高等学校化学研究 ›› 2023, Vol. 39 ›› Issue (1): 30-41.doi: 10.1007/s40242-022-2236-1
ZHANG Feilong, CHEN Xiaodong
收稿日期:
2022-07-14
出版日期:
2023-02-01
发布日期:
2023-02-02
通讯作者:
CHEN Xiaodong
E-mail:chenxd@ntu.edu.sg
基金资助:
ZHANG Feilong, CHEN Xiaodong
Received:
2022-07-14
Online:
2023-02-01
Published:
2023-02-02
Contact:
CHEN Xiaodong
E-mail:chenxd@ntu.edu.sg
Supported by:
摘要: Stretchable conductors are indispensable components of stretchable electronic devices, such as stretchable sensors, transistors, light-emitting diode arrays, solar cells, and so on. However, most of the conductive materials are stiff with very low stretchability. Nature has evolved various strategies to realize stretchability, which give a lot of inspirations to the design and fabrication of stretchable conductors. We herein summarized the nature’s strategies to realize stretchability and revealed the underlying mechanisms. After that, the applications of these strategies in fabricating stretchable conductors are exemplified and the effects of some important parameters on the performances are discussed. Then, possible applications of these stretchable conductors are summarized. Finally, critical issues in the stretchable conductors are discussed and several prospective exploration directions are provided.
ZHANG Feilong, CHEN Xiaodong. Bioinspired Strategies for Stretchable Conductors[J]. 高等学校化学研究, 2023, 39(1): 30-41.
ZHANG Feilong, CHEN Xiaodong. Bioinspired Strategies for Stretchable Conductors[J]. Chemical Research in Chinese Universities, 2023, 39(1): 30-41.
[1] Wang C. Y., Yokota T., Someya T., Chem. Rev., 2021, 121(4), 2109 [2] Qi D., Zhang K., Tian G., Jiang B., Huang Y., Adv. Mater., 2021, 33(6), 2003155 [3] Kim D. W., Kong M., Jeong U., Adv. Sci., 2021, 8(8), 2004170 [4] Xue Z., Song H., Rogers J. A., Zhang Y., Huang Y., Adv. Mater., 2020, 32(15), 1902254 [5] Wang T., Wang M., Yang L., Li Z., Loh X. J., Chen X., Adv. Mater., 2020, 32(8), 1905522 [6] Wang P., Hu M., Wang H., Chen Z., Feng Y., Wang J., Ling W., Huang Y., Adv. Sci., 2020, 7(20), 2001116 [7] Sim K., Rao Z. Y., Ershad F., Yu C. J., Adv. Mater., 2020, 32(15), 1902417 [8] Yang J. C., Mun J., Kwon S. Y., Park S., Bao Z., Park S., Adv. Mater., 2019, 31(48), 1904765 [9] Karipoth P., Christou A., Pullanchiyodan A., Dahiya R., Adv. Intell. Syst., 2021, 4(2), 2100092 [10] Chen B., Shao Z., Xie Z., Liu J., Pan F., He L., Zhang L., Zhang Y., Ling X., Peng F., Yun W., Wen L., Adv. Intell. Syst., 2021, 3(10), 2000251 [11] McLellan K., Yoon Y., Leung S. N., Ko S. H., Adv. Mater. Technol., 2020, 5(4), 1900939 [12] Lee J., Zambrano B. L., Woo J., Yoon K., Lee T., Adv. Mater., 2020, 32(5), 1902532 [13] Zhao Y., Kim A., Wan G. X., Tee B. C. K., Nano Converg., 2019, 6(1), 25 [14] Matsuhisa N., Chen X. D., Bao Z. A., Someya T., Chem. Soc. Rev., 2019, 48(11), 2946 [15] Lee H. R., Kim C. C., Sun J. Y., Adv. Mater., 2018, 30(42), 1704403 [16] Yang C., Suo Z., Nat. Rev. Mater., 2018, 3(6), 125 [17] Yuk H., Lu B., Zhao X., Chem. Soc. Rev., 2019, 48(6), 1642 [18] Huneau B., Rubber Chem. Technol., 2011, 84(3), 425 [19] Neuefeind J., Skov A. L., Daniels J. E., Honkimäki V., Jakobsen B., Oddershede J., Poulsen H. F., RSC Adv., 2016, 6(98), 95910 [20] Wang Y., Zhu C. X., Pfattner R., Yan H. P., Jin L. H., Chen S. C., Molina-Lopez F., Lissel F., Liu J., Rabiah N. I., Chen Z., Chung J. W., Linder C., Toney M. F., Murmann B., Bao Z., Sci. Adv., 2017, 3(3), e1602076 [21] Zheng Y. Q., Liu Y., Zhong D., Nikzad S., Liu S., Yu Z., Liu D., Wu H. C., Zhu C., Li J., Tran H., Tok J. B., Bao Z., Science, 2021, 373(6550), 88 [22] Wessendorf A. M., Newman D. J., IEEE Trans. Biomed. Eng., 2012, 59(12), 3432 [23] Gerbode S. J., Puzey J. R., McCormick A. G., Mahadevan L., Science, 2012, 337(6098), 1087 [24] Cheng Y., Wang R., Chan K. H., Lu X., Sun J., Ho G. W., ACS Nano, 2018, 12(4), 3898 [25] Godinho M. H., Canejo J. P., Feio G., Terentjev E. M., Soft Matter, 2010, 6(23), 5965 [26] Wang J. S., Wang G., Feng X. Q., Kitamura T., Kang Y. L., Yu S. W., Qin Q. H., Sci. Rep., 2013, 3, 3102 [27] Zhao Y., Miao X., Lin J., Li X., Bian F., Wang J., Zhang X., Yue B., Glob. Chall., 2017, 1(3), 1600021 [28] Yang Z., Zhai Z., Song Z., Wu Y., Liang J., Shan Y., Zheng J., Liang H., Jiang H., Adv. Mater., 2020, 32, 1907495 [29] Harrington M. J., Razghandi K., Ditsch F., Guiducci L., Rueggeberg M., Dunlop J. W. C., Fratzl P., Neinhuis C., Burgert I., Nat. Commun., 2011, 2, 337 [30] Zhang F., Jiang L., Wang S., Proc. Natl. Acad. Sci., 2018, 115(40), 10046 [31] Wang C., Lv Z., Mohan M. P., Cui Z., Liu Z., Jiang Y., Li J., Wang C., Pan S., Karim M. F., Liu A. Q., Chen X., Adv. Mater., 2021, 33(41), 2102131 [32] Wang B., Yang W., Sherman V. R., Meyers M. A., Acta Biomater., 2016, 41, 60 [33] Lv Z., Wang C., Wan C., Wang R., Dai X., Wei J., Xia H., Li W., Zhang W., Cao S., Zhang F., Yang H., Loh X. J., Chen X., Adv. Mater., 2022, 34, 2202877 [34] Qi D. P., Liu Z. Y., Liu Y., Jiang Y., Leow W. R., Pal M., Pan S. W., Yang H., Wang Y., Zhang X. Q., Yu J. C., Li B., Yu Z., Wang W., Chen X. D., Adv. Mater., 2017, 29(40), 1702800 [35] Lang U., Naujoks N., Dual J., Synth. Met., 2009, 159(5/6), 473 [36] Teo M. Y., Kim N., Kee S., Kim B. S., Kim G., Hong S., Jung S., Lee K., ACS Appl. Mater. Interfaces, 2017, 9(1), 819 [37] Lee J. H., Jeong Y. R., Lee G., Jin S. W., Lee Y. H., Hong S. Y., Park H., Kim J. W., Lee S. S., Ha J. S., ACS Appl. Mater. Interfaces, 2018, 10(33), 28027 [38] Vosgueritchian M., Lipomi D. J., Bao Z. A., Adv. Funct. Mater., 2012, 22(2), 421 [39] Palumbiny C. M., Liu F., Russell T. P., Hexemer A., Wang C., Muller-Buschbaum P., Adv. Mater., 2015, 27(22), 3391 [40] Liu D., Osuna Orozco R., Wang T., Phys. Rev. E, 2013, 88(2), 022601 [41] Feig V. R., Tran H., Lee M., Bao Z., Nat. Commun., 2018, 9(1), 2740 [42] Kayser L. V., Lipomi D. J., Adv. Mater., 2019, 31(10), 1806133 [43] Liu Y., Li J., Song S., Kang J., Tsao Y., Chen S., Mottini V., McConnell K., Xu W., Zheng Y. Q., Tok J. B., George P. M., Bao Z., Nat. Biotechnol., 2020, 38(9), 1031 [44] Alemu Mengistie D., Wang P.-C., Chu C.-W., J. Mater. Chem. A, 2013, 1(34), 9907 [45] Shi H., Liu C., Jiang Q., Xu J., Adv. Electron. Mater., 2015, 1(4), 1500017 [46] Oh J. Y., Rondeau-Gagne S., Chiu Y. C., Chortos A., Lissel F., Wang G. N., Schroeder B. C., Kurosawa T., Lopez J., Katsumata T., Xu J., Zhu C., Gu X., Bae W. G., Kim Y., Jin L., Chung J. W., Tok J. B., Bao Z., Nature, 2016, 539(7629), 411 [47] Xu J., Wang S., Wang G. N., Zhu C., Luo S., Jin L., Gu X., Chen S., Feig V. R., To J. W., Rondeau-Gagne S., Park J., Schroeder B. C., Lu C., Oh J. Y., Wang Y., Kim Y. H., Yan H., Sinclair R., Zhou D., Xue G., Murmann B., Linder C., Cai W., Tok J. B., Chung J. W., Bao Z., Science, 2017, 355(6320), 59 [48] Xu J., Wu H. C., Zhu C., Ehrlich A., Shaw L., Nikolka M., Wang S., Molina-Lopez F., Gu X., Luo S., Zhou D., Kim Y. H., Wang G. N., Gu K., Feig V. R., Chen S., Kim Y., Katsumata T., Zheng Y. Q., Yan H., Chung J. W., Lopez J., Murmann B., Bao Z., Nat. Mater., 2019, 18(6), 594 [49] Müller C., Goffri S., Breiby D. W., Andreasen J. W., Chanzy H. D., Janssen R. A. J., Nielsen M. M., Radano C. P., Sirringhaus H., Smith P., Stingelin-Stutzmann N., Adv. Funct. Mater., 2007, 17(15), 2674 [50] Wilhelmi B. J., Blackwell S. J., Mancoll J. S., Phillips L. G., Ann. Plast. Surg., 1998, 41(2), 215 [51] Gorrn P., Cao W. Z., Wagner S., Soft Matter, 2011, 7(16), 7177 [52] Lipomi D. J., Tee B. C. K., Vosgueritchian M., Bao Z. N., Adv. Mater., 2011, 23(15), 1771 [53] Wang X. L., Hu H., Shen Y. D., Zhou X. C., Zheng Z. J., Adv. Mater., 2011, 23(27), 3090 [54] Lee P., Lee J., Lee H., Yeo J., Hong S., Nam K. H., Lee D., Lee S. S., Ko S. H., Adv. Mater., 2012, 24(25), 3326 [55] Polywka A., Jakob T., Stegers L., Riedl T., Gorrn P., Adv. Mater., 2015, 27(25), 3755 [56] Zhao Y. M., Dong D. S., Gong S., Brassart L., Wang Y., An T., Cheng W. L., Adv. Electron. Mater., 2019, 5(1), 1800462 [57] Lee S., Song Y., Ko Y., Ko Y., Ko J., Kwon C. H., Huh J., Kim S. W., Yeom B., Cho J., Adv. Mater., 2020, 32(7), 1906460 [58] Yang Y. H., Duan S., Zhao H., Adv. Mater. Interfaces, 2021, 8(9), 2100137 [59] Bowden N., Brittain S., Evans A. G., Hutchinson J. W., Whitesides G. M., Nature, 1998, 393(6681), 146 [60] Efimenko K., Rackaitis M., Manias E., Vaziri A., Mahadevan L., Genzer J., Nat. Mater., 2005, 4(4), 293 [61] Yang S., Khare K., Lin P.-C., Adv. Funct. Mater., 2010, 20(16), 2550 [62] Brau F., Damman P., Diamant H., Witten T. A., Soft Matter, 2013, 9(34), 8177 [63] Li F., Hou H., Yin J., Jiang X., Sci. Adv., 2018, 4(4), eaar5762 [64] Lee P., Ham J., Lee J., Hong S., Han S., Suh Y. D., Lee S. E., Yeo J., Lee S. S., Lee D., Ko S. H., Adv. Funct. Mater., 2014, 24(36), 5671 [65] Won J., Mondal S., Park J., Wang W., Lee H., Kim S., Shin B., Sathi S. G., Nah C., Polym. Compos., 2020, 41(6), 2210 [66] Liu Z., Wang H., Huang P., Huang J., Zhang Y., Wang Y., Yu M., Chen S., Qi D., Wang T., Jiang Y., Chen G., Hu G., Li W., Yu J., Luo Y., Loh X. J., Liedberg B., Li G., Chen X., Adv. Mater., 2019, 31(35), 1901360 [67] García-Gallegos J. H., Nieto-Navarro J. G., Araujo-Palomo E. E., Zamora-Antuñano M. A., Olivares-Ramírez J. M., Encinas A., Mater. Lett., 2014, 115, 100 [68] Zhou J., Tian G. Q., Jin G., Xin Y. Y., Tao R., Lubineau G., Adv. Funct. Mater., 2020, 30(5), 1907316 [69] Yu Y., Zhang Y. K., Li K., Yan C., Zheng Z. J., Small, 2015, 11(28), 3444 [70] Guo R. S., Yu Y., Zeng J. F., Liu X. Q., Zhou X. C., Niu L. Y., Gao T. T., Li K., Yang Y., Zhou F., Zheng Z. J., Adv. Sci., 2015, 2(3) [71] Cheng Y., Wang R., Sun J., Gao L., ACS Nano, 2015, 9(4), 3887 [72] Zhao Y., Dong D., Wang Y., Gong S., An T., Yap L. W., Cheng W., ACS Appl. Mater. Interfaces, 2018, 10(49), 42612 [73] Woo J., Lee H., Yi C., Lee J., Won C., Oh S., Jekal J., Kwon C., Lee S., Song J., Choi B., Jang K. I., Lee T., Adv. Funct. Mater., 2020, 30(29), 1910026 [74] Zhao Y., Tan Y. J., Yang W., Ling S., Yang Z., Teo J. T., See H. H., Lee D. K. H., Lu D., Li S., Zeng X., Liu Z., Tee B. C. K., Adv. Healthcare Mater., 2021, 10(17), 2100221 [75] Kanik M., Orguc S., Varnavides G., Kim J., Benavides T., Gonzalez D., Akintilo T., Tasan C. C., Chandrakasan A. P., Fink Y., Anikeeva P., Science, 2019, 365(6449), 145 [76] Cho Y., Shin J. H., Costa A., Kim T. A., Kunin V., Li J., Lee S. Y., Yang S., Han H. N., Choi I. S., Srolovitz D. J., Proc. Natl. Acad. Sci., 2014, 111(49), 17390 [77] Blees M. K., Barnard A. W., Rose P. A., Roberts S. P., McGill K. L., Huang P. Y., Ruyack A. R., Kevek J. W., Kobrin B., Muller D. A., McEuen P. L., Nature, 2015, 524(7564), 204 [78] Shyu T. C., Damasceno P. F., Dodd P. M., Lamoureux A., Xu L., Shlian M., Shtein M., Glotzer S. C., Kotov N. A., Nat. Mater., 2015, 14(8), 785 [79] Zhang Y., Yan Z., Nan K., Xiao D., Liu Y., Luan H., Fu H., Wang X., Yang Q., Wang J., Ren W., Si H., Liu F., Yang L., Li H., Wang J., Guo X., Luo H., Wang L., Huang Y., Rogers J. A., Proc. Natl. Acad. Sci., 2015, 112(38), 11757 [80] Rafsanjani A., Bertoldi K., Phys. Rev. Lett., 2017, 118(8), 084301 [81] Wang Z. H., Zhang L., Duan S. S., Jiang H., Shen J. H., Li C. Z., J. Mater. Chem. C, 2017, 5(34), 8714 [82] Brooks A. K., Chakravarty S., Ali M., Yadavalli V. K., Adv. Mater., 2022, 34, 2109550 [83] Li X., Zhu P., Zhang S., Wang X., Luo X., Leng Z., Zhou H., Pan Z., Mao Y., ACS Nano, 2022, 16, 5909 [84] Pradhan S., Ventura L., Agostinacchio F., Xu M., Barbieri E., Motta A., Pugno N. M., Yadavalli V. K., ACS Appl. Mater. Interfaces, 2020, 12(11), 12436 [85] Won P., Park J. J., Lee T., Ha I., Han S., Choi M., Lee J., Hong S., Cho K. J., Ko S. H., Nano Lett., 2019, 19(9), 6087 [86] Morikawa Y., Yamagiwa S., Sawahata H., Numano R., Koida K., Kawano T., Adv. Healthcare Mater., 2019, 8(23), 1900939 [87] Xu R., Zverev A., Hung A., Shen C., Irie L., Ding G., Whitmeyer M., Ren L., Griffin B., Melcher J., Zheng L., Zang X., Sanghadasa M., Lin L., Microsyst. Nanoeng., 2018, 4, 36 [88] Morikawa Y., Yamagiwa S., Sawahata H., Numano R., Koida K., Ishida M., Kawano T., Adv. Healthcare Mater., 2018, 7(3), 1701100 [89] Guan Y. S., Zhang Z. L., Tang Y. C., Yin J., Ren S. Q., Adv. Mater., 2018, 30(20), 1706390 [90] Lv Z., Luo Y., Tang Y., Wei J., Zhu Z., Zhou X., Li W., Zeng Y., Zhang W., Zhang Y., Qi D., Pan S., Loh X. J., Chen X., Adv. Mater., 2018, 30(2), 1704531 [91] Jung D., Lim C., Shim H. J., Kim Y., Park C., Jung J., Han S. I., Sunwoo S. H., Cho K. W., Cha G. D., Kim D. C., Koo J. H., Kim J. H., Hyeon T., Kim D. H., Science, 2021, 373(6558), 1022 [92] Guo F., Jiang Y., Xu Z., Xiao Y., Fang B., Liu Y., Gao W., Zhao P., Wang H., Gao C., Nat. Commun., 2018, 9(1), 881 [93] Liu Z., Yu M., Lv J., Li Y., Yu Z., ACS Appl. Mater. Interfaces, 2014, 6(16), 13487 [94] Lacour S. P., Chan D., Wagner S., Li T., Suo Z., Appl. Phys. Lett., 2006, 88(20), 204103 [95] Graudejus O., Jia Z., Li T., Wagner S., Scr. Mater., 2012, 66(11), 919 [96] Chen G., Matsuhisa N., Liu Z., Qi D., Cai P., Jiang Y., Wan C., Cui Y., Leow W. R., Liu Z., Gong S., Zhang K. Q., Cheng Y., Chen X., Adv. Mater., 2018, 30(21), 1800129 [97] Yan X., Liu Z., Zhang Q., Lopez J., Wang H., Wu H.-C., Niu S., Yan H., Wang S., Lei T., Li J., Qi D., Huang P., Huang J., Zhang Y., Wang Y., Li G., Tok J. B. H., Chen X., Bao Z., J. Am. Chem. Soc., 2018, 140(15), 5280 [98] Lee S. Y., Park K. R., Kang S. G., Lee J. H., Jeon E. C., Shim C. H., Ahn J. P., Kim D. I., Han H. N., Joo Y. C., Kim C., Choi I. S., Nat. Commun., 2019, 10(1), 4454 [99] Matsuhisa N., Jiang Y., Liu Z. Y., Chen G., Wan C. J., Kim Y., Kang J., Tran H., Wu H. C., You I., Bao Z. A., Chen X. D., Adv. Electron. Mater., 2019, 5(8), 1900347 [100] Hong S., Lee H., Lee J., Kwon J., Han S., Suh Y. D., Cho H., Shin J., Yeo J., Ko S. H., Adv. Mater., 2015, 27(32), 4744 [101] Jiang Z., Nayeem M. O. G., Fukuda K., Ding S., Jin H., Yokota T., Inoue D., Hashizume D., Someya T., Adv. Mater., 2019, 31(37), 1903446 [102] Lipomi D. J., Vosgueritchian M., Tee B. C. K., Hellstrom S. L., Lee J. A., Fox C. H., Bao Z. N., Nat. Nanotechnol., 2011, 6(12), 788 [103] Xu F., Zhu Y., Adv. Mater., 2012, 24(37), 5117 [104] Kim D. H., Yu K. C., Kim Y., Kim J. W., ACS Appl. Mater. Interfaces, 2015, 7(28), 15214 [105] Wang T., Wang R. R., Cheng Y., Sun J., ACS Appl. Mater. Interfaces, 2016, 8(14), 9297 [106] Xu F., Wang X., Zhu Y. T., Zhu Y., Adv. Electron. Mater., 2012, 22(6), 1279 [107] Jin Y., Hwang S., Ha H., Park H., Kang S. W., Hyun S., Jeon S., Jeong S. H., Adv. Electron. Mater., 2016, 2(2), 1500302 [108] Li P., Zhang W., Ma J. G., Wang X., Xu H. Y., Cong L. J., Liu Y. C., Adv. Electron. Mater., 2018, 4(12), 1800346 [109] Won Y., Kim A., Yang W., Jeong S., Moon J., NPG Asia Mater., 2014, 6, e132 [110] Jang N. S., Kim K. H., Ha S. H., Jung S. H., Lee H. M., Kim J. M., ACS Appl Mater Interfaces, 2017, 9(23), 19612 [111] Song P., Qin H. L., Gao H. L., Cong H. P., Yu S. H., Nat. Commun., 2018, 9, 2786 [112] Xue J., Zou Y., Deng Y., Li Z., EcoMat, 2022, e12209 [113] Lee J., Leung V., Lee A.-H., Huang J., Asbeck P., Mercier P. P., Shellhammer S., Larson L., Laiwalla F., Nurmikko A., Nat. Electron., 2021, 4(8), 604 [114] Donega M., Fjordbakk C. T., Kirk J., Sokal D. M., Gupta I., Hunsberger G. E., Crawford A., Cook S., Viscasillas J., Stathopoulou T. R., Miranda J. A., Dopson W. J., Goodwin D., Rowles A., McGill P., McSloy A., Werling D., Witherington J., Chew D. J., Perkins J. D., Proc. Natl. Acad. Sci. USA, 2021, 118(20), e2025428118 [115] Xie L. S., Skorupskii G., Dinca M., Chem. Rev., 2020, 120(16), 8536 [116] Gao L.-L., Gao E.-Q., Coord. Chem. Rev., 2021, 434, 213784 [117] Li J., Liu Y., Yuan L., Zhang B., Bishop E. S., Wang K., Tang J., Zheng Y. Q., Xu W., Niu S., Beker L., Li T. L., Chen G., Diyaolu M., Thomas A. L., Mottini V., Tok J. B., Dunn J. C. Y., Cui B., Pasca S. P., Cui Y., Habtezion A., Chen X., Bao Z., Nature, 2022, 606(7912), 94 [118] Dickey M. D., Adv. Mater., 2017, 29(27), 1606425 [119] Ma Z. J., Huang Q. Y., Xu Q., Zhuang Q. N., Zhao X., Yang Y. H., Qiu H., Yang Z. L., Wang C., Chai Y., Zheng Z. J., Nat. Mater., 2021, 20(6), 859 [120] Liu S. Z., Shah D. S., Kramer-Bottiglio R., Nat. Mater., 2021, 20(6), 851 [121] Leber A., Dong C., Chandran R., Das Gupta T., Bartolomei N., Sorin F., Nat. Electron., 2020, 3(6), 316 [122] Cao J., Liang F., Li H., Li X., Fan Y., Hu C., Yu J., Xu J., Yin Y., Li F., Xu D., Feng H., Yang H., Liu Y., Chen X., Zhu G., Li R. W., InfoMat, 2022, 4(4), e12302 [123] Park J. E., Kang H. S., Koo M., Park C., Adv. Mater., 2020, 32(37), 2002178 [124] Hwang H., Kong M., Kim K., Park D., Lee S., Park S., Song H.-J., Jeong U., Sci. Adv., 2021, 7(32), eabh0171 [125] Zhu M., Ji S., Luo Y., Zhang F., Liu Z., Wang C., Lv Z., Jiang Y., Wang M., Cui Z., Li G., Jiang L., Liu Z., Chen X., Adv. Mater., 2022, 34, e2101339 [126] Li W., Matsuhisa N., Liu Z., Wang M., Luo Y., Cai P., Chen G., Zhang F., Li C., Liu Z., Lv Z., Zhang W., Chen X., Nat. Electron., 2021, 4(2), 134 [127] Luo Y., Li W., Lin Q., Zhang F., He K., Yang D., Loh X. J., Chen X., Adv. Mater., 2021, 33(14), 200784 |
[1] | ZHU Lunan, WANG Zi, LU Jie, ZHOU Xu, ZENG Zhoufang, HUANG Lizhen, CHI Lifeng. Influence of SAM Quality on the Organic Semiconductor Thin Film Gas Sensors[J]. 高等学校化学研究, 2022, 38(2): 510-515. |
[2] | LI Ru, ZHANG Mingjia, LI Xiaodong, MA Xiaodi, HUANG Changshui. Study of Graphdiyne-based Magnetic Materials[J]. 高等学校化学研究, 2021, 37(6): 1257-1267. |
[3] | SONG Yang, TAO Lei, ZHANG Yanfang, PAN Jinbo, DU Shixuan. A DFT Investigation on the Electronic Structures and Au Adatom Assisted Hydrogenation of Graphene Nanoflake Array[J]. 高等学校化学研究, 2021, 37(5): 1110-1115. |
[4] | LU Xiuqiang, LIN Hui, ZHEN Yonggang, DONG Huanli, ZHANG Xiaotao, HU Wenping. Efficient Construction of Highly-fused Diperylene Bismides by Cu/Oxalic Diamide-promoted Zipper-mode Double C—H Activation[J]. 高等学校化学研究, 2020, 36(1): 110-114. |
[5] | FU Xianwei, LIU Yang, LIU Zhi, DONG Ning, ZHAO Tianyu, ZHAO Dan, LIAN Gang, WANG Qilong, CUI Deliang. Pressure-sensitive Transistor Fabricated from an OrganicSemiconductor 1,1'-Dibutyl-4,4'-bipyridinium Diiodide[J]. 高等学校化学研究, 2018, 34(1): 95-100. |
[6] | ZHU Xiaofei, ZHANG Xiaodong, HUANG Lizhen, WANG Zi, CHI Lifeng. Improving the Performance of TIPS-pentacene Thin FilmTransistors via Interface Modification[J]. 高等学校化学研究, 2018, 34(1): 151-154. |
[7] | LIU Yan, YU Dongdong, ZHU Wei, BAI Xiao, SHEN Qihui, LIU Xiaoyang, ZHOU Jianguang. Preparation of CdTe Nanocrystals Doped Fluorescent Silica Spheres by Sol-gel Method and Their Surface Modification via Thiol-ene Chemistry[J]. 高等学校化学研究, 2017, 33(3): 327-332. |
[8] | WANG Xinyan, WANG Huan, YANG Xiaotian, SU Xingguang. Photovoltaic Properties of Titanium Dioxide Nanowires with Different Crystal Structures[J]. 高等学校化学研究, 2016, 32(4): 661-664. |
[9] | LIU Yang, LI Dongze, ZHANG Ying, LIU Zhihui, XIE Renguo. Greener Gd-doped ZnAgInS3 Quantum Dots for Fluorescent and Magnetic Resonance Imaging Applications[J]. 高等学校化学研究, 2015, 31(1): 1-3. |
[10] | ZHANG Han, SUN Ruize, SUN Peng, LIANG Xishuang, LU Geyu. NASICON-based H2 Sensor Using CoCrMnO4 Insensitive Reference Electrode and Buried Au Sensing Electrode[J]. 高等学校化学研究, 2014, 30(6): 965-970. |
[11] | DU Sisi, CHENG Pengfei, SUN Peng, WANG Biao, CAI Yaxin, LIU Fengmin, ZHENG Jie, LU Geyu. Highly Efficiency p-Type Dye Sensitized Solar Cells Based on Polygonal Star-morphology Cu2O Material of Photocathodes[J]. 高等学校化学研究, 2014, 30(4): 661-665. |
[12] | FAN Linlin, YANG Xin, TIAN Zhiyue, ZHAO Xuekun, LI Ruixiang, XUE Ying. Theoretical Calculations of the pKa Values of 1-Aryl-4-propylpiperazine Drugs in Aqueous Solution[J]. 高等学校化学研究, 2014, 30(3): 455-460. |
[13] | PENG Hui-fen, HU Lin-na, HE Jun-hua. Preparation of Ce(SO4)2-doped Phosphosilicate Gels by Mechanical Milling[J]. 高等学校化学研究, 2012, 28(2): 299-301 . |
[14] | BAO Jian, SHEN Yue, SUN Yan, YUE Yang, CHEN Xin , DAI Ning . Controlled Synthesis of Nanoscale CdTe Urchins[J]. 高等学校化学研究, 2009, 25(2): 147-150. |
[15] | WANG Biao, LIANG Xi-shuang, LIU Feng-min, ZHONG Tie-gang, ZHAO Chun, LU Ge-yu , QUAN Bao-fu . Synthesis and Characterization of NASICON Nanoparticles by Sol-gel Method[J]. 高等学校化学研究, 2009, 25(1): 13-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||