高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (3): 351-359.doi: 10.1007/s40242-020-9110-9
WANG Kuangyu, WU Yulong, LIU Kai, WU Hui
收稿日期:
2020-04-15
修回日期:
2020-04-26
出版日期:
2020-06-01
发布日期:
2020-05-30
通讯作者:
WU Hui
E-mail:huiwu@mail.tsinghua.edu.cn
基金资助:
WANG Kuangyu, WU Yulong, LIU Kai, WU Hui
Received:
2020-04-15
Revised:
2020-04-26
Online:
2020-06-01
Published:
2020-05-30
Contact:
WU Hui
E-mail:huiwu@mail.tsinghua.edu.cn
Supported by:
摘要: Li-ion solid electrolytes, which are compatible with metallic lithium anodes, are the key component of all solid-state batteries. Recently, the garnet Li7La3Zr2O12 solid electrolyte has experienced booming development and shown great potential for its excellent overall performance. However, further understanding of its stability with lithium is required for a longer battery lifetime. In this review, latest research work on the interface between garnet-type solid electrolytes and lithium is presented, including both mechanisms governing interface stability and interface engineering methods. The development prospects and potential directions for following research are also discussed in the last section.
WANG Kuangyu, WU Yulong, LIU Kai, WU Hui. A Review on Anode Side Interface Stability Micromechanisms and Engineering for Garnet Electrolyte-based Solid-state Batteries[J]. 高等学校化学研究, 2020, 36(3): 351-359.
WANG Kuangyu, WU Yulong, LIU Kai, WU Hui. A Review on Anode Side Interface Stability Micromechanisms and Engineering for Garnet Electrolyte-based Solid-state Batteries[J]. Chemical Research in Chinese Universities, 2020, 36(3): 351-359.
[1] | Jin Y., Mcginn P. J., Electrochim. Acta, 2013, 89, 407 |
[2] | Zhang Y., Fei H., An Y., Wei C., Feng J., ChemistrySelect, 2020, 5, 1214 |
[3] | Mauger A., Julien C. M., Paolella A., Armand M., Zaghib K., Materials(Basel), 2019, 12, 3892 |
[4] | Fergus J. W., J. Power Sources, 2010, 195, 4554 |
[5] | Manthiram A., Yu X., Wang S., Nat. Rev. Mater., 2017, 2, 1 |
[6] | Zheng F., Kotobuki M., Song S., Lai M. O., Lu L., J. Power Sources, 2018, 389, 198 |
[7] | Liu K., Ma J. T., Wang C. A., J. Power Sources, 2014, 260, 109 |
[8] | Chen F., Li J., Huang Z., Yang Y., Shen Q., Zhang L., J. Phys. Chem. C, 2018, 122, 1963 |
[9] | Wolfenstine J., Allen J. L., Sakamoto J., Siegel D. J., Choe H., Ionics (Kiel)., 2018, 24, 1271 |
[10] | Liu Q., Geng Z., Han C., Fu Y., Li S., He Y., Kang F., Li B., J. Power Sources, 2018, 389, 120 |
[11] | Cao S., Song S., Xiang X., Hu Q., Zhang C., Xia Z., Xu Y., Zha W., Li J., Gonzale P. M., Han Y. H., Chen F., J. Korean Ceram. Soc., 2019, 56, 111 |
[12] | Duan H., Zheng H., Zhou Y., Xu B., Liu H., Solid State Ionics, 2018, 318, 45 |
[13] | Ren Y., Shen Y., Lin Y., Nan C. W., Electrochem. commun., 2015, 57, 27 |
[14] | Ma C., Cheng Y., Yin K., Luo J., Sharafi A., Sakamoto J., Li J., More K. L., Dudney N. J., Chi M., Nano Lett., 2016, 16, 7030 |
[15] | Wang M. J., Choudhury R., Sakamoto J., Joule, 2019, 3, 2165 |
[16] | Manalastas Jr. W., Rikarte J., Chater R. J., Brugge R., Aguadero A., Buannic L., Llordés A., Aguesse F., Kilner J., J. Power Sources, 2019, 412, 287 |
[17] | Han F., Zhu Y., He X., Mo Y., Wang C., Adv. Energy Mater., 2016, 6, 1501590 |
[18] | Miara L. J., Richards W. D., Wang Y. E., Ceder G., Chem. Mater., 2015, 27, 4040 |
[19] | Kang S. G., Sholl D. S., J. Phys. Chem. C, 2014, 118, 17402 |
[20] | Luntz A. C., Voss J., Reuter K., J. Phys. Chem. Lett., 2015, 6, 4599 |
[21] | Kerman K., Luntz A., Viswanathan V., Chiang Y. M., Chen Z., J. Electrochem. Soc., 2017, 164, A1731 |
[22] | Koshikawa H., Matsuda S., Kamiya K., Miyayama M., Kubo Y., Uosaki K., Hashimoto K., Nakanishi S., J. Power Sources, 2018, 376, 147 |
[23] | Kotobuki M., Munakata H., Kanamura K., Sato Y., Yoshida T., J. Electrochem. Soc., 2010, 157, A1076 |
[24] | Cheng L., Chen W., Kunz M., Persson K., Tamura N., Chen G., Doeff M., ACS Appl. Mater. Interfaces, 2015, 7, 2073 |
[25] | Ohta S., Kobayashi T., Asaoka T., J. Power Sources, 2011, 196, 3342 |
[26] | Sharafi A., Yu S., Naguib M., Lee M., Ma C., Meyer H. M., Nanda J., Chi M., Siegel D. J., Sakamoto J., J. Mater. Chem. A, 2017, 5, 13475 |
[27] | Sharafi A., Kazyak E., Davis A. L., Yu S., Thompson T., Siegel D. J., Dasgupta N. P., Sakamoto J., Chem. Mater., 2017, 29, 7961 |
[28] | Huo H., Chen Y., Zhao N., Lin X., Luo J., Yang X., Liu Y., Guo X., Sun X., Nano Energy, 2019, 61, 119 |
[29] | Ruan Y., Lu Y., Huang X., Su J., Sun C., Jin J., Wen Z., J. Mater. Chem. A, 2019, 7, 14565 |
[30] | Xiao Y., Wang Y., Bo S. H., Kim J. C., Miara L. J., Ceder G., Nat. Rev. Mater., 2020, 5, 105 |
[31] | Richards W. D., Miara L. J., Wang Y., Kim J. C., Ceder G., Chem. Mater., 2016, 28, 266 |
[32] | Samson A. J., Hofstetter K., Bag S., Thangadurai V., Energy Environ. Sci., 2019, 12, 2957 |
[33] | Nemori H., Matsuda Y., Mitsuoka S., Matsui M., Yamamoto O., Takeda Y., Imanishi N., Solid State Ionics, 2015, 282, 7 |
[34] | Zhu Y., Connell J. G., Tepavcevic S., Zapol P., Garcia-Mendez R., Taylor N. J., Sakamoto J., Ingram B. J., Curtiss L. A., Freeland J. W., Fong D. D., Markovic N. M., Adv. Energy Mater., 2019, 9, 1803440 |
[35] | Li Q., Yi T., Wang X., Pan H., Quan B., Liang T., Guo X., Yu X., Wang H., Huang X., Chen L., Li H., Nano Energy, 2019, 63, 103895 |
[36] | Song Y., Yang L., Zhao W., Wang Z., Zhao Y., Wang Z., Zhao Q., Liu H., Pan F., Adv. Energy Mater., 2019, 9, 1900671 |
[37] | Monroe C., Newman J., J. Electrochem. Soc., 2004, 151, A880 |
[38] | Monroe C., Newman J., J. Electrochem. Soc., 2005, 152, A396 |
[39] | Aguesse F., Manalastas W., Buannic L., Lopez del Amo J. M., Singh G., Llordés A., Kilner J., ACS Appl. Mater. Interfaces, 2017, 9, 3808 |
[40] | Suzuki Y., Kami K., Watanabe K., Watanabe A., Saito N., Ohnishi T., Takada K., Sudo R., Imanishi N., Solid State Ionics, 2015, 278, 172 |
[41] | Wang M., Wolfenstine J. B., Sakamoto J., Electrochim. Acta, 2019, 296, 842 |
[42] | Porz L., Swamy T., Sheldon B. W., Rettenwander D., Frömling T., Thaman H. L., Berendts S., Uecker R., Carter W. C., Chiang Y. M., Adv. Energy Mater., 2017, 7, 1701003 |
[43] | Sharafi A., Haslam C. G., Kerns R. D., Wolfenstine J., Sakamoto J., J. Mater. Chem. A, 2017, 5, 21491 |
[44] | Cheng E. J., Sharafi A., Sakamoto J., Electrochim. Acta, 2017, 223, 85 |
[45] | Sharafi A., Meyer H. M., Nanda J., Wolfenstine J., Sakamoto J., J. Power Sources, 2016, 302, 135 |
[46] | Su Y., Ye L., Fitzhugh W., Wang Y., Gil-González E., Kim I., Li X., Energy Environ. Sci., 2020, 13, 908 |
[47] | Kasemchainan J., Zekoll S., Spencer J. D., Ning Z., Hartley G. O., Marrow J., Bruce P. G., Nat. Mater., 2019, 18, 1105 |
[48] | Taylor N. J., Stangeland-Molo S., Haslam C. G., Sharafi A., Thompson T., Wang M., Garcia-Mendez R., Sakamoto J., J. Power Sources, 2018, 396, 314 |
[49] | Huang W. L., Zhao N., Bi Z. J., Shi C., Guo X. X., Fan L., Nan C., Mater. Today Nano, 2020, 10, 100075 |
[50] | Flatscher F., Philipp M., Ganschow S., Wilkening H. M. R., Rettenwander D., J. Mater. Chem. A, 2020, DOI:10.1039/c9ta14177d |
[51] | Inada R., Yasuda S., Hosokawa H., Saito M., Tojo T., Sakurai Y., Batteries, 2018, 4, 26 |
[52] | Han F., Westover A. S., Yue J., Fan X., Wang F., Chi M., Leonard D. N., Dudney N. J., Wang H., Wang C., Nat. Energy, 2019, 4, 187 |
[53] | Swamy T., Park R., Sheldon B. W., Rettenwander D., Porz L., Berendts S., Uecker R., Carter W. C., Chiang Y. M., J. Electrochem. Soc., 2018, 165, A3648 |
[54] | Lotsch B. V., Maier J., J. Electroceramics, 2017, 38, 128 |
[55] | Li H. Y., Huang B., Huang Z., Wang C. A., Ceram. Int., 2019, 45, 18115 |
[56] | Hu Z., Liu H., Ruan H., Hu R., Su Y., Zhang L., Ceram. Int., 2016, 42, 12156 |
[57] | Wang X., Liu J., Yin R., Xu Y., Cui Y., Zhao L., Yu X., Mater. Lett., 2018, 231, 43 |
[58] | Yang S. H., Kim M. Y., Kim D. H., Jung H. Y., Ryu H. M., Han J. H., Lee M. S., Kim H. S., J. Ind. Eng. Chem., 2017, 56, 422 |
[59] | Schnell J., Günther T., Knoche T., Vieider C., Köhler L., Just A., Keller M., Passerini S., Reinhart G., J. Power Sources, 2018, 382, 160 |
[60] | Sudo R., Nakata Y., Ishiguro K., Matsui M., Hirano A., Takeda Y., Yamamoto O., Imanishi N., Solid State Ionics, 2014, 262, 151 |
[61] | Ishiguro K., Nemori H., Sunahiro S., Nakata Y., Sudo R., Matsui M., Takeda Y., Yamamoto O., Imanishi N., J. Electrochem. Soc., 2014, 161, A668 |
[62] | Liu Z., Li G., Borodin A., Liu X., Li Y., Endres F., J. Solid State Electrochem., 2019, 23, 2107 |
[63] | Hirose E., Niwa K., Kataoka K., Akimoto J., Hasegawa M., Mater. Res. Bull., 2018, 107, 361 |
[64] | Krauskopf T., Dippel R., Hartmann H., Peppler K., Mogwitz B., Richter F. H., Zeier W. G., Janek J., Joule, 2019, 3, 2030 |
[65] | Wang C., Gong Y., Dai J., Zhang L., Xie H., Pastel G., Liu B., Wachsman E., Wang H., Hu L., J. Am. Chem. Soc., 2017, 139, 14257 |
[66] | Liu D., Shadike Z., Lin R., Qian K., Li H., Li K., Wang S., Yu Q., Liu M., Ganapathy S., Qin X., Yang Q. H., Wagemaker M., Kang F., Yang X. Q., Li B., Adv. Mater., 2019, 31, 1806620 |
[67] | Ke X., Wang Y., Ren G., Yuan C., Energy Storage Mater., 2020, 26, 313 |
[68] | Luo W., Gong Y., Zhu Y., Li Y., Yao Y., Zhang Y., Fu K. K., Pastel G., Lin C. F., Mo Y., Wachsman E. D., Hu L., Adv. Mater., 2017, 29, 1606042 |
[69] | McGrogan F. P., Swamy T., Bishop S. R., Eggleton E., Porz L., Chen X., Chiang Y. M., Vliet K. J. Van, Adv. Energy Mater., 2017, 7, 1602011 |
[70] | Bucci G., Swamy T., Chiang Y. M., Carter W. C., J. Mater. Chem. A, 2017, 5, 19422 |
[71] | Yamada H., Ito T., Hongahally B. R., Bekarevich R., Mitsuishi K., J. Power Sources, 2017, 368, 97 |
[72] | Wang P., Qu W., Song W. L., Chen H., Chen R., Fang D., Adv. Funct. Mater., 2019, 29, 1900950 |
[73] | Yu S., Schmidt R. D., Garcia-Mendez R., Herbert E., Dudney N. J., Wolfenstine J. B., Sakamoto J., Siegel D. J., Chem. Mater., 2016, 28, 197 |
[74] | Ni J. E., Case E. D., Sakamoto J. S., Rangasamy E., Wolfenstine J. B., J. Mater. Sci., 2012, 98, 7978 |
[75] | Sakanoi R., Shimazaki T., Xu J., Higuchi Y., Ozawa N., Sato K., Hashida T., Kubo M., J. Chem. Phys., 2014, 140, 121102 |
[76] | Masias A., Felten N., Garcia-Mendez R., Wolfenstine J., Sakamoto J., J. Mater. Sci., 2019, 54, 2585 |
[77] | Cheng L., Wu C. H., Jarry A., Chen W., Ye Y., Zhu J., Kostecki R., Persson K., Guo J., Salmeron M., Chen G., Doeff M., ACS Appl. Mater. Interfaces, 2015, 7, 17649 |
[78] | Kim Y., Jo H., Allen J. L., Choe H., Wolfenstine J., Sakamoto J., J. Am. Ceram. Soc., 2016, 99, 1367 |
[79] | Schell K. G., Lemke F., Bucharsky E. C., Hintennach A., Hoffmann M. J., J. Mater. Sci., 2017, 52, 2232 |
[80] | Lewis J. A., Tippens J., Cortes F. J. Q., McDowell M. T., Trends Chem., 2019, 1, 845 |
[81] | Huo H., Luo J., Thangadurai V., Guo X., Nan C. W., Sun X., ACS Energy Lett., 2020, 5, 252 |
[82] | Wu J. F., Pu B. W., Wang D., Shi S. Q., Zhao N., Guo X., Guo X., ACS Appl. Mater. Interfaces, 2019, 11, 898 |
[83] | Cheng L., Crumlin E. J., Chen W., Qiao R., Hou H., Franz L. S., Zorba V., Russo R., Kostecki R., Liu Z., Persson K., Yang W., Cabana J., Richardson T., Chen G., Doeff M., Phys. Chem. Chem. Phys., 2014, 16, 18294 |
[84] | Li Y., Chen X., Dolocan A., Cui Z., Xin S., Xue L., Xu H., Park K., Goodenough J. B., J. Am. Chem. Soc., 2018, 140, 6448 |
[85] | Lu Y., Huang X., Ruan Y., Wang Q., Kun R., Yang J., Wen Z., J. Mater. Chem. A, 2018, 6, 18853 |
[86] | Kim S., Jung C., Kim H., Thomas-Alyea K. E., Yoon G., Kim B., Badding M. E., Song Z., Chang J. M., Kim J., Im D., Kang K., Adv. Energy Mater., 2020, 10, 1903993 |
[87] | Huo H., Chen Y., Li R., Zhao N., Luo J., da Silva J. G. P., Mücke R., Kaghazchi P., Guo X., Sun X., Energy Environ. Sci., 2020, 13, 127 |
[88] | Wang C., Gong Y., Liu B., Fu K., Yao Y., Hitz E., Li Y., Dai J., Xu S., Luo W., Wachsman E. D., Hu L., Nano Lett., 2017, 17, 565 |
[89] | Chen Y., He M., Zhao N., Fu J., Huo H., Zhang T., Li Y., Xu F., Guo X., J. Power Sources, 2019, 420, 15 |
[90] | Jin Y., Liu K., Lang J., Zhuo D., Huang Z., Wang C. an, Wu H., Cui Y., Nat. Energy, 2018, 3, 732 |
[91] | Lang J., Liu K., Jin Y., Long Y., Qi L., Wu H., Cui Y., Energy Storage Mater., 2020, 24, 412 |
[92] | Jin Y., Liu K., Wang C., Jin Y., Liu K., Lang J., Jiang X., Zheng Z., Su Q., Huang Z., Joule, 2020, 3, 1 |
[93] | Wang D., Zhang W., Zheng W., Cui X., Rojo T., Zhang Q., Adv. Sci., 2017, 4, 1600168 |
[94] | Aksay I. A., Hoge C. E., Pask J. A., J. Phys. Chem., 1974, 78, 1178 |
[95] | Kritsalis P., Coudurier L., Eustathopoulos N., J. Mater. Sci., 1991, 26, 3400 |
[96] | Wang J., Wang H., Xie J., Yang A., Pei A., Wu C. L., Shi F., Liu Y., Lin D., Gong Y., Cui Y., Energy Storage Mater., 2018, 14, 345 |
[97] | Raj V., Kankanallu V. R., Kuiri B., Aetukuri N. P. B., arXiv, 2020, 2001.06276 |
[98] | Wang C., Xie H., Zhang L., Gong Y., Pastel G., Dai J., Liu B., Wachsman E. D., Hu L., Adv. Energy Mater., 2018, 8, 1701963 |
[99] | Wakasugi J., Munakata H., Kanamura K., J. Electrochem. Soc., 2017, 164, A1022 |
[100] | Fu K. K., Gong Y., Liu B., Zhu Y., Xu S., Yao Y., Luo W., Wang C., Lacey S. D., Dai J., Chen Y., Mo Y., Wachsman E., Hu L., Sci. Adv., 2017, 3, e1601659 |
[101] | Cai M., Lu Y., Su J., Ruan Y., Chen C., Chowdari B. V. R., Wen Z., ACS Appl. Mater. Interfaces, 2019, 11, 35030 |
[102] | Fu K. K., Gong Y., Fu Z., Xie H., Yao Y., Liu B., Carter M., Wachsman E., Hu L., Angew. Chem. Int. Ed., 2017, 56, 14942 |
[103] | Xiang X., Cao S., Chen F., Shen Q., Zhang L., J. Electrochem. Soc., 2019, 166, A3028 |
[104] | Wang S. H., Yue J., Dong W., Zuo T. T., Li J. Y., Liu X., Zhang X. D., Liu L., Shi J. L., Yin Y. X., Guo Y. G., Nat. Commun., 2019, 10, 4930 |
[105] | Zhao N., Fang R., He M. H., Chen C., Li Y. Q., Bi Z. J., Guo X. X., Rare Met., 2018, 37, 473 |
[106] | Lou J., Wang G., Xia Y., Liang C., Huang H., Gan Y., Tao X., Zhang J., Zhang W., J. Power Sources, 2020, 448, 227440 |
[107] | Han X., Gong Y., Fu K. K., He X., Hitz G. T., Dai J., Pearse A., Liu B., Wang H., Rubloff G., Mo Y., Thangadurai V., Wachsman E. D., Hu L., Nat. Mater., 2017, 16, 572 |
[108] | Liu K., Zhang R., Wu M., Jiang H., Zhao T., J. Power Sources, 2019, 433, 226691 |
[109] | Zhou C., Samson A. J., Hofstetter K., Thangadurai V., Sustain. Energy Fuels, 2018, 2, 2165 |
[110] | Wu J., Li X., Zhao Y., Liu L., Qu W., Luo R., Chen R., Li Y., Chen Q., J. Mater. Chem. A, 2018, 6, 20896 |
[111] | Fu J., Yu P., Zhang N., Ren G., Zheng S., Huang W., Long X., Li H., Liu X., Energy Environ. Sci., 2019, 12, 1404 |
[112] | Huang Y., Chen B., Duan J., Yang F., Wang T., Wang Z., Yang W., Hu C., Luo W., Huang Y., Angew. Chemie - Int. Ed., 2019, 59, 3699 |
[113] | Zhang X., Chen X., Xu R., Cheng X., Peng H., Zhang R., Huang J., Zhang Q., Angew. Chemie, 2017, 129, 14207 |
[114] | Placke T., Kloepsch R., Dühnen S., Winter M., J. Solid State Electrochem., 2017, 21, 1939 |
[115] | Bieker G., Winter M., Bieker P., Phys. Chem. Chem. Phys., 2015, 17, 8670 |
[116] | Koshikawa H., Matsuda S., Kamiya K., Miyayama M., Kubo Y., Uosaki K., Hashimoto K., Nakanishi S., J. Electroanal. Chem., 2019, 835, 143 |
[117] | Krauskopf T., Hartmann H., Zeier W. G., Janek J., ACS Appl. Mater. Interfaces, 2019, 11, 14463 |
[118] | Krauskopf T., Mogwitz B., Rosenbach C., Zeier W. G., Janek J., Adv. Energy Mater., 2019, 9, 1902568 |
[119] | Lin L., Wang J., Li R., Wang C., Zhang C., Yang J., Qian Y., Energy Storage Mater., 2020, 26, 112 |
[120] | Zhang C., Feng Y., Han Z., Gao S., Wang M., Wang P., Adv. Mater., 2019, 1903747 |
[1] | YUAN Hong, LIU Jia, LU Yang, ZHAO Chenzi, CHENG Xinbing, NAN Haoxiong, LIU Quanbing, HUANG Jiaqi, ZHANG Qiang. Toward Practical All-solid-state Batteries with Sulfide Electrolyte: A Review[J]. 高等学校化学研究, 2020, 36(3): 377-385. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||