高等学校化学研究 ›› 2022, Vol. 38 ›› Issue (2): 382-395.doi: 10.1007/s40242-022-2010-4
BI Shuai, MENG Fancheng, ZHANG Zixing, WU Dongqing, ZHANG Fan
收稿日期:
2022-01-05
修回日期:
2022-02-16
出版日期:
2022-04-01
发布日期:
2022-05-18
通讯作者:
ZHANG Fan
E-mail:fan-zhang@sjtu.edu.cn
基金资助:
BI Shuai, MENG Fancheng, ZHANG Zixing, WU Dongqing, ZHANG Fan
Received:
2022-01-05
Revised:
2022-02-16
Online:
2022-04-01
Published:
2022-05-18
Contact:
ZHANG Fan
E-mail:fan-zhang@sjtu.edu.cn
Supported by:
摘要: Vinylene-linked covalent organic frameworks(COFs) are a class of promising porous organic materials that feature fully π-conjugated structures, high crystallinity, permanent porosity, ultrahigh chemical stability, and extraordinary optoelectronic properties. Over the past 5 years, this kind of material has been witnessed rapid development either in chemical synthesis or in potential applications. In this review, we summarize the chemistry to synthesize vinylene-linked COFs, especially the synthetic strategies involving activation of aryl methyl groups for condensation reaction. We then scrutinize the state-of-the-art development in properties and functions of this kind of COFs. Our own opinions on the further development of the vinylene-linked COFs are also presented for discussion.
BI Shuai, MENG Fancheng, ZHANG Zixing, WU Dongqing, ZHANG Fan. Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs[J]. 高等学校化学研究, 2022, 38(2): 382-395.
BI Shuai, MENG Fancheng, ZHANG Zixing, WU Dongqing, ZHANG Fan. Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs[J]. Chemical Research in Chinese Universities, 2022, 38(2): 382-395.
[1] Diercks C. S., Yaghi O. M., Science, 2017, 355, eaal1585. [2] Wang H., Zeng Z., Xu P., Li L., Zeng G., Xiao R., Tang Z., Huang D., Tang L., Lai C., Jiang D., Liu Y., Yi H., Qin L., Ye S., Ren X., Tang W., Chem. Soc. Rev., 2019, 48, 488. [3] Liu Y., Zhou W., Teo W. L., Wang K., Zhang L., Zeng Y., Zhao Y., Chem., 2020, 6, 3172. [4] Wang Z., Zhang S., Chen Y., Zhang Z., Ma S., Chem. Soc. Rev., 2020, 49, 708. [5] Yuan S., Li X., Zhu J., Zhang G., Van Puyvelde P., Van der Bruggen B., Chem. Soc. Rev., 2019, 48, 2665. [6] Ding S.-Y., Wang W., Chem. Soc. Rev., 2013, 42, 548. [7] Sharma R. K., Yadav P., Yadav M., Gupta R., Rana P., Srivastava A., Zbořil R., Varma R. S., Antonietti M., Gawande M. B., Mater. Horiz., 2020, 7, 411. [8] Haug W. K., Moscarello E. M., Wolfson E. R., McGrier P. L., Chem. Soc. Rev., 2020, 49, 839. [9] Meng Z., Mirica K. A., Chem. Soc. Rev., 2021, 50, 13498. [10] Li J., Jing X., Li Q., Li S., Gao X., Feng X., Wang B., Chem. Soc. Rev., 2020, 49, 3565. [11] Chen X., Geng K., Liu R., Tan K. T., Gong Y., Li Z., Tao S., Jiang Q., Jiang D., Angew. Chem., Int. Ed., 2020, 59, 5050. [12] Wang D.-G., Qiu T., Guo W., Liang Z., Tabassum H., Xia D., Zou R., Energy Environ. Sci., 2021, 14, 688. [13] Lin C.-Y., Zhang D., Zhao Z., Xia Z., Adv. Mater., 2018, 30, 1703646. [14] Feng X., Ding X., Jiang D., Chem. Soc. Rev., 2012, 41, 6010. [15] Zhao X., Pachfule P., Thomas A., Chem. Soc. Rev., 2021, 50, 6871. [16] Côté A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310, 1166. [17] Haase F., Lotsch B. V., Chem. Soc. Rev., 2020, 49, 8469. [18] Liu R., Tan K. T., Gong Y., Chen Y., Li Z., Xie S., He T., Lu Z., Yang H., Jiang D., Chem. Soc. Rev., 2021, 50, 120. [19] Liang R.-R., Jiang S.-Y., A R.-H., Zhao X., Chem. Soc. Rev., 2020, 49, 3920. [20] Li X., Yadav P., Loh K. P., Chem. Soc. Rev., 2020, 49, 4835. [21] Guan X., Chen F., Fang Q., Qiu S., Chem. Soc. Rev., 2020, 49, 1357. [22] Han X., Yuan C., Hou B., Liu L., Li H., Liu Y., Cui Y., Chem. Soc. Rev., 2020, 49, 6248. [23] Jin Y., Hu Y., Ortiz M., Huang S., Ge Y., Zhang W., Chem. Soc. Rev., 2020, 49, 4637. [24] Lyle S. J., Waller P. J., Yaghi O. M., Trends Chem., 2019, 1, 172. [25] Diercks C. S., Kalmutzki M. J., Yaghi O. M., Molecules, 2017, 22. [26] Jackson K. T., Reich T. E., El-Kaderi H. M., Chem. Commun., 2012, 48, 8823. [27] Roeser J., Prill D., Bojdys M. J., Fayon P., Trewin A., Fitch A. N., Schmidt M. U., Thomas A., Nat. Chem., 2017, 9, 977. [28] Hunt J. R., Doonan C. J., LeVangie J. D., Côté A. P., Yaghi O. M., J. Am. Chem. Soc., 2008, 130, 11872. [29] Li Y., Chen W., Xing G., Jiang D., Chen L., Chem. Soc. Rev., 2020, 49, 2852. [30] Geng K., He T., Liu R., Dalapati S., Tan K. T., Li Z., Tao S., Gong Y., Jiang Q., Jiang D., Chem. Rev., 2020, 120, 8814. [31] Uribe-Romo F. J., Hunt J. R., Furukawa H., Klöck C., O'Keeffe M., Yaghi O. M., J. Am. Chem. Soc., 2009, 131, 4570. [32] Rodríguez-San-Miguel D., Montoro C., Zamora F., Chem. Soc. Rev., 2020, 49, 2291. [33] Segura J. L., Royuela S., Mar Ramos M., Chem. Soc. Rev., 2019, 48, 3903. [34] Wei P.-F., Qi M.-Z., Wang Z.-P., Ding S.-Y., Yu W., Liu Q., Wang L.-K., Wang H.-Z., An W.-K., Wang W., J. Am. Chem. Soc., 2018, 140, 4623. [35] Seo J.-M., Noh H.-J., Jeong H. Y., Baek J.-B., J. Am. Chem. Soc., 2019, 141, 11786. [36] Waller P. J., AlFaraj Y. S., Diercks C. S., Jarenwattananon N. N., Yaghi O. M., J. Am. Chem. Soc., 2018, 140, 9099. [37] Haase F., Troschke E., Savasci G., Banerjee T., Duppel V., Dörfler S., Grundei M. M. J., Burow A. M., Ochsenfeld C., Kaskel S., Lotsch B. V., Nat. Commun., 2018, 9, 2600. [38] Zhuang X., Zhao W., Zhang F., Cao Y., Liu F., Bi S., Feng X., Polym. Chem., 2016, 7, 4176. [39] Guan X., Li H., Ma Y., Xue M., Fang Q., Yan Y., Valtchev V., Qiu S., Nat. Chem., 2019, 11, 587. [40] Guo J., Xu Y., Jin S., Chen L., Kaji T., Honsho Y., Addicoat M. A., Kim J., Saeki A., Ihee H., Seki S., Irle S., Hiramoto M., Gao J., Jiang D., Nat. Commun., 2013, 4, 2736. [41] Zhang B., Wei M., Mao H., Pei X., Alshmimri S. A., Reimer J. A., Yaghi O. M., J. Am. Chem. Soc.,2018, 140, 12715. [42] Wang P.-L., Ding S.-Y., Zhang Z.-C., Wang Z.-P., Wang W., J. Am. Chem. Soc., 2019, 141, 18004. [43] Banerjee T., Gottschling K., Savasci G., Ochsenfeld C., Lotsch B. V., ACS Energy Lett., 2018, 3, 400. [44] Wang H., Wang H., Wang Z., Tang L., Zeng G., Xu P., Chen M., Xiong T., Zhou C., Li X., Huang D., Zhu Y., Wang Z., Tang J., Chem. Soc. Rev., 2020, 49, 4135. [45] Wang W., Zhao W., Xu H., Liu S., Huang W., Zhao Q., Coord. Chem. Rev., 2021, 429, 213616. [46] Wang L., Zeng C., Xu H., Yin P., Chen D., Deng J., Li M., Zheng N., Gu C., Ma Y., Chem Sci., 2019, 10, 1023. [47] Keller N., Bein T., Chem. Soc. Rev., 2021, 50, 1813. [48] [48] Khattak A. M., Ghazi Z. A., Liang B., Khan N. A., Iqbal A., Li L., Tang Z., J. Mater. Chem. A, 2016, 4, 16312. [49] Xu S., Wang G., Biswal B. P., Addicoat M., Paasch S., Sheng W., Zhuang X., Brunner E., Heine T., Berger R., Feng X., Angew. Chem., Int. Ed., 2019, 58, 849. [50] Gu R., Flidrova K., Lehn J.-M., J. Am. Chem. Soc., 2018, 140, 5560. [51] König N. F., Mutruc D., Hecht S., J. Am. Chem. Soc., 2021, 143, 9162. [52] Bi S., Yang C., Zhang W., Xu J., Liu L., Wu D., Wang X., Han Y., Liang Q., Zhang F., Nat. Commun.,2019, 10, 2467. [53] Bi S., Lu C., Zhang W., Qiu F., Zhang F., J. Energy Chem., 2018, 27, 99. [54] Li X., Mater. Chem. Front., 2021, 5, 2931. [55] He T., Geng K., Jiang D., Trends Chem., 2021, 3, 431. [56] Xu S., Richter M., Feng X., Acc. Mater. Res., 2021, 2, 252. [57] Alahakoon S. B., Diwakara S. D., Thompson C. M., Smaldone R. A., Chem. Soc. Rev., 2020, 49, 1344. [58] Springer M. A., Liu T.-J., Kuc A., Heine T., Chem. Soc. Rev., 2020, 49, 2007. [59] Knoevenagel E., Justus Liebigs Ann. Chem., 1894, 281, 25. [60] Hann A. C. O., Lapworth A., J. Chem. Soc., Trans., 1904, 85, 46. [61] Cope A. C., J. Am. Chem. Soc., 1937, 59, 2327. [62] Boucard V., Macromolecules, 2001, 34, 4308. [63] Mase N., Horibe T., Org. Lett., 2013, 15, 1854. [64] Zacuto M. J., J. Org. Chem., 2019, 84, 6465. [65] Mukaiyama T., Org. React., 1982, 28, 203. [66] Heathcock C. H.; Eds.:Trost B. M., Fleming I., Comprehensive Organic Synthesis Pergamon, Oxford, 1991, 133. [67] Pastoetter D. L., Xu S., Borrelli M., Addicoat M., Biswal B. P., Paasch S., Dianat A., Thomas H., Berger R., Reineke S., Brunner E., Cuniberti G., Richter M., Feng X., Angew. Chem. Int. Ed., 2020, 59, 23620. [68] He Y., Ma W., Yang N., Liu F., Chen Y., Liu H., Zhu X., Chem. Commun., 2021, 57, 7557. [69] Jin E., Asada M., Xu Q., Dalapati S., Addicoat M. A., Brady M. A., Xu H., Nakamura T., Heine T., Chen Q., Jiang D., Science, 2017, 357, 673. [70] Jin E., Li J., Geng K., Jiang Q., Xu H., Xu Q., Jiang D., Nat. Commun., 2018, 9, 4143. [71] Zhang Q., Dai M., Shao H., Tian Z., Lin Y., Chen L., Zeng X. C., ACS Appl. Mater. Interfaces, 2018, 10, 43595. [72] Jin E., Lan Z., Jiang Q., Geng K., Li G., Wang X., Jiang D., Chem., 2019, 5, 1632. [73] Becker D., Biswal B. P., Kaleńczuk P., Chandrasekhar N., Giebeler L., Addicoat M., Paasch S., Brunner E., Leo K., Dianat A., Cuniberti G., Berger R., Feng X., Chem.-Eur. J., 2019, 25, 6562. [74] Zhao Y., Liu H., Wu C., Zhang Z., Pan Q., Hu F., Wang R., Li P., Huang X., Li Z., Angew. Chem., Int. Ed., 2019, 58, 5376. [75] Chen R., Shi J.-L., Ma Y., Lin G., Lang X., Wang C., Angew. Chem., Int. Ed., 2019, 58, 6430. [76] Jin E., Geng K., Lee K. H., Jiang W., Li J., Jiang Q., Irle S., Jiang D., Angew. Chem. Int. Ed., 2020, 59, 12162. [77] Shi J.-L., Chen R., Hao H., Wang C., Lang X., Angew. Chem. Int. Ed., 2020, 59, 9088. [78] Mo C., Yang M., Sun F., Jian J., Zhong L., Fang Z., Feng J., Yu D., Adv. Sci., 2020, 7, 1902988. [79] Xu S., Sun H., Addicoat M., Biswal B. P., He F., Park S., Paasch S., Zhang T., Sheng W., Brunner E., Hou Y., Richter M., Feng X., Adv. Mater., 2020, 33, 2006274. [80] Cui W.-R., Li F.-F., Xu R.-H., Zhang C.-R., Chen X.-R., Yan R.-H., Liang R.-P., Qiu J.-D., Angew. Chem., Int. Ed., 2020, 59, 17684. [81] Xu S., Li Y., Biswal B. P., Addicoat M. A., Paasch S., Imbrasas P., Park S., Shi H., Brunner E., Richter M., Lenk S., Reineke S., Feng X., Chem. Mater., 2020, 32, 7985. [82] Fu Z., Wang X., Gardner A. M., Wang X., Chong S. Y., Neri G., Cowan A. J., Liu L., Li X., Vogel A., Clowes R., Bilton M., Chen L., Sprick R. S., Cooper A. I., Chem. Sci., 2020, 11, 543. [83] Yuan C., Fu S., Yang K., Hou B., Liu Y., Jiang J., Cui Y., J. Am. Chem. Soc., 2020, 143, 369. [84] Cui W.-R., Zhang C.-R., Jiang W., Li F.-F., Liang R.-P., Liu J., Qiu J.-D., Nat. Commun., 2020, 11, 436. [85] Bu R., Zhang L., Liu X.-Y., Yang S.-L., Li G., Gao E.-Q., ACS Appl. Mater. Interfaces, 2021, 13, 26431. [86] Su Y., Wan Y., Xu H., Otake K.-i., Tang X., Huang L., Kitagawa S., Gu C., J. Am. Chem. Soc., 2020, 142, 13316. [87] Wang Y., Hao W., Liu H., Chen R., Pan Q., Li Z., Zhao Y., Nat. Commun., 2022, 13, 100. [88] Jin E., Geng K., Fu S., Addicoat M. A., Zheng W., Xie S., Hu J.-S., Hou X., Wu X., Jiang Q., Xu Q.-H., Wang H. I., Jiang D., Angew. Chem., Int. Ed., 2021, 61, e202115020. [89] Burroughes J. H., Bradley D. D. C., Brown A. R., Marks R. N., Mackay K., Friend R. H., Burns P. L., Holmes A. B., Nature, 1990, 347, 539. [90] Greenham N. C., Moratti S. C., Bradley D. D. C., Friend R. H., Holmes A. B., Nature, 1993, 365, 628. [91] Friend R. H., Gymer R. W., Holmes A. B., Burroughes J. H., Marks R. N., Taliani C., Bradley D. D. C., Santos D. A. D., Brédas J. L., Lögdlund M., Salaneck W. R., Nature, 1999, 397, 121. [92] Grimsdale A. C., Leok Chan K., Martin R. E., Jokisz P. G., Holmes A. B., Chem. Rev., 2009, 109, 897. [93] Bi S., Thiruvengadam P., Wei S., Zhang W., Zhang F., Gao L., Xu J., Wu D., Chen J.-S., Zhang F., J. Am. Chem. Soc., 2020, 142, 11893. [94] Xu J., Yang C., Bi S., Wang W., He Y., Wu D., Liang Q., Wang X., Zhang F., Angew. Chem., Int. Ed., 2020, 59, 23845. [95] Cui W.-R., Zhang C.-R., Xu R.-H., Chen X.-R., Yan R.-H., Jiang W., Liang R.-P., Qiu J.-D., ACS EST Water, 2021, 1, 440. [96] Attias A.-J., Cavalli C., Donnio B., Guillon D., Hapiot P., Malthête J., Chem. Mater., 2002, 14, 375. [97] Wang H., Li Z., Shao P., Liang Y., Wang H., Qin J., Gong Q., New J. Chem., 2005, 29, 792. [98] Xu J., He Y., Bi S., Wang M., Yang P., Wu D., Wang J., Zhang F., Angew. Chem. Int. Ed., 2019, 58, 12065. [99] Li Y.-J., Cui W.-R., Jiang Q.-Q., Wu Q., Liang R.-P., Luo Q.-X., Qiu J.-D., Nat. Commun., 2021, 12, 4735. [100] Cui Y. Z., Fang Q., Lei H., Xue G., Yu W. T., Chem. Phys. Lett., 2003, 377, 507. [101] Lyu H., Diercks C. S., Zhu C., Yaghi O. M., J. Am. Chem. Soc., 2019, 141, 6848. [102] Wei S., Zhang W., Qiang P., Yu K., Fu X., Wu D., Bi S., Zhang F., J. Am. Chem. Soc., 2019, 141, 14272. [103] Acharjya A., Longworth-Dunbar L., Roeser J., Pachfule P., Thomas A., J. Am. Chem. Soc., 2020, 142, 14033. [104] Acharjya A., Pachfule P., Roeser J., Schmitt F.-J., Thomas A., Angew. Chem., Int. Ed., 2019, 58, 14865. [105] Jadhav T., Fang Y., Liu C.-H., Dadvand A., Hamzehpoor E., Patterson W., Jonderian A., Stein R. S., Perepichka D. F., J. Am. Chem. Soc., 2020, 142, 8862. [106] Jadhav T., Fang Y., Patterson W., Liu C.-H., Hamzehpoor E., Perepichka D. F., Angew. Chem., Int. Ed., 2019, 58, 13753. [107] Yang S., Streater D., Fiankor C., Zhang J., Huang J., J. Am. Chem. Soc., 2021, 143, 1061. [108] Wang Z., Yang Y., Zhao Z., Zhang P., Zhang Y., Liu J., Ma S., Cheng P., Chen Y., Zhang Z., Nat. Commun., 2021, 12, 1982. [109] Sowmiah S., Esperança J. M. S. S., Rebelo L. P. N., Afonso C. A. M., Org. Chem. Front., 2018, 5, 453. [110] Namboodiri C. K. R., Bisht P. B., Mukkamala R., Chandra B., Aidhen I. S., Chem. Phys., 2013, 415, 190. [111] He F.-S., Ye S., Wu J., ACS Catal., 2019, 9, 8943. [112] Li Y., Wang H., Li X., Chem. Sci., 2020, 11, 12249. [113] Xu X., Qiu W., Zhou Q., Tang J., Yang F., Sun Z., Audebert P., J. Phys. Chem. B, 2008, 112, 4913. [114] Rudat B., Birtalan E., Thomé I., Kölmel D. K., Horhoiu V. L., Wissert M. D., Lemmer U., Eisler H.-J., Balaban T. S., Bräse S., J. Phys. Chem. B, 2010, 114, 13473. [115] Lin J., Bi S., Fan Z., Fu Z., Meng Z., Hou Z., Zhang F., Polym. Chem., 2021, 12, 1661. [116] Meng F., Bi S., Sun Z., Jiang B., Wu D., Chen J.-S., Zhang F., Angew. Chem., Int. Ed, 2021, 60, 13614. [117] Bi S., Zhang Z., Meng F., Wu D., Chen J.-S., Zhang F., Angew. Chem., Int. Ed., 2021, 61, e202111627. [118] Hu H., Yan Q., Ge R., Gao Y., Chinese J. Catal., 2018, 39, 1167. [119] Yusran Y., Li H., Guan X., Fang Q., Qiu S., EnergyChem, 2020, 2, 100035. [120] Liu J., Wang N., Ma L., Chem. Asian J., 2020, 15, 338. [121] Zhi Y., Wang Z., Zhang H.-L., Zhang Q., Small, 2020, 16, 2001070. [122] Yu K., Bi S., Ming W., Wei W., Zhang Y., Xu J., Qiang P., Qiu F., Wu D., Zhang F., Polym. Chem., 2019, 10, 3758. [123] Ming W., Bi S., Zhang Y., Yu K., Lu C., Fu X., Qiu F., Liu P., Su Y., Zhang F., Adv. Funct. Mater., 2019, 29, 1808423. [124] Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti M., Nat. Mater., 2009, 8, 76. [125] Stegbauer L., Schwinghammer K., Lotsch B. V., Chem. Sci., 2014, 5, 2789. [126] Vyas V. S., Haase F., Stegbauer L., Savasci G., Podjaski F., Ochsenfeld C., Lotsch B. V., Nat. Commun., 2015, 6, 8508. [127] Pachfule P., Acharjya A., Roeser J., Langenhahn T., Schwarze M., Schomäcker R., Thomas A., Schmidt J., J. Am. Chem. Soc., 2018, 140, 1423. [128] Bi S., Lan Z. A., Paasch S., Zhang W., He Y., Zhang C., Liu F., Wu D., Zhuang X., Brunner E., Wang X., Zhang F., Adv. Funct. Mater., 2017, 27, 1703146. [129] Jin E., Fu S., Hanayama H., Addicoat M. A., Wei W., Chen Q., Graf R., Landfester K., Bonn M., Zhang K. A. I., Wang H. I., Müllen K., Narita A., Angew. Chem., Int. Ed., 2021, 61, e202114059. [130] Zhai L., Yang S., Yang X., Ye W., Wang J., Chen W., Guo Y., Mi L., Wu Z., Soutis C., Xu Q., Jiang Z., Chem. Mater., 2020, 32, 9747. [131] Zhang F., Wei S., Wei W., Zou J., Gu G., Wu D., Bi S., Zhang F., Sci. Bull., 2020, 65, 1659. [132] Zhang G., Hong Y.-L., Nishiyama Y., Bai S., Kitagawa S., Horike S., J. Am. Chem. Soc., 2019, 141, 1227. [133] Fujie K., Otsubo K., Ikeda R., Yamada T., Kitagawa H., Chem. Sci., 2015, 6, 4306. [134] Hu Y., Dunlap N., Wan S., Lu S., Huang S., Sellinger I., Ortiz M., Jin Y., Lee S.-H., Zhang W., J. Am. Chem. Soc., 2019, 141, 7518. [135] Jeong K., Park S., Jung G. Y., Kim S. H., Lee Y.-H., Kwak S. K., Lee S.-Y., J. Am. Chem. Soc., 2019, 141, 5880. [136] Xu Q., Tao S., Jiang Q., Jiang D., J. Am. Chem. Soc., 2018, 140, 7429. [137] Li Z., Liu Z.-W., Mu Z.-J., Cao C., Li Z., Wang T.-X., Li Y., Ding X., Han B.-H., Feng W., Mater. Chem. Front., 2020, 4, 1164. |
[1] | CUI Yumeng, MIAO Zhuang, LIU Qi, JIN Fenchun, ZHAI Yufeng, ZHANG Lingyan, WANG Wenli, WANG Ke, LIU Guiyan, ZENG Yongfei. Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy[J]. 高等学校化学研究, 2022, 38(2): 402-408. |
[2] | WANG Guangbo, XIE Kehui, ZHU Fucheng, KAN Jinglan, LI Sha, GENG Yan, DONG Yubin. Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture[J]. 高等学校化学研究, 2022, 38(2): 409-414. |
[3] | LI Jiali, ZHANG Zhenwei, JIA Ji, LIU Xiaoming. Covalent Organic Frameworks for Photocatalytic Organic Transformation[J]. 高等学校化学研究, 2022, 38(2): 275-289. |
[4] | DI Zhengyi, MAO Yining, YUAN Heng, ZHOU Yan, JIN Jun, LI Cheng-Peng. Covalent Organic Frameworks(COFs) for Sequestration of99TcO4–[J]. 高等学校化学研究, 2022, 38(2): 290-295. |
[5] | XU Kai, HUANG Ning. Recent Advances of Covalent Organic Frameworks in Chemical Sensing[J]. 高等学校化学研究, 2022, 38(2): 339-349. |
[6] | CHANG Shunkai, LI Cuiyan, LI Hui, ZHU Liangkui, FANG Qianrong. Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR)[J]. 高等学校化学研究, 2022, 38(2): 396-401. |
[7] | ZHANG Yin, MA Shengqian. Laser-induced Synthesis of Ultrafine Gold Nanoparticles in Covalent Organic Frameworks[J]. 高等学校化学研究, 2022, 38(2): 468-471. |
[8] | YU Xiaoming, MA Yunchao, LI Cuiyan, GUAN Xinyu, FANG Qianrong, QIU Shilun. A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction[J]. 高等学校化学研究, 2022, 38(1): 167-172. |
[9] | YE Peng, LIU Yongchao, MA Jian, WANG Yueda, FENG Xuyong, XIANG Hongfa, SUN Yi, LIANG Xin, YU Yan. Enhanced Electrochemical Performance of Na0.67Fe0.5Mn0.5O2Cathode with SnO2 Modification[J]. 高等学校化学研究, 2021, 37(5): 1130-1136. |
[10] | CAO Wenhao, WANG Caifeng, WANG Shuai, ZHANG Yang, ZHAO Ruisheng. Preparation of Photoresponsive PAN-NH2@EPESP Fiber Films with Mechanical Stability for Regulating Wettability and Micro-environment Humidity[J]. 高等学校化学研究, 2021, 37(3): 512-521. |
[11] | WANG Huanfeng, LI Jingjing, LI Fei, GUAN Dehui, WANG Xiaoxue, SU Wenhua, XU Jijing. Strategies with Functional Materials in Tackling Instability Challenges of Non-aqueous Lithium-Oxygen Batteries[J]. 高等学校化学研究, 2021, 37(2): 232-245. |
[12] | QU Huiqi, PAN Longhai, SUN Yuexin, WANG Lei, LI Yanyan, ZHANG Mingjuan, ZHANG Zhaoxiang, LIN Haifeng. Supramolecular Assemblies of Three New Metronidazole Derivatives Constructed with Various Dihydroxy-benzoic Acids via Hydrogen Bonds[J]. 高等学校化学研究, 2020, 36(6): 1196-1202. |
[13] | LIN Qingjin, LIN Chenlu, LIU Jingying, LIU Shuang, XU Haidi, CHEN Yaoqiang, DAN Yi. Optimization of Hybrid Crystal with SAPO-5/34 on Hydrothermal Stability for deNOx Reaction by NH3[J]. 高等学校化学研究, 2020, 36(6): 1249-1254. |
[14] | CHEN Chaoxian, ZHAO Chenyang, LI Cuihua, LIU Jianhong, GUI Dayong. Porous NiCo2O4 Nanowire Arrays as Supercapacitor Electrode Materials with Extremely High Cycling Stability[J]. 高等学校化学研究, 2020, 36(4): 715-720. |
[15] | DENG Mengying, LI Min, MAO Xiuhai, LI Fan, ZUO Xiaolei. Nucleic Acid Nanoprobes for Biosensor Development in Complex Matrices[J]. 高等学校化学研究, 2020, 36(2): 185-193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||