高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (2): 185-193.doi: 10.1007/s40242-020-9073-x
DENG Mengying1,2,3, LI Min3, MAO Xiuhai3, LI Fan3, ZUO Xiaolei3
收稿日期:2019-11-29
修回日期:2019-12-18
出版日期:2020-04-01
发布日期:2020-03-18
通讯作者:
ZUO Xiaolei
E-mail:zuoxiaolei@sjtu.edu.cn
基金资助:DENG Mengying1,2,3, LI Min3, MAO Xiuhai3, LI Fan3, ZUO Xiaolei3
Received:2019-11-29
Revised:2019-12-18
Online:2020-04-01
Published:2020-03-18
Contact:
ZUO Xiaolei
E-mail:zuoxiaolei@sjtu.edu.cn
Supported by:摘要: Nucleic acid probes in living organisms play an essential role in therapeutics and diagnosis. Through the imaging and sensing of nucleic acid probes in complex biological matrices, a variety of diseases-related biological process, pathogenic process, or pharmacological responses to a therapeutic intervention have been discovered. How-ever, a critical challenge of nucleic acid probes applied in complex matrices lies in enhancing the stability of nucleic acid probes, especially when it suffers from nuclease degradation and protein adsorption. In order to enhance the application of nucleic acid nanoprobes in complex matrices, great efforts have been devoted to improving the stability of probes operated in complex media, including construction of nucleic acid nanoprobes with nuclease resistance and protein adsorption resistance, sample pretreatment, anti-biofouling and signal correction. In this review, we aim to summarize recent advances in the stability of nucleic acid nanoprobes in complex matrices, including the methods of enhancing the stability of probes or signals, and the application of nucleic acid nanoprobes for disease diagnosis.
DENG Mengying, LI Min, MAO Xiuhai, LI Fan, ZUO Xiaolei. Nucleic Acid Nanoprobes for Biosensor Development in Complex Matrices[J]. 高等学校化学研究, 2020, 36(2): 185-193.
DENG Mengying, LI Min, MAO Xiuhai, LI Fan, ZUO Xiaolei. Nucleic Acid Nanoprobes for Biosensor Development in Complex Matrices[J]. Chemical Research in Chinese Universities, 2020, 36(2): 185-193.
| [1] | Williams K. A., Veenhuizen P. T. M., de la Torre B. G., Eritja R., Dekker C., Nature, 2002, 420(6917), 761 |
| [2] | Klug A., Rhodes D., Trends Biochem. Sci., 1987, 12, 464 |
| [3] | Forster A. C., Symons R. H., Cell, 1987, 49(2), 211 |
| [4] | Sen D., Gilbert W., Nature, 1988, 334(6180), 364 |
| [5] | Parkinson G. N., Lee M. P. H., Neidle S., Nature, 2002, 417(6891), 876 |
| [6] | Zeraati M., Langley D. B., Schofield P., Moye A. L., Rouet R., Hughes W. E., Bryan T. M., Dinger M. E., Christ D., Nat. Chem., 2018, 10(6), 631 |
| [7] | Day H. A., Pavlou P., Waller Z. A. E., Bioorg. Med. Chem., 2014, 22(16), 4407 |
| [8] | Song P., Ye D., Zuo X., Li J., Wang J., Liu H., Hwang M. T., Chao J., Su S., Wang L., Shi J., Wang L., Huang W., Lal R., Fan C., Nano Lett., 2017, 17(9), 5193 |
| [9] | Lou X., Zhuang Y., Zuo X., Jia Y., Hong Y., Min X., Zhang Z., Xu X., Liu N., Xia F., Tang B. Z., Anal. Chem., 2015, 87(13), 6822 |
| [10] | Abi A., Mohammadpour Z., Zuo X., Safavi A., Biosens. Bioelectron., 2018, 102, 479 |
| [11] | Lin M., Yi X., Huang F., Ma X., Zuo X., Xia F., Anal. Chem., 2019, 91(3), 2021 |
| [12] | Kaiser C. E., van Ert N. A., Agrawal P., Chawla R., Yang D., Hurley L. H., J. Am. Chem. Soc., 2017, 139(25), 8522 |
| [13] | Brown R. V., Wang T., Chappeta V. R., Wu G., Onel B., Chawla R., Quijada H., Camp S. M., Chiang E. T., Lassiter Q. R., Lee C., Phanse S., Turnidge M. A., Zhao P., Garcia J. G. N., Gokhale V., Yang D., Hurley L. H., J. Am. Chem. Soc., 2017, 139(22), 7456 |
| [14] | Huppert J. L., Balasubramanian S., Nucleic Acids Res., 2005, 33(9), 2908 |
| [15] | Chambers V. S., Marsico G., Boutell J. M., Di Antonio M., Smith G. P., Balasubramanian S., Nat. Biotechnol., 2015, 33(8), 877 |
| [16] | Rodriguez R., Miller K. M., Nat. Rev. Genet., 2014, 15(12), 783 |
| [17] | Wolfe A. L., Singh K., Zhong Y., Drewe P., Rajasekhar V. K., Sanghvi V. R., Mavrakis K. J., Jiang M., Roderick J. E., van der Meulen J., Schatz J. H., Rodrigo C. M., Zhao C., Rondou P., de Stanchina E., Teruya-Feldstein J., Kelliher M. A., Speleman F., Porco J. A., Pelletier J., Rätsch G., Wendel H. G., Nature, 2014, 513(7516), 65 |
| [18] | Takahashi S., Brazier J. A., Sugimoto N., Proc. Natl. Acad. Sci. USA, 2017, 114(36), 9605 |
| [19] | Leung K., Chakraborty K., Saminathan A., Krishnan Y., Nat. Nanotechnol., 2019, 14(2), 176 |
| [20] | Zhang F., Hong F., Yan H., Nat. Nanotechnol., 2016, 12(3), 189 |
| [21] | Song P., Li M., Shen J., Pei H., Chao J., Su S., Aldalbahi A., Wang L., Shi J., Song S., Wang L., Fan C., Zuo X., Anal. Chem., 2016, 88(16), 8043 |
| [22] | Mohammed A. M., Šulc P., Zenk J., Schulman R., Nat. Nanotechnol., 2016, 12(4), 312 |
| [23] | Veetil A. T., Chakraborty K., Xiao K., Minter M. R., Sisodia S. S., Krishnan Y., Nat. Nanotechnol., 2017, 12, 1183 |
| [24] | Praetorius F., Kick B., Behler K. L., Honemann M. N., Weuster-Botz D., Dietz H., Nature, 2017, 552(7683), 84 |
| [25] | Han D., Pal S., Nangreave J., Deng Z., Liu Y., Yan H., Science, 2011, 332(6027), 342 |
| [26] | Cassinelli V., Oberleitner B., Sobotta J., Nickels P., Grossi G., Kempter S., Frischmuth T., Liedl T., Manetto A., Angew. Chem., Int. Ed., 2015, 54(27), 7795 |
| [27] | Ponnuswamy N., Bastings M. M. C., Nathwani B., Ryu J. H., Chou L. Y. T., Vinther M., Li W. A., Anastassacos F. M., Mooney D. J., Shih W. M., Nat. Commun., 2017, 8, 15654 |
| [28] | Zaitseva M., Kaluzhny D., Shchyolkina A., Borisova O., Smirnov I., Pozmogova G., Biophys. Chem., 2010, 146(1), 1 |
| [29] | Kiviaho J. K., Linko V., Ora A., Tiainen T., Järvihaavisto E., Mikkilä J., Tenhu H., Nonappa, Kostiainen M. A., Nanoscale, 2016, 8(22), 11674 |
| [30] | Rosi N. L., Giljohann D. A., Thaxton C. S., Lytton-Jean A. K. R., Han M. S., Mirkin C. A., Science, 2006, 312(5776), 1027 |
| [31] | Li H., Zhang B., Lu X., Tan X., Jia F., Xiao Y., Cheng Z., Li Y., Silva D. O., Schrekker H. S., Zhang K., Mirkin C. A., Proc. Natl. Acad. Sci. USA, 2018, 115(17), 4340 |
| [32] | Daggumati P., Appelt S., Matharu Z., Marco M. L., Seker E., J. Am. Chem. Soc., 2016, 138(24), 7711 |
| [33] | Arroyo-Curras N., Somerson J., Vieira P. A., Ploense K. L., Kippin T. E., Plaxco K. W., Proc. Natl. Acad. Sci. USA, 2017, 114(4), 645 |
| [34] | Li H., Dauphin-Ducharme P., Arroyo-Currás N., Tran C. H., Vieira P. A., Li S., Shin C., Somerson J., Kippin T. E., Plaxco K. W., Angew. Chem., Int. Ed., 2017, 56(26), 7492 |
| [35] | Li H., Arroyo-Currás N., Kang D., Ricci F., Plaxco K. W., J. Am. Chem. Soc., 2016, 138(49), 15809 |
| [36] | Li H., Dauphin-Ducharme P., Ortega G., Plaxco K. W., J. Am. Chem. Soc., 2017, 139(32), 11207 |
| [37] | Ferguson B. S., Hoggarth D. A., Maliniak D., Ploense K., White R. J., Woodward N., Hsieh K., Bonham A. J., Eisenstein M., Kippin T. E., Plaxco K. W., Soh H. T., Sci. Transl. Med., 2013, 5(213), 213ra165 |
| [38] | Kawane K., Motani K., Nagata S., Cold Spring Harb Perspect Biol., 2014, 6(6), a016394 |
| [39] | Leong K. W., Mao H. Q., Truong-Le V. L., Roy K., Walsh S. M., August J. T., J. Controlled Release, 1998, 53(1), 183 |
| [40] | Yao W., Mei C., Nan X., Hui L., Gene, 2016, 590(1), 142 |
| [41] | Eun H. M., In Enzymology Primer for Recombinant DNA Technology, Academic Press, San Diego, 1996 |
| [42] | Conway J. W., McLaughlin C. K., Castor K. J., Sleiman H., Chem. Commun., 2013, 49(12), 1172 |
| [43] | Liu M., Yin Q., Chang Y., Zhang Q., Brennan J. D., Li Y., Angew. Chem., Int. Ed., 2019, 58(24), 8013 |
| [44] | Di Giusto D. A., King G. C., J. Biol. Chem., 2004, 279(45), 46483 |
| [45] | Ni S., Yao H., Wang L., Lu J., Jiang F., Lu A., Zhang G., Int. J. Mol. Sci., 2017, 18(8), 1683 |
| [46] | Turner J. J., Jones S. W., Moschos S. A., Lindsay M. A., Gait M. J., Molecular BioSystems, 2007, 3(1), 43 |
| [47] | Deleavey G. F., Watts J. K., Damha M. J., Curr. Protoc. Nucleic Acid Chem., 2009, 39(1), 16.3.1 |
| [48] | Dougan H., Lyster D. M., Vo C. V., Stafford A., Weitz J. I., Hobbs J. B., Nucl. Med. Biol., 2000, 27(3), 289 |
| [49] | Liu Q., Liu G., Wang T., Fu J., Li R., Song L., Wang Z. G., Ding B., Chen F., ChemPhysChem, 2017, 18(21), 2977 |
| [50] | Bratu D. P., Cha B. J., Mhlanga M. M., Kramer F. R., Tyagi S., Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13308 |
| [51] | Deleavey G. F., Damha M. J., Chem. Biol., 2012, 19(8), 937 |
| [52] | Watts J. K., Corey D. R., J. Pathol., 2012, 226(2), 365 |
| [53] | Liu Q., Ge Z., Mao X., Zhou G., Zuo X., Shen J., Shi J., Li J., Wang L., Chen X., Angew. Chem., Int. Ed., 2018, 57(24), 7131 |
| [54] | Sze J. Y. Y., Ivanov A. P., Cass A. E. G., Edel J. B., Nat. Commun., 2017, 8(1), 1552 |
| [55] | Valkama A. J., Leinonen H. M., Lipponen E. M., Turkki V., Malinen J., Heikura T., Ylä-Herttuala S., Lesch H. P., Gene Ther., 2017, 25(1), 39 |
| [56] | Tay C. Y., Yuan L., Leong D. T., ACS Nano, 2015, 9(5), 5609 |
| [57] | Zheng X., Peng R., Jiang X., Wang Y., Xu S., Ke G., Fu T., Liu Q., Huan S., Zhang X., Anal. Chem., 2017, 89(20), 10941 |
| [58] | Jiang D., Sun Y., Li J., Li Q., Lv M., Zhu B., Tian T., Cheng D., Xia J., Zhang L., Wang L., Huang Q., Shi J., Fan C., ACS Appl. Mater. Interfaces, 2016, 8(7), 4378 |
| [59] | Keum J. W., Bermudez H., Chem. Commun., 2009, (45), 7036 |
| [60] | Mo Y., Turner K. T., Szlufarska I., Nature, 2009, 457(7233), 1116 |
| [61] | Ding B., Deng Z., Yan H., Cabrini S., Zuckermann R. N., Bokor J., J. Am. Chem. Soc., 2010, 132(10), 3248 |
| [62] | Li Z., Liu M., Wang L., Nangreave J., Yan H., Liu Y., J. Am. Chem. Soc., 2010, 132(38), 13545 |
| [63] | Schreiber R., Kempter S., Holler S., Schüller V., Schiffels D., Simmel S. S., Nickels P. C., Liedl T., Small, 2011, 7(13), 1795 |
| [64] | Liu J., Geng Y., Pound E., Gyawali S., Ashton J. R., Hickey J., Woolley A. T., Harb J. N., ACS Nano, 2011, 5(3), 2240 |
| [65] | Jiang Z., Zhang S., Yang C., Kjems J., Huang Y., Besenbacher F., Dong M., Nano Res., 2015, 8(7), 2170 |
| [66] | Mei Q., Wei X., Su F., Liu Y., Youngbull C., Johnson R., Lindsay S., Yan H., Meldrum D., Nano Lett., 2011, 11(4), 1477 |
| [67] | Castro C. E., Kilchherr F., Kim D. N., Shiao E. L., Wauer T., Wortmann P., Bathe M., Dietz H., Nat. Methods, 2011, 8(3), 221 |
| [68] | Lanier L. A., Bermudez H., Curr. Opin. Chem. Eng., 2015, 7, 93 |
| [69] | Hamblin G. D., Carneiro K. M. M., Fakhoury J. F., Bujold K. E., Sleiman H. F., J. Am. Chem. Soc., 2012, 134(6), 2888 |
| [70] | Agarwal N. P., Matthies M., Gür F. N., Osada K., Schmidt T. L., Angew. Chem., Int. Ed., 2017, 56(20), 5460 |
| [71] | Cerda-Cristerna B. I., Flores H., Pozos-Guillén A., Pérez E., Sevrin C., Grandfils C., J. Controlled Release, 2011, 153(3), 269 |
| [72] | Fischer D., Li Y., Ahlemeyer B., Krieglstein J., Kissel T., Biomaterials, 2003, 24(7), 1121 |
| [73] | van Vlerken L. E., Vyas T. K., Amiji M. M., Pharm. Res., 2007, 24(8), 1405 |
| [74] | Jiang Q., Zhao S., Liu J., Song L., Wang Z.-G., Ding B., Adv. Drug Deliv. Rev., 2019, 147, 2 |
| [75] | Auvinen H., Zhang H., Nonappa, Kopilow A., Niemelä E. H., Nummelin S., Correia A., Santos H. A., Linko V., Kostiainen M. A., Adv. Healthcare Mater., 2017, 6(18), 1700692 |
| [76] | Alhasan A. H., Patel P. C., Choi C. H. J., Mirkin C. A., Small, 2014, 10(1), 186 |
| [77] | Prigodich A. E., Seferos D. S., Massich M. D., Giljohann D. A., Lane B. C., Mirkin C. A., ACS Nano, 2009, 3(8), 2147 |
| [78] | Halo T. L., McMahon K. M., Angeloni N. L., Xu Y., Wang W., Chinen A. B., Malin D., Strekalova E., Cryns V. L., Cheng C., Mirkin C. A., Thaxton C. S., Proc. Natl. Acad. Sci. USA, 2014, 111(48), 17104 |
| [79] | Deng M., Li M., Li F., Mao X., Li Q., Shen J., Fan C., Zuo X., ACS Mater. Lett., 2019, 1, 671 |
| [80] | Seferos D. S., Prigodich A. E., Giljohann D. A., Patel P. C., Mirkin C. A., Nano Lett., 2009, 9(1), 308 |
| [81] | Cutler J. I., Auyeung E., Mirkin C. A., J. Am. Chem. Soc., 2012, 134(3), 1376 |
| [82] | Perrault S. D., Shih W. M., ACS Nano, 2014, 8(5), 5132 |
| [83] | Barnaby S. N., Perelman G. A., Kohlstedt K. L., Chinen A. B., Schatz G. C., Mirkin C. A., Bioconjugate Chem., 2016, 27(9), 2124 |
| [84] | Mage P. L., Ferguson B. S., Maliniak D., Ploense K. L., Kippin T. E., Soh H. T., Nat. Biomed. Eng., 2017, 1(5), 0070 |
| [85] | Tavallaie R., McCarroll J., Le Grand M., Ariotti N., Schuhmann W., Bakker E., Tilley R. D., Hibbert D. B., Kavallaris M., Gooding J. J., Nat. Nanotechnol., 2018, 13(11), 1066 |
| [86] | Lin M., Song P., Zhou G., Zuo X., Aldalbahi A., Lou X., Shi J., Fan C., Nat. Protoc., 2016, 11(7), 1244 |
| [87] | Lin M., Wen Y., Li L., Pei H., Liu G., Song H., Zuo X., Fan C., Huang Q., Anal. Chem., 2014, 86(5), 2285 |
| [88] | Wen Y., Pei H., Wan Y., Su Y., Huang Q., Song S., Fan C., Anal. Chem., 2011, 83(19), 7418 |
| [89] | Li H., Arroyo-Currás N., Kang D., Ricci F., Plaxco K. W., J. Am. Chem. Soc., 2016, 138(49), 15809 |
| [90] | Ge Z., Lin M., Wang P., Pei H., Yan J., Shi J., Huang Q., He D., Fan C., Zuo X., Anal. Chem., 2014, 86(4), 2124 |
| [91] | Liu Q., Ge Z., Mao X., Zhou G., Zuo X., Shen J., Shi J., Li J., Wang L., Chen X., Fan C., Angew. Chem., Int. Ed., 2018, 57(24), 7131 |
| [92] | Choi H. M. T., Chang J. Y., Trinh L. A., Padilla J. E., Fraser S. E., Pierce N. A., Nat. Biotechnol., 2010, 28(11), 1208 |
| [93] | Zhang D. Y., Turberfield A. J., Yurke B., Winfree E., Science, 2007, 318(5853), 1121 |
| [1] | BI Shuai, MENG Fancheng, ZHANG Zixing, WU Dongqing, ZHANG Fan. Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs[J]. 高等学校化学研究, 2022, 38(2): 382-395. |
| [2] | YE Peng, LIU Yongchao, MA Jian, WANG Yueda, FENG Xuyong, XIANG Hongfa, SUN Yi, LIANG Xin, YU Yan. Enhanced Electrochemical Performance of Na0.67Fe0.5Mn0.5O2Cathode with SnO2 Modification[J]. 高等学校化学研究, 2021, 37(5): 1130-1136. |
| [3] | CAO Wenhao, WANG Caifeng, WANG Shuai, ZHANG Yang, ZHAO Ruisheng. Preparation of Photoresponsive PAN-NH2@EPESP Fiber Films with Mechanical Stability for Regulating Wettability and Micro-environment Humidity[J]. 高等学校化学研究, 2021, 37(3): 512-521. |
| [4] | WANG Huanfeng, LI Jingjing, LI Fei, GUAN Dehui, WANG Xiaoxue, SU Wenhua, XU Jijing. Strategies with Functional Materials in Tackling Instability Challenges of Non-aqueous Lithium-Oxygen Batteries[J]. 高等学校化学研究, 2021, 37(2): 232-245. |
| [5] | LIN Qingjin, LIN Chenlu, LIU Jingying, LIU Shuang, XU Haidi, CHEN Yaoqiang, DAN Yi. Optimization of Hybrid Crystal with SAPO-5/34 on Hydrothermal Stability for deNOx Reaction by NH3[J]. 高等学校化学研究, 2020, 36(6): 1249-1254. |
| [6] | QU Huiqi, PAN Longhai, SUN Yuexin, WANG Lei, LI Yanyan, ZHANG Mingjuan, ZHANG Zhaoxiang, LIN Haifeng. Supramolecular Assemblies of Three New Metronidazole Derivatives Constructed with Various Dihydroxy-benzoic Acids via Hydrogen Bonds[J]. 高等学校化学研究, 2020, 36(6): 1196-1202. |
| [7] | CHEN Chaoxian, ZHAO Chenyang, LI Cuihua, LIU Jianhong, GUI Dayong. Porous NiCo2O4 Nanowire Arrays as Supercapacitor Electrode Materials with Extremely High Cycling Stability[J]. 高等学校化学研究, 2020, 36(4): 715-720. |
| [8] | PAN Tingting, YANG Kaijie, HAN Yu. Recent Progress of Atmospheric Water Harvesting Using Metal-Organic Frameworks[J]. 高等学校化学研究, 2020, 36(1): 33-40. |
| [9] | ZHU Xiaobo, Tobias Schulli, WANG Lianzhou. Stabilizing High-voltage Cathode Materials for Next-generation Li-ion Batteries[J]. 高等学校化学研究, 2020, 36(1): 24-32. |
| [10] | ZHANG Yurong, GE Xiaoguang, ZHAO Chengji, NA Hui. Comb-shaped 2-Methylimidazolium Poly(arylene ether sulfone) Anion Exchange Membranes with High Alkaline Stability[J]. 高等学校化学研究, 2019, 35(1): 150-156. |
| [11] | LI Kai, HE Kunhuan, LI Quanwen, XIA Bin, WANG Qinglun, ZHANG Yinghui. Crystal Structure and Photoluminescence Properties of Two Barium(Ⅱ) MOFs[J]. 高等学校化学研究, 2018, 34(5): 700-704. |
| [12] | WANG Mingqian, WANG Boning, LI Weiqi, ZHOU Xin, YANG Li, TIAN Weiquan. Electronic and Spectroscopic Properties of La2@C112 Isomers[J]. 高等学校化学研究, 2018, 34(2): 241-246. |
| [13] | FU Xianwei, LIU Yang, LIU Zhi, DONG Ning, ZHAO Tianyu, ZHAO Dan, LIAN Gang, WANG Qilong, CUI Deliang. Pressure-sensitive Transistor Fabricated from an OrganicSemiconductor 1,1'-Dibutyl-4,4'-bipyridinium Diiodide[J]. 高等学校化学研究, 2018, 34(1): 95-100. |
| [14] | XU Zhiling, LIAN Xiaowei, LI Mengjie, ZHANG Xiaodong, WANG Yi, TAO Zhu, ZHANG Qianjun. Effects of Inclusion of Chrysin in Cucurbit[8]uril on Its Stability, Solubility and Antioxidant Potential[J]. 高等学校化学研究, 2017, 33(5): 736-741. |
| [15] | XU Zheng, CHEN Ying, QIU Youli, GU Wenwen, LI Yu. Prediction of Stability for Polychlorinated Biphenyls in Transformer Insulation Oil Through Three-dimensional Quantitative Structure-activity Relationship Pharmacophore Model and Full Factor Experimental Design[J]. 高等学校化学研究, 2016, 32(3): 348-356. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||