W., Fanady B., Peng R., Zhang J., Huang J., Ge Z., Sci. China:Chem., 2019, 62(4), 500 |
[91] | Kim Y. H., Sachse C., Machala M. L., May C., Mueller-Meskamp L., Leo K., Adv. Funct. Mater., 2011, 21(6), 1076 |
[92] | Lei T., Peng R., Huang L., Song W., Yan T., Zhu L., Ge Z., Mater. Today. Energy, 2019, 14, 100334 |
[93] | da Silva W. J., Kim H. P., Yusoff A. R. B. M., Jang J., Nanoscale, 2013, 5(19), 9324 |
[94] | Song W., Peng R., Huang L., Liu C., Fanady B., Lei T., Hong L., Ge J., Facchetti A., Ge Z., iScience, 2020, 23(4), 100981 |
[95] | Fujii S., Mater. Sci. Forum, 2018, 916, 212 |
[96] | Kim N., Kang H., Lee J. H., Kee S., Lee S. H., Lee K., Adv. Mater., 2015, 27(14), 2317 |
[97] | Seo J. H., Hwang I., Um H. D., Lee S., Lee K., Park J., Shin H., Kwon T. H., Kang S. J., Seo K., Adv. Mater., 2017, 29(30), 1701479 |
[98] | Zhao B., He Z., Cheng X., Qin D., Yun M., Wang M., Huang X., Wu J., Wu H., Cao Y., J. Mater. Chem. C, 2014, 2(26), 5077 |
[99] | Lee D. J., Heo D. K., Yun C., Kim Y. H., Kang M. H., J. Solid. State. SC, 2019, 8(2), Q32 |
[100] | Lee K. S., Kim I., Yeon C. B., Lim J. W., Yun S. J., Jabbour G. E., Etri. J., 2013, 35(4), 587 |
[101] | Han Y., Chen X., Wei J., Ji G., Wang C., Zhao W., Lai J., Zha W., Li Z., Yan L., Gu H., Luo Q., Chen Q., Chen L., Hou J., Su W., Ma C. Q., Adv. Sci., 2019, 6(22), 1901490 |
[102] | Li T., Dai S., Ke Z., Yang L., Wang J., Yan C., Ma W., Zhan X., Adv. Mater., 2018, 30(10), 1705969 |
[103] | Yang Y., Jin Q., Mao D., Qi J., Wei Y., Yu R., Li A., Li S., Zhao H., Ma Y., Wang L., Hu W., Wang D., Adv. Mater., 2017, 29(4), 1604795 |
[104] | Che Y., Wang Y., You T., Chang H., Yin P., Zhai J., Chem. Res. Chinese Universities, 2018, 34(5), 780 |
[105] | Wang S., Gao Y., Su X., Yan L., Chem. Res. Chinese Universities., 2018, 34(5), 771 |
[106] | Wang Y., Wan J., Ding J., Hu J.-S., Wang D., Angew. Chem., Int. Ed., 2019, 58(28), 9414 |
[1] | GAO Wei, LI Yufeng, ZHAO Jitao, ZHANG Zhe, TANG Weiwei, WANG Jun, WU Zhenyu, LI Zhenyu. Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor[J]. 高等学校化学研究, 2022, 38(4): 1097-1104. |
[2] | DING Huimin, MAL Arindam, WANG Cheng. Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration[J]. 高等学校化学研究, 2022, 38(2): 356-363. |
[3] | ZHANG Luwei, LIU Jingyi, BAI Ling, WANG Ning. Diffusion Kinetics Study of Lithium Ion in the Graphdiyne Based Electrode[J]. 高等学校化学研究, 2021, 37(6): 1289-1295. |
[4] | WANG Ziyang, ZHANG Xinyuan, LIU Yuhan, WANG Chunzhong, DU Fei. Ultralong Life Symmetric Potassium Ion Batteries Using a Bipolar Cr/Ti Based Layered Material[J]. 高等学校化学研究, 2021, 37(3): 739-744. |
[5] | QIU Ju, WANG Hao, WANG Jing, WANG Ce. Synthesis of Ternary Ni/Mo2C/Carbon Nanofibers as Low-cost Counter Electrode for Efficient Dye-sensitized Solar Cells[J]. 高等学校化学研究, 2021, 37(3): 480-487. |
[6] | JIN Tongzheng, JIANG Xinyi, YANG Yumeng, ZHU Benfeng, LIU Jiao, JIANG Li, WEI Guoying, ZHANG Zhao. Early Stages of CeO2 Thin-film Nucleation and Growth with Photo Irradiation[J]. 高等学校化学研究, 2021, 37(3): 696-703. |
[7] | LI La, CHEN Di, SHEN Guozhen. All-Ti3C2TxMXene Based Flexible On-chip Microsupercapacitor Array[J]. 高等学校化学研究, 2020, 36(4): 694-698. |
[8] | YUAN Hong, LIU Jia, LU Yang, ZHAO Chenzi, CHENG Xinbing, NAN Haoxiong, LIU Quanbing, HUANG Jiaqi, ZHANG Qiang. Toward Practical All-solid-state Batteries with Sulfide Electrolyte: A Review[J]. 高等学校化学研究, 2020, 36(3): 377-385. |
[9] | YU Mintong, XIA Tian, BAI Wanchen, JI jinyu, WANG Huan, HUANG Yaqi, DENG Shengyuan, MA Kefeng, SU Yan, WAN Ying. Handheld Aptasensor for Sandwiched Detection of Chloramphenicol[J]. 高等学校化学研究, 2020, 36(2): 291-295. |
[10] | GAO Yuan, ZHOU Ruitao, WANG Dongrui, HUANG Qiyao, CHENG Ching-Hsiang, ZHENG Zijian. Boosting the Energy Density of Flexible Asymmetric Supercapacitor with Three Dimensional Fe2O3 Composite Brush Anode[J]. 高等学校化学研究, 2020, 36(1): 97-104. |
[11] | HE Xiaodong, ZHU Jianling, YIN Lunxiang, XIE Bao, LI Kechang, LI Yanqin. Novel Small Four-armed Molecules with Triphenylamine-bridged Structure for Organic Solar Cells Featuring High Open-circuit Voltage[J]. 高等学校化学研究, 2019, 35(6): 1032-1039. |
[12] | ZHAO Jie. Inspired by Grape Seed and Wine: Tannic Acid as a Modified Coating for Fabricating Highly Flexible, Transparent and Conductive Film[J]. 高等学校化学研究, 2019, 35(5): 945-950. |
[13] | WEN Xuemei, YI Fangshun, JI Jinhai, BI Yangang, ZHANG Wenyi, WANG Wenquan. S-1805/Ag/Au Hybrid Transparent Electrodes for ITO-f ree Flexible Organic Photovoltaics[J]. 高等学校化学研究, 2019, 35(3): 509-513. |
[14] | WANG Can, WANG Dianyu, ZHENG Shuang, FANG Xueqing, ZHANG Wenli, TIAN Ye, LIN Haibo, LU Haiyan, JIANG Lei. Facile Self-templating Melting Route Preparation of Biomass-derived Hierarchical Porous Carbon for Advanced Supercapacitors[J]. 高等学校化学研究, 2018, 34(6): 983-988. |
[15] | YANG Shuqin, LI Yuan, YUAN Yongjie, DONG Zhentao, REN Kailiang, ZHAO Yumeng. Effects of Annealing Temperature on Microstructure and Electrochemical Properties of Perovskite-type Oxide LaFeO3 as Negative Electrode for Metal Hydride/Nickel(MH/Ni) Batteries[J]. 高等学校化学研究, 2018, 34(4): 604-608. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||