高等学校化学研究 ›› 2023, Vol. 39 ›› Issue (1): 42-60.doi: 10.1007/s40242-023-2334-8
WANG Bo1, WANG Menghui1, PENG Fangqi1, FU Xiaoyi3, WEN Mei1, SHI Yuyan1, CHEN Mei2, KE Guoliang1, ZHANG Xiao-Bing1
收稿日期:
2022-12-09
出版日期:
2023-02-01
发布日期:
2023-02-02
通讯作者:
KE Guoliang, ZHANG Xiao-Bing
E-mail:glke@hnu.edu.cn;xbzhang@hnu.edu.cn
基金资助:
WANG Bo1, WANG Menghui1, PENG Fangqi1, FU Xiaoyi3, WEN Mei1, SHI Yuyan1, CHEN Mei2, KE Guoliang1, ZHANG Xiao-Bing1
Received:
2022-12-09
Online:
2023-02-01
Published:
2023-02-02
Contact:
KE Guoliang, ZHANG Xiao-Bing
E-mail:glke@hnu.edu.cn;xbzhang@hnu.edu.cn
Supported by:
摘要: The development of stimuli-responsive nanodevices with high efficiency and specificity is very important in biosensing, drug delivery, and so on. DNAzymes are a class of DNA molecules with the specific catalytic activity. Owing to their unique catalytic activity and easy design and synthesis, the construction and application of DNAzymes-based nanodevices have attracted much attention in recent years. In this review, the classification and properties of DNAzyme are first introduced. The construction of several common kinds of DNAzyme-based nanodevices, such as DNA motors, signal amplifiers, and logic gates, is then systematically summarized. We also introduce the application of DNAzyme-based nanodevices in sensing and therapeutic fields. In addition, current limitations and future directions are discussed.
WANG Bo, WANG Menghui, PENG Fangqi, FU Xiaoyi, WEN Mei, SHI Yuyan, CHEN Mei, KE Guoliang, ZHANG Xiao-Bing. Construction and Application of DNAzyme-based Nanodevices[J]. 高等学校化学研究, 2023, 39(1): 42-60.
WANG Bo, WANG Menghui, PENG Fangqi, FU Xiaoyi, WEN Mei, SHI Yuyan, CHEN Mei, KE Guoliang, ZHANG Xiao-Bing. Construction and Application of DNAzyme-based Nanodevices[J]. Chemical Research in Chinese Universities, 2023, 39(1): 42-60.
[1] Di Z., Zhao J., Chu H., Xue W., Zhao Y., Li L., Adv. Mater., 2019, 31, e1901885 [2] Shi H., Wang Y., Zheng J., Ning L., Huang Y., Sheng A., Chen T., Xiang Y., Zhu X., Li G., ACS Nano, 2019, 13, 12840 [3] Wang X., Kim G., Chu J. L., Song T., Yang Z., Guo W., Shao X., Oelze M. L., Li K. C., Lu Y., J. Am. Chem. Soc., 2022, 144, 5812 [4] Wang Z., Song L., Liu Q., Tian R., Shang Y., Liu F., Liu S., Zhao S., Han Z., Sun J., Jiang Q., Ding B., Angew. Chem. Int. Ed., 2021, 60, 2594 [5] Molden T. A., Niccum C. T., Kolpashchikov D. M., Angew. Chem. Int. Ed., 2020, 59, 21190 [6] Liu S., Jiang Q., Zhao X., Zhao R., Wang Y., Wang Y., Liu J., Shang Y., Zhao S., Wu T., Zhang Y., Nie G., Ding B., Nat. Mater., 2021, 20, 421 [7] Yue L., Wang S., Zhou Z., Willner I., J. Am. Chem. Soc., 2020, 142, 21577 [8] Deng J., Liu W., Sun M., Walther A., Angew. Chem. Int. Ed., 2022, 61, e202113477 [9] Du Y., Peng P., Li T., ACS Nano, 2019, 13, 5778 [10] Zhang Q., Xia K., Jiang M., Li Q., Chen W., Han M., Li W., Ke R., Wang F., Zhao Y., Liu Y., Fan C., Gu H., Angew. Chem. Int. Ed., 2022, e202212011 [11] Ellington A. D., Szostak J. W., Nature, 1990, 346, 818 [12] Beaudry A. A., Joyce G. F., Science, 1992, 257, 635 [13] Liu J., Cao Z., Lu Y., Chem. Rev., 2009, 109, 1948 [14] Breaker R. R., Joyce G. F., Chem. Bio., 1994, 1, 223 [15] Lu L. M., Zhang X. B., Kong R. M., Yang B., Tan W., J. Am. Chem. Soc., 2011, 133, 11686 [16] Santoro S. W., Joyce G. F., Sakthivel K., Gramatikova S., Barbas C. F., J. Am. Chem. Soc., 2000, 122, 2433 [17] Santoro S. W., Joyce G. F., Proc. Natl. Acad. Sci. USA, 1997, 94, 4262 [18] Li J., Zheng W., Kwon A. H., Lu Y., Nucleic Acids Res., 2000, 28, 481 [19] Zhang X. B., Wang Z., Xing H., Xiang Y., Lu Y., Anal. Chem., 2010, 82, 5005 [20] Elbaz J., Shlyahovsky B., Willner I., Chem. Comm., 2008, 13, 1569 [21] Zhao D., Chang D., Zhang Q., Chang Y., Liu B., Sun C., Li Z., Dong C., Liu M., Li Y., J. Am. Chem. Soc., 2021, 143, 15084 [22] Yang Y., Zhu W., Feng L., Chao Y., Yi X., Dong Z., Yang K., Tan W., Liu Z., Chen M., Nano Lett., 2018, 18, 6867 [23] Wang J., Wang H., Wang H., He S., Li R., Deng Z., Liu X., Wang F., ACS Nano, 2019, 13, 5852 [24] Wang J., Yu S., Wu Q., Gong X., He S., Shang J., Liu X., Wang F., Angew. Chem. Int. Ed., 2021, 60, 10766 [25] Wang H., Chen Y., Wang H., Liu X., Zhou X., Wang F., Angew. Chem. Int. Ed., 2019, 58, 7380 [26] Wang Q., Tan K., Wang H., Shang J., Wan Y., Liu X., Weng X., Wang F., J. Am. Chem. Soc., 2021, 143, 6895 [27] Wang Y., Nguyen K., Spitale R. C., Chaput J. C., Nat. Chem., 2021, 13, 319 [28] Wang Z., Niu J., Zhao C., Wang X., Ren J., Qu X., Angew. Chem. Int. Ed., 2021, 60, 12431 [29] Zhao H., Zhang Z., Zuo D., Li L., Li F., Yang D., Nano Lett., 2021, 21, 5377 [30] Carmi N., Balkhi S. R., Breaker R. R., Proc. Natl. Acad. Sci. USA, 1998, 95, 2233 [31] Purtha W. E., Coppins R. L., Smalley M. K., Silverman S. K., J. Am. Chem. Soc., 2005, 127, 13124 [32] Lu C. H., Wang F., Willner I., J. Am. Chem. Soc., 2012, 134, 10651 [33] Cuenoud B., Szostak J. W., Nature, 1995, 375, 611 [34] Li Y., Breaker R. R., Proc. Natl. Acad. Sci. USA, 1999, 96, 2746 [35] Chandrasekar J., Silverman S. K., Proc. Natl. Acad. Sci. USA, 2013, 110, 5315 [36] Camden A. J., Walsh S. M., Suk S. H., Silverman S. K., Biochemistry, 2016, 55, 2671 [37] Lyu M., Kong L., Yang Z., Wu Y., McGhee C. E., Lu Y., J. Am. Chem. Soc., 2021, 143, 9724 [38] Zimmermann A. C., White I. M., Kahn J. D., Talanta, 2020, 211, 120709 [39] Jimenez R. M., Polanco J. A., Luptak A., Trends Biochem. Sci., 2015, 40, 648 [40] Santoro S. W., Joyce G. F., Biochemistry, 1998, 37, 13330 [41] Schubert S., Gul D. C., Grunert H. P., Zeichhardt H., Erdmann V. A., Kurreck J., Nucleic Acids Res., 2003, 31, 5982 [42] Breaker R. R., Joyce G. F., Chem. Bio., 1995, 2, 655 [43] Li J., Lu Y., J. Am. Chem. Soc., 2000, 122, 10466 [44] Torabi S. F., Wu P., McGhee C. E., Chen L., Hwang K., Zheng N., Cheng J., Lu Y., Proc. Natl. Acad. Sci. USA, 2015, 112, 5903 [45] Zhou W., Zhang Y., Huang P. J., Ding J., Liu J., Nucleic Acids Res., 2016, 44, 354 [46] Gellert M., Lipsett M. N., Davies D. R., Proc. Natl. Acad. Sci. USA, 1962, 48, 2013 [47] Kosman J., Juskowiak B., Anal. Chim. Acta, 2011, 707, 7 [48] Li Y., Sen D., Biochemistry, 1997, 36, 5589 [49] Travascio P., Li Y., Sen D., Chem. Biol., 1998, 5, 505 [50] Gong L., Zhao Z., Lv Y. F., Huan S. Y., Fu T., Zhang X. B., Shen G. L., Yu R. Q., Chem. Comm., 2015, 51, 979 [51] Stadlbauer P., Islam B., Otyepka M., Chen J., Monchaud D., Zhou J., Mergny J.-L., Šponer J., J. Chem. Theory Comput., 2021, 17, 1883 [52] Cheng X., Liu X., Bing T., Cao Z., Shangguan D., Biochemistry, 2009, 48, 7817 [53] Kong D. M., Wu J., Wang N., Yang W., Shen H. X., Talanta, 2009, 80, 459 [54] Kong D. M., Yang W., Wu J., Li C. X., Shen H. X., Analyst, 2010, 135, 321 [55] Kong D. M., Xu J., Shen H. X., Anal. Chem., 2010, 82, 6148 [56] Stefan L., Denat F., Monchaud D., Nucleic Acids Res., 2012, 40, 8759 [57] Stefan L., Denat F., Monchaud D., J. Am. Chem. Soc., 2011, 133, 20405 [58] Qi C., Zhang N., Yan J. L., Liu X. J., Bing T., Mei H. C., Shangguan D. H., RSC Adv., 2014, 4, 1441 [59] Li W., Li Y., Liu Z., Lin B., Yi H., Xu F., Nie Z., Yao S., Nucleic Acids Res., 2016, 44, 7373 [60] Albada H. B., Golub E., Willner I., Chem. Sci., 2016, 7, 3092 [61] Wang Z. G., Wang H., Liu Q., Duan F. Y., Shi X. H., Ding B. Q., ACS Catal., 2018, 8, 7016 [62] Xiao L., Zhou Z., Feng M., Tong A., Xiang Y., Bioconjug. Chem., 2016, 27, 621 [63] Xiao Y., Pavlov V., Gill R., Bourenko T., Willner I., Chembiochem, 2004, 5, 374 [64] Wang D., Chai Y., Yuan Y., Yuan R., Anal. Chem., 2019, 91, 3561 [65] Shen P., Li W., Liu Y., Ding Z., Deng Y., Zhu X., Jin Y., Li Y., Li J., Zheng T., Anal. Chem., 2017, 89, 11862 [66] Ge C., Luo Q., Wang D., Zhao S., Liang X., Yu L., Xing X., Zeng L., Anal. Chem., 2014, 86, 6387 [67] Huang R., He L., Xia Y., Xu H., Liu C., Xie H., Wang S., Peng L., Liu Y., Liu Y., He N., Li Z., Small, 2019, 15, e1900735 [68] Hu Z., Yang J., Xu F., Sun G., Pan X., Xia M., Zhang S., Zhang X., J. Am. Chem. Soc., 2021, 143, 12361 [69] Zhang P., Ouyang Y., Willner I., Chem. Sci., 2021, 12, 4810 [70] Zhang R., Wu J., Ao H., Fu J., Qiao B., Wu Q., Ju H., Anal. Chem., 2021, 93, 9933 [71] Zhu L., Ye J., Yan M., Yu L., Peng Y., Huang J., Yang X., Anal. Chem., 2021, 93, 2644 [72] Shin J. S., Pierce N. A., J. Am. Chem. Soc., 2004, 126, 10834 [73] Tian Y., He Y., Chen Y., Yin P., Mao C., Angew. Chem. Int. Ed., 2005, 44, 4355 [74] Cha T. G., Pan J., Chen H., Salgado J., Li X., Mao C., Choi J. H., Nat. Nanotechnol., 2014, 9, 39 [75] Chen J., Luo Z., Sun C., Huang Z., Zhou C., Yin S., Duan Y., Li Y., Trends Analyt. Chem., 2019, 120, 115626 [76] Liu X., Niazov-Elkan A., Wang F., Willner I., Nano Lett., 2013, 13, 219 [77] Zhu L., Liu Q., Yang B., Ju H., Lei J., Anal. Chem., 2018, 90, 6357 [78] He J. L., Zhang Y., Mei T. T., Tang L., Huang S. Y., Cao Z., Biosens. Bioelectron., 2019, 144, 111692 [79] Chai H., Wang M., Zhang C., Tang Y., Miao P., Bioconjug. Chem., 2020, 31, 764 [80] Ge J., Zhao Y., Gao X., Li H., Jie G., Anal. Chem., 2019, 91, 14117 [81] Yang X., Shi D., Zhu S., Wang B., Zhang X., Wang G., ACS Sens., 2018, 3, 1368 [82] Cai S., Chen M., Liu M., He W., Liu Z., Wu D., Xia Y., Yang H., Chen J., Biosens. Bioelectron., 2016, 85, 184 [83] Qing M., Xie S., Cai W., Tang D., Tang Y., Zhang J., Yuan R., Anal. Chem., 2018, 90, 11439 [84] Xiong E., Zhen D., Jiang L., Zhou X., Anal. Chem., 2019, 91, 15317 [85] Du H., Yang P., Hou X., Hou X. D., Chen J. B., Microchem. J., 2018, 139, 260 [86] Du H., Yang P., Hou X., Zhou R., Hou X., Chen J., Chem. Comm., 2019, 55, 3610 [87] Zhang H., Xu X., Jiang W., Chem. Sci., 2020, 11, 7415 [88] Yang K., Wang H., Ma N., Zeng M., Luo H., He D., ACS Appl. Mater. Interfaces, 2018, 10, 44546 [89] Peng H., Li X. F., Zhang H., Le X. C., Nat. Commun., 2017, 8, 14378 [90] Liu C., Hu Y., Pan Q., Yi J., Zhang J., He M., He M., Chen T., Chu X., Biosens. Bioelectron., 2019, 136, 31 [91] Liu C., Hu Y., Pan Q., Yi J., Zhang J., He M., He M., Nie C., Chen T., Chu X., Chem. Comm., 2020, 56, 3496 [92] Chen K., Huang Q., Fu T., Ke G., Zhao Z., Zhang X., Tan W., Anal. Chem., 2020, 92, 7404 [93] Wang J., Wang D. X., Tang A. N., Kong D. M., Anal. Chem., 2019, 91, 5244 [94] Yin Y., Chen G., Gong L., Ge K., Pan W., Li N., Machuki J. O., Yu Y., Geng D., Dong H., Gao F., Anal. Chem., 2020, 92, 9247 [95] Li H., Gao J., Cao L., Xie X., Fan J., Wang H., Wang H. H., Nie Z., Angew. Chem. Int. Ed., 2021, 60, 26001 [96] Chen Y., Wang M., Mao C., Angew. Chem. Int. Ed., 2004, 43, 3554 [97] Chen Y., Mao C., J. Am. Chem. Soc., 2004, 126, 8626 [98] Chen X. Y., Fu X. R., Wu Y. Y., Jin Y. F., Li W., Anal. Methods, 2020, 12, 1579 [99] Xiong Z., Wang Q., Zhang J., Yun W., Wang X., Ha X., Yang L., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2020, 229, 118017 [100] He M., He M., Nie C., Yi J., Zhang J., Chen T., Chu X., ACS Appl. Mater. Interfaces, 2021, 13, 8015 [101] Hu Y., Wang F., Lu C. H., Girsh J., Golub E., Willner I., Chemistry, 2014, 20, 16203 [102] Li Y. J., Ding X. J., Li D. D., Wu H. P., Huang W., Ding S. J., Anal. Methods, 2019, 11, 1613 [103] Wen Z. B., Liang W. B., Zhuo Y., Xiong C. Y., Zheng Y. N., Yuan R., Chai Y. Q., Chem. Comm., 2017, 53, 7525 [104] Wu Z., Fan H., Satyavolu N. S. R., Wang W., Lake R., Jiang J. H., Lu Y., Angew. Chem. Int. Ed., 2017, 56, 8721 [105] Zhang C., Chen J., Sun R., Huang Z., Luo Z., Zhou C., Wu M., Duan Y., Li Y., ACS Sens., 2020, 5, 2977 [106] Quan K., Li J., Wang J., Xie N., Wei Q., Tang J., Yang X., Wang K., Huang J., Chem. Sci., 2019, 10, 1442 [107] Wei J., Wang H., Wu Q., Gong X., Ma K., Liu X., Wang F., Angew. Chem. Int. Ed., 2020, 59, 5965 [108] Wang H., Wang H., Wu Q., Liang M., Liu X., Wang F., Chem. Sci., 2019, 10, 9597 [109] Gong K., Wu Q., Wang H., He S., Shang J., Wang F., Chem. Comm., 2020, 56, 11410 [110] Zhang D., Ma F., Leng J., Zhang C. Y., Chem. Comm., 2018, 54, 13678 [111] Batule B. S., Kim S. U., Mun H., Choi C., Shim W. B., Kim M. G., J. Agric. Food Chem., 2018, 66, 3003 [112] Xu J., Qian J., Li H., Wu Z. S., Shen W., Jia L., Biosens. Bioelectron., 2016, 75, 41 [113] Park Y., Lee C. Y., Kang S., Kim H., Park K. S., Park H. G., Nanotechnology, 2018, 29, 085501 [114] Long Y., Zhou C., Wang C., Cai H., Yin C., Yang Q., Xiao D., Sci. Rep., 2016, 6, 23949 [115] Xiang B., He K., Zhu R., Liu Z., Zeng S., Huang Y., Nie Z., Yao S., ACS Appl. Mater. Interfaces, 2016, 8, 22801 [116] Li D., Cheng W., Yan Y., Zhang Y., Yin Y., Ju H., Ding S., Talanta, 2016, 146, 470 [117] Mi L., Sun Y., Shi L., Li T., ACS Appl. Mater. Interfaces, 2020, 12, 7879 [118] Ge J., Hu Y., Deng R., Li Z., Zhang K., Shi M., Yang D., Cai R., Tan W., Anal. Chem., 2020, 92, 13588 [119] Zhou T., Huang M., Lin J., Huang R., Xing D., Anal. Chem., 2021, 93, 2038 [120] Wang X. C., Liu W. W., Yin B. B., Sang Y. W., Liu Z. P., Dai Y., Duan X. Z., Zhang G., Ding S. J., Tao Z. H., Microchim Acta, 2017, 184, 1603 [121] Zhou D. H., Wu W., Li Q., Pan J. F., Chen J. H., Anal. Methods, 2019, 11, 3546 [122] Orbach R., Remacle F., Levine R. D., Willner I., Proc. Natl. Acad. Sci. USA, 2012, 109, 21228 [123] Lilienthal S., Klein M., Orbach R., Willner I., Remacle F., Levine R. D., Chem. Sci., 2017, 8, 2161 [124] Zhang J., Lu Y., Angew. Chem. Int. Ed., 2018, 57, 9702 [125] Chen F., Bai M., Cao K., Zhao Y., Cao X., Wei J., Wu N., Li J., Wang L., Fan C., Zhao Y., ACS Nano, 2017, 11, 11908 [126] Qian R. C., Zhou Z. R., Guo W., Wu Y., Yang Z., Lu Y., J. Am. Chem. Soc., 2021, 143, 5737 [127] Shlyahovsky B., Li Y., Lioubashevski O., Elbaz J., Willner I., ACS Nano, 2009, 3, 1831 [128] Zhu J., Zhang L., Li T., Dong S., Wang E., Adv. Mater., 2013, 25, 2440 [129] Chen J., Pan J., Chen S., Chem. Sci., 2018, 9, 300 [130] Chen J., Pan J., Liu C., Anal. Chem., 2020, 92, 6173 [131] Haydell M. W., Centola M., Adam V., Valero J., Famulok M., J. Am. Chem. Soc., 2018, 140, 16868 [132] Bi S., Yan Y., Hao S., Zhang S., Angew. Chem. Int. Ed., 2010, 49, 4438 [133] Zhang C., Yang J., Jiang S., Liu Y., Yan H., Nano Lett., 2016, 16, 736 [134] Wang J., Zhou Z., Li Z., Willner I., Chem. Sci., 2020, 12, 341 [135] Wang J., Li Z., Willner I., Nat. Commun., 2022, 13, 4414 [136] Dong J., Ouyang Y., Wang J., O’Hagan M. P., Willner I., ACS Nano, 2022, 16, 6153 [137] Li Z., Wang J., Zhou Z., O’Hagan M. P., Willner I., ACS Nano, 2022, 16, 3625 [138] Wang S., Yue L., Shpilt Z., Cecconello A., Kahn J. S., Lehn J. M., Willner I., J. Am. Chem. Soc., 2017, 139, 9662 [139] Zhou Z., Yue L., Wang S., Lehn J. M., Willner I., J. Am. Chem. Soc., 2018, 140, 12077 [140] Yue L., Wang S., Willner I., J. Am. Chem. Soc., 2019, 141, 16461 [141] Yue L., Wang S., Lilienthal S., Wulf V., Remacle F., Levine R. D., Willner I., J. Am. Chem. Soc., 2018, 140, 8721 [142] Wang S., Yue L., Li Z. Y., Zhang J., Tian H., Willner I., Angew. Chem. Int. Ed., 2018, 57, 8105 [143] Wang Z., Yang J., Qin G., Zhao C., Ren J., Qu X., Angew. Chem. Int. Ed., 2022, 61, e202204291 [144] Jerome C. A., Hoshika S., Bradley K. M., Benner S. A., Biondi E., Proc. Natl. Acad. Sci. USA, 2022, 119, e2208261119 [145] Chen L., Luo S., Ge Z., Fan C., Yang Y., Li Q., Zhang Y., Nano Lett., 2022, 22, 1618 [146] Zhao X., Wang Y., Jiang W., Wang Q., Li J., Wen Z., Li A., Zhang K., Zhang Z., Shi J., Liu J., Adv. Mater., 2022, 34 [147] Li Y., Chang Y., Ma J., Wu Z., Yuan R., Chai Y., Anal. Chem., 2019, 91, 6127 [148] Huang Y., Lin C., Luo F., Qiu B., Guo L., Lin Z., Chen G., ACS Sens., 2019, 4, 2465 [149] Si H., Sheng R., Li Q., Feng J., Li L., Tang B., Anal. Chem., 2018, 90, 8785 [150] Yang Z., Loh K. Y., Chu Y. T., Feng R., Satyavolu N. S. R., Xiong M., Nakamata Huynh S. M., Hwang K., Li L., Xing H., Zhang X., Chemla Y. R., Gruebele M., Lu Y., J. Am. Chem. Soc., 2018, 140, 17656 [151] Yang C., Yin X., Huan S. Y., Chen L., Hu X. X., Xiong M. Y., Chen K., Zhang X. B., Anal. Chem., 2018, 90, 3118 [152] Cui M. R., Li X. L., Xu J. J., Chen H. Y., ACS Appl. Mater. Interfaces, 2020, 12, 13005 [153] Lin Y., Yang Z., Lake R. J., Zheng C., Lu Y., Angew. Chem. Int. Ed., 2019, 58, 17061 [154] Xiong M., Yang Z., Lake R. J., Li J., Hong S., Fan H., Zhang X. B., Lu Y., Angew. Chem. Int. Ed., 2020, 59, 1891 [155] Wu Y., Meng H. M., Chen J., Jiang K., Yang R., Li Y., Zhang K., Qu L., Zhang X. B., Li Z., Chem. Comm., 2020, 56, 470 [156] Xu Y., Lu Z., Fu X., Yu F., Chen H., Nie Y., Sensors & Actuators B: Chemical, 2020, 306, 127549 [157] Li C., Xue C., Wang J., Luo M., Shen Z., Wu Z. S., Anal. Chem., 2019, 91, 11529 [158] Zhang J., He M., Nie C., He M., Pan Q., Liu C., Hu Y., Yi J., Chen T., Chu X., Anal. Chem., 2019, 91, 9049 [159] Zhu D., Wei Y., Sun T., Zhang C., Ang L., Su S., Mao X., Li Q., Fan C., Zuo X., Chao J., Wang L., Anal. Chem., 2021, 93, 2226 [160] Meng X., Zhang K., Yang F., Dai W., Lu H., Dong H., Zhang X., Anal. Chem., 2020, 92, 8333 [161] Zhang T. T., Peng Y., Yuan R., Xiang Y., Sensors & Actuators B: Chemcial, 2018, 273, 70 [162] Yang Y., Huang J., Yang X., Quan K., Wang H., Ying L., Xie N., Ou M., Wang K., Anal. Chem., 2016, 88, 5981 [163] Fu X., Ke G., Peng F., Hu X., Li J., Shi Y., Kong G., Zhang X. B., Tan W., Nat. Commun., 2020, 11, 1518 [164] Xu Y. T., Ruan Y. F., Wang H. Y., Yu S. Y., Yu X. D., Zhao W. W., Chen H. Y., Xu J. J., Small, 2021, 17, e2100503 [165] Li J., Wang S., Jiang B., Xiang Y., Yuan R., Analyst, 2019, 144, 2430 [166] Li C., Ma J., Shi H., Hu X., Xiang Y., Li Y., Li G., Anal. Chim. Acta, 2018, 1041, 102 [167] Liu C., Zhang S., Li X., Xue Q., Jiang W., Analyst, 2019, 144, 4241 [168] Gao T., Chai W., Shi L., Shi H., Sheng A., Yang J., Li G., Analyst, 2019, 144, 6365 [169] Zhang R., Wang Y., Qu X., Li S., Zhao Y., Zhang F., Liu S., Huang J., Yu J., Analyst, 2019, 144, 4995 [170] Wang Y., Yang L., Wang Y., Liu W., Li B., Jin Y., Analyst, 2019, 144, 5959 [171] Feng C., Wang Z., Chen T., Chen X., Mao D., Zhao J., Li G., Anal. Chem., 2018, 90, 2810 [172] Wang W. J., Shu M. B., Nie A. X., Han H. Y., Sensors & Actuators B: Chemical, 2020, 304, 127380 [173] Shiu S. C., Cheung Y. W., Dirkzwager R. M., Liang S., Kinghorn A. B., Fraser L. A., Tang M. S. L., Tanner J. A., Adv. Biosyst., 2017, 1, e1600006 [174] Shang J., Li C., Li F., Wang Q., Yuan B., Wang F., Anal. Chem., 2021, 93, 2403 [175] Zhou W., Ding J., Liu J., Theranostics, 2017, 7, 1010 [176] Taylor A. I., Wan C. J. K., Donde M. J., Peak-Chew S.-Y., Holliger P., Nat. Chem., 2022, 14, 1295 [177] Qian R.-C., Zhou Z.-R., Wu Y., Yang Z., Guo W., Li D.-W., Lu Y., Angew. Chem. Int. Ed., 2022, 61, e202210935 [178] Singh N., Ranjan A., Sur S., Chandra R., Tandon V., J. Biosci. Bioeng., 2012, 37, 493 [179] Yu L., Chen Y., Lin H., Gao S., Chen H., Shi J., Small, 2018, 14, e1800708 [180] Bhindi R., Fahmy R. G., Lowe H. C., Chesterman C. N., Dass C. R., Cairns M. J., Saravolac E. G., Sun L. Q., Khachigian L. M., Am. J. Pathol., 2007, 171, 1079 [181] Kole R., Krainer A. R., Altman S., Nat. Rev. Drug Discov., 2012, 11, 125 [182] Nedorezova D. D., Fakhardo A. F., Nemirich D. V., Bryushkova E. A., Kolpashchikov D. M., Angew. Chem. Int. Ed., 2019, 58, 4654 [183] Thai H. B. D., Levi-Acobas F., Yum S. Y., Jang G., Hollenstein M., Ahn D. R., Chem. Comm., 2018, 54, 9410 [184] Meng L., Ma W., Lin S., Shi S., Li Y., Lin Y., ACS Appl. Mater. Interfaces, 2019, 11, 6850 [185] Fan H., Zhao Z., Yan G., Zhang X., Yang C., Meng H., Chen Z., Liu H., Tan W., Angew. Chem. Int. Ed., 2015, 54, 4801 [186] Yi J. T., Pan Q. S., Liu C., Hu Y. L., Chen T. T., Chu X., Nanoscale, 2020, 12, 10380 [187] Liu S. Y., Xu Y., Yang H., Liu L., Zhao M., Yin W., Xu Y. T., Huang Y., Tan C., Dai Z., Zhang H., Zhang J. P., Chen X. M., Adv. Mater., 2021, 33, e2100849 [188] Jin Y., Wang H., Li X., Zhu H., Sun D., Sun X., Liu H., Zhang Z., Cao L., Gao C., Wang H., Liang X. J., Zhang J., Yang X., ACS Appl. Mater. Interfaces, 2020, 12, 26832 [189] Henderson B. W., Dougherty T. J., Photochem. Photobiol., 1992, 55, 145 [190] Moan J., Berg K., Photochem. Photobiol., 1992, 55, 931 [191] Li W., Ma Q. Y., Wu E. X., Int. J. Photoenergy, 2012, 2012, 1 [192] Agostinis P., Berg K., Cengel K. A., Foster T. H., Girotti A. W., Gollnick S. O., Hahn S. M., Hamblin M. R., Juzeniene A., Kessel D., Korbelik M., Moan J., Mroz P., Nowis D., Piette J., Wilson B. C., Golab J., CA Cancer J. Clin., 2011, 61, 250 [193] Robinson J. T., Tabakman S. M., Liang Y., Wang H., Casalongue H. S., Vinh D., Dai H., J. Am. Chem. Soc., 2011, 133, 6825 [194] Cheng L., Gong H., Zhu W., Liu J., Wang X., Liu G., Liu Z., Biomaterials, 2014, 35, 9844 [195] Feng J., Xu Z., Liu F., Zhao Y., Yu W., Pan M., Wang F., Liu X., ACS Nano, 2018, 12, 12888 [196] Lin H., Chen Y., Shi J., Chem. Soc. Rev., 2018, 47, 1938 [197] Lin L. S., Song J., Song L., Ke K., Liu Y., Zhou Z., Shen Z., Li J., Yang Z., Tang W., Niu G., Yang H. H., Chen X., Angew. Chem. Int. Ed., 2018, 57, 4902 [198] Sang Y., Cao F., Li W., Zhang L., You Y., Deng Q., Dong K., Ren J., Qu X., J. Am. Chem. Soc., 2020, 142, 5177 [199] Li Y., Zhao P., Gong T., Wang H., Jiang X., Cheng H., Liu Y., Wu Y., Bu W., Angew. Chem. Int. Ed., 2020, 59, 22537 [200] Liu C., Chen Y., Zhao J., Wang Y., Shao Y., Gu Z., Li L., Zhao Y., Angew. Chem. Int. Ed., 2021, 60, 14324 [201] Li X., Hu H., Shi Y., Liu Y., Zhou M., Huang Z., Li J., Ke G., Chen M., Zhang X.-B., Chem. Eur. J., 2023, https://doi.org/10.1002/chem.202203227 [202] Zhou M., Yin Y., Shi Y., Huang Z., Shi Y., Chen M., Ke G., Zhang X.-B., Chem. Comm., 2022, 58, 4508 [203] Tu T., Huan S., Ke G., Zhang X., Chem. Res. Chinece Universities, 2022, 38(4), 912 [204] Kong G., Xiong M., Liu L., Hu L., Meng H.-M., Ke G., Zhang X.-B., Tan W., Chem. Soc. Rev., 2021, 50, 1846 [205] Fu X., Shi Y., Peng F., Zhou M., Yin Y., Tan Y., Chen M., Yin X., Ke G., Zhang X.-B., Anal. Chem., 2021, 93, 4967 |
[1] | ZHOU Tong, YUAN Shuaiqi, QIAN Pinrong, WU Yuzhou. Enzymes in Nanomedicine for Anti-tumor Therapy[J]. 高等学校化学研究, 2023, 39(1): 72-82. |
[2] | QIN Yang, YANG Yunhan, HE Ran, ZHOU Laicheng, ZHANG Ling. Self-assembled Nanosheets of Perylene Monoamide Derivative as Sensitive Fluorescent Biosensor for Exonuclease III Activity[J]. 高等学校化学研究, 2022, 38(6): 1497-1503. |
[3] | TANG Tianwei, LIU Yinghuan, JIANG Ying. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors[J]. 高等学校化学研究, 2022, 38(4): 866-878. |
[4] | CHANG Kaili, SUN Peng, DONG Xin, ZHU Chunnan, LIU Xiaojun, ZHENG Dongyun, LIU Chao. Aptamers as Recognition Elements for Electrochemical Detection of Exosomes[J]. 高等学校化学研究, 2022, 38(4): 879-885. |
[5] | ZHANG Qian, LIANG Yuyan, XING Hang. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging[J]. 高等学校化学研究, 2022, 38(4): 902-911. |
[6] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy[J]. 高等学校化学研究, 2022, 38(4): 928-934. |
[7] | SHEN Congcong, CHEN Yuehua, FENG Beidou, CHI Hongying, ZHANG Hua. Polypyrrole Hollow Nanotubes Loaded with Au and Fe3O4 Nanoparticles for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid[J]. 高等学校化学研究, 2022, 38(4): 941-948. |
[8] | WU Liting, XIN Yujia, GUO Zhaoyang, GAO Wei, ZHU Yanpeng, br, WANG Yinsong, RAN Ruixue, YANG Xiaoying. Cell Membrane-camouflaged Multi-functional Dendritic Large Pore Mesoporous Silica Nanoparticles for Combined Photothermal Therapy and Radiotherapy of Cancer[J]. 高等学校化学研究, 2022, 38(2): 562-571. |
[9] | WANG Youjuan, YE Zhifei, SONG Guosheng, LIU Zhuang. Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy[J]. 高等学校化学研究, 2022, 38(2): 481-492. |
[10] | TANG Lin, ZENG Xiaodong, ZHOU Hui, GUI Conghao, LUO Qiulin, ZHOU Wenyi, WU Jing, LI Qianqian, LI Yang, XIAO Yuling. Theranostic Gold Nanoclusters for NIR-II Imaging and Photodynamic Therapy[J]. 高等学校化学研究, 2021, 37(4): 934-942. |
[11] | LIU Zhenyu, DONG Jinyi, PAN Jiahao, ZHOU Chao, FAN Chunhai, WANG Qiangbin. Catalytic DNA Origami-based Chiral Plasmonic Biosensor[J]. 高等学校化学研究, 2021, 37(4): 914-918. |
[12] | YU Qing, HUANG Xuan, ZHANG Tian, WANG Weili, YANG Dongliang, SHAO Jinjun, DONG Xiaochen. Near-infrared Aza-BODIPY Dyes Through Molecular Surgery for Enhanced Photothermal and Photodynamic Antibacterial Therapy[J]. 高等学校化学研究, 2021, 37(4): 951-959. |
[13] | LI Mengqi, MA He, SHI Chao, ZHANG Han, LONG Saran, SUN Wen, DU Jianjun, FAN Jiangli, PENG Xiaojun. A Cyanine-based Liposomal Nanophotosensitizer for Enhanced Cancer Chemo-Photodynamic Therapy[J]. 高等学校化学研究, 2021, 37(4): 925-933. |
[14] | YUAN Fang, LI Yang, CHEN Zhenjuan, ZHANG Jianjian, NING Lulu, YANG Xiao-Feng, PU Kanyi. Excimer-based Activatable Fluorescent Sensor for Sensitive Detection of Alkaline Phosphatase[J]. 高等学校化学研究, 2021, 37(4): 960-966. |
[15] | ZHANG Xindan, GONG Bowen, ZHAI Jiliang, ZHAO Yu, LU Yonglai, ZHANG Liqun, XUE Jiajia. A Perspective: Electrospun Fibers for Repairing Spinal Cord Injury[J]. 高等学校化学研究, 2021, 37(3): 404-410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||