高等学校化学研究 ›› 2021, Vol. 37 ›› Issue (6): 1176-1194.doi: 10.1007/s40242-021-1343-8
LI Xiaodan, GUO Mengyu, CHEN Chunying
收稿日期:
2021-08-31
修回日期:
2021-09-21
出版日期:
2021-11-23
发布日期:
2021-11-23
通讯作者:
CHEN Chunying
E-mail:chenchy@nanoctr.cn
基金资助:
LI Xiaodan, GUO Mengyu, CHEN Chunying
Received:
2021-08-31
Revised:
2021-09-21
Online:
2021-11-23
Published:
2021-11-23
Contact:
CHEN Chunying
E-mail:chenchy@nanoctr.cn
Supported by:
摘要: Graphdiyne(GDY) is a kind of two-dimensional carbon nanomaterial with specific configurations of sp and sp2 carbon atoms. The key progress in the preparation and application of GDY is bringing carbon materials to a brand-new level. Here, the various properties and structures of GDY are introduced, including the existing strategies for the preparation and modification of GDY. In particular, GDY has gradually emerged in the field of life sciences with its unique properties and performance, therefore, the development of biomedical applications of GDY is further summarized. Finally, the challenges of GDY toward future biomedical applications are discussed.
LI Xiaodan, GUO Mengyu, CHEN Chunying. Graphdiyne: from Preparation to Biomedical Applications[J]. 高等学校化学研究, 2021, 37(6): 1176-1194.
LI Xiaodan, GUO Mengyu, CHEN Chunying. Graphdiyne: from Preparation to Biomedical Applications[J]. Chemical Research in Chinese Universities, 2021, 37(6): 1176-1194.
[1] Heimann R., Evsvukov S. E., Koga Y., Carbon, 1997, 35, 1654 [2] Enyashin A. N., Ivanovskii A. L., Physica Status Solidi(b), 2011, 248, 1879 [3] Kroto H. W., Heath J. R., O'Brien S. C., Curl R. F., Smalley R. E., Nature, 1985, 318, 162 [4] Lijima S., Nature, 1991, 354, 56 [5] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666 [6] Bonaccorso F., Sun Z., Hasan T., Ferrari A. C., Nature Photonics, 2010, 4, 611 [7] Zhang Y., Tang T., Girit C., Hao Z., Martin M. C., Zettl A., Crommie M. F., Shen Y. R., Wang F., Nature, 2009, 459, 820 [8] Zhou S., Gweon G. H., Fedorov A. V., First P. N., De Heer W. A., Lee D. H., Guinea F., Castro Neto A. H., Lanzara A., Nature Materials, 2007, 6, 770 [9] Baughman R. H., Eckhardt H., Kertesz M., The Journal of Chemical Physics, 1987, 87, 6687 [10] Haley M. M., Brand S. C., Pak J. J., Angewandte Chemie International Edition, 1997, 36, 836 [11] Long M., Tang L., Wang D., Li Y., Shuai Z., ACS Nano, 2011, 5, 2593 [12] Li G., Li Y., Liu H., Guo Y., Li Y., Zhu D., Chemical Communications, 2010, 46, 3256 [13] Liu J., Chen C., Zhao Y., Advanced Materials, 2019, 31, e1804386 [14] Gao X., Liu H., Wang D., Zhang J., Chemical Society Reviews, 2019, 48, 908 [15] Cranford S. W., Brommer D. B., Buehler M. J., Nanoscale, 2012, 4, 7797 [16] Chen J., Xi J., Wang D., Shuai Z., The Journal of Chemical Physics, 2013, 4, 1443 [17] Kim B. G., Choi H. J., Physical Review B, 2012, 86, 115435 [18] Bai H., Zhu Y., Qiao W., Huang Y., RSC Advances, 2011, 1, 768 [19] Zhang Y. Y., Pei Q. X., Wang C. M., Applied Physics Letters, 2012, 101, 081909 [20] Shao T., Wen B., Melnik R., Yao S., Kawazoe Y., Tian Y., The Journal of Chemical Physics, 2012, 137, 194901 [21] Koo J., Huang B., Lee H., Kim G., Nam J., Kwon Y., Lee H., The Journal of Physical Chemistry C, 2014, 118, 2463 [22] Zheng Y. P., Feng Q., Tang N. J., Du Y. W., New Carbon Materials, 2018, 33, 516 [23] Chen Y., Liu H., Li Y., Chinese Science Bulletin, 2016, 61, 2901 [24] Luo G., Qian X., Liu H., Qin R., Zhou J., Li L., Gao Z., Wang E., Mei W. N., Lu J., Li Y., Nagase S., Physical Review B, 2011, 84, 075439 [25] Zheng Q., Luo G., Liu Q., Quhe R., Zheng J., Tang K., Gao Z., Nagase S., Lu J., Nanoscale, 2012, 4, 3990 [26] Luo G., Zheng Q., Mei W. N., Lu J., Nagase S., The Journal of Physical Chemistry C, 2013, 117, 13072 [27] Ge C., Chen J., Tang S., Du Y., Tang N., ACS Applied Materials & Interfaces, 2019, 11, 2707 [28] Sun T., Gao F. Y., Tang X. L., Yi H. H., Yu Q. J., Zhao S. Z., Xie X. Z., New Carbon Materials, 2021, 36, 304 [29] Coluci V. R., Braga S. F., Legoas S. B., Galvão D. S., Baughman R. H., MRS Online Proceedings Library, 2003, 739, 56 [30] Kong Y., Li J., Zeng S., Yin C., Tong L., Zhang J., Chem, 2020, 6, 1933 [31] Tahara K., Yoshimura T., Sonoda M., Tobe Y., Williams R. V., The Journal of Organic Chemistry, 2007, 72, 1437 [32] Gaab K. M., Thompson A. L., Xu J., Martínez T. J., Bardeen C. J., Journal of the American Chemical Society, 2003, 125, 9288 [33] Clair S., De Oteyza D. G., Chemical Reviews, 2019, 119, 4717 [34] Zhang Y. Q., Kepčija N., Kleinschrodt M., Diller K., Fischer S., Papageorgiou A. C., Allegretti F., Björk J., Klyatskaya S., Klappenberger F., Ruben M., Barth J. V., Nature Communications, 2012, 3, 1286 [35] Zuo Z., Shang H., Chen Y., Li J., Liu H., Li Y., Li Y., Chemical Communications, 2017, 53, 8074 [36] Qian X., Liu H., Huang C., Chen S., Zhang L., Li Y., Wang J., Li Y., Scientific Reports, 2015, 5, 7756 [37] Gao X., Zhu Y., Yi D., Zhou J., Zhang S., Yin C., Ding F., Zhang S., Yi X., Wang J., Tong L., Han Y., Liu Z., Zhang J., Science Advances, 2018, 4, eaat6378 [38] Gao X., Li J., Du R., Zhou J., Huang M. Y., Liu R., Li J., Xie Z., Wu L. Z., Liu Z., Zhang J., Advanced Materials, 2017, 29, 1605308 [39] Zhou J., Gao X., Liu R., Xie Z., Yang J., Zhang S., Zhang G., Liu H., Li Y., Zhang J., Liu Z., Journal of the American Chemical Society, 2015, 137, 7596 [40] Yu H., Xue Y., Li Y., Advanced Materials, 2019, 31, 1803101 [41] Zhou J., Xie Z., Liu R., Gao X., Li J., Xiong Y., Tong L., Zhang J., Liu Z., ACS Applied Materials & Interfaces, 2019, 11, 2632 [42] Wu J., Liang J., Zhang Y., Zhao X., Yuan C., Chemical Communications, 2021, 57, 5036 [43] Zhao F., Wang N., Zhang M., Sápi A., Yu J., Li X., Cui W., Yang Z., Huang C., Chemical Communications, 2018, 54, 6004 [44] Matsuoka R., Sakamoto R., Hoshiko K., Sasaki S., Masunaga H., Nagashio K., Nishihara H., Journal of the American Chemical Society, 2017, 139, 3145 [45] Yin C., Li J., Li T., Yu Y., Kong Y., Gao P., Peng H., Tong L., Zhang J., Advanced Functional Materials, 2020, 30, 2001396 [46] Yan H., Yu P., Han G., Zhang Q., Gu L., Yi Y., Liu H., Li Y., Mao L., Angewandte Chemie International Edition, 2019, 58, 746 [47] Mirnezhad M., Ansari R., Rouhi H., Seifi M., Faghihnasiri M., Solid State Communications, 2012, 152, 1885 [48] Tan J., He X., Zhao M., Diamond and Related Materials, 2012, 29, 42 [49] Autreto P. A. S., De Sousa J. M., Galvao D. S., Carbon, 2014, 77, 829 [50] Li Y., Li Y., Acta Physico-Chimica Sinica, 2018, 34, 992 [51] Zhang P., Ma S., Sun L. Z., Applied Surface Science, 2016, 361, 206 [52] Mohajeri A., Shahsavar A., Computational Materials Science, 2016, 115, 51 [53] Mohajeri A., Shahsavar A., Journal of Materials Science, 2017, 52, 5366 [54] Wang C., Yu P., Guo S., Mao L., Liu H., Li Y., Chemical Communications, 2016, 52, 5629 [55] Li J., Chen Y., Guo J., Wang F., Liu H., Li Y., Advanced Functional Mate-rials, 2020, 30, 2004115 [56] Huang C., Li Y., Wang N., Xue Y., Zuo Z., Liu H., Li Y., Chemical Reviews, 2018, 118, 7744 [57] Yan H., Guo S., Wu F., Yu P., Liu H., Li Y., Mao L., Angewandte Chemie International Edition, 2018, 57, 3922 [58] Jiang W., Zhang Z., Wang Q., Dou J., Zhao Y., Ma Y., Liu H., Xu H., Wang Y., Nano Letters, 2019, 19, 4060 [59] Zheng T., Gao Y., Deng X., Liu H., Liu J., Liu R., Shao J., Li Y., Jia L., ACS Applied Materials & Interfaces, 2018, 10, 32946 [60] Koo J., Hwang H. J., Huang B., Lee H., Lee H., Park M., Kwon Y., Wei S. H., Lee H., The Journal of Physical Chemistry C, 2013, 117, 11960 [61] He J., Wang N., Yang Z., Shen X., Wang K., Huang C., Yi Y., Tu Z., Li Y., Energy & Environmental Science, 2018, 11, 2893 [62] Kim S., Lee J. Y., Journal of Colloid and Interface Science, 2017, 493, 123 [63] Kong X., Chen Q., Sun Z., RSC Advances, 2013, 3, 4074 [64] Lu R., Rao D., Meng Z., Zhang X., Xu G., Liu Y., Kan E., Xiao C., Deng K., Physical Chemistry Chemical Physics, 2013, 15, 16120 [65] Bu H., Zhao M., Zhang H., Wang X., Xi Y., Wang Z., Journal of Physical Chemistry A, 2012, 116, 3934 [66] Zhang S., Cai Y., He H., Zhang Y., Liu R., Cao H., Wang M., Liu J., Zhang G., Li Y., Liu H., Li B., Journal of Materials Chemistry A, 2016, 4, 4738 [67] Li J., Zhang Z., Kong Y., Yao B., Yin C., Tong L., Chen X., Lu T., Zhang J., Chem, 2021, 7, 1284 [68] Zou L., Zhu Y., Cen W., Jiang X., Chu W., Applied Surface Science, 2021, 557, 149815 [69] Liu Q., Cheng L., Liu G., Membranes, 2020, 10, 286 [70] Kang B., Shi H., Wang F. F., Lee J. Y., Carbon, 2016, 105, 156 [71] Bhattacharya B., Singh N. B., Sarkar U., International Journal of Quantum Chemistry, 2015, 115, 820 [72] Wang N., He J., Tu Z., Yang Z., Zhao F., Li X., Huang C., Wang K., Jiu T., Yi Y., Li Y., Angewandte Chemie International Edition, 2017, 56, 10740 [73] Li J., Slassi A., Han X., Cornil D., HaThi M. H., Pino T., Debecker D. P., Colbeau Justin C., Arbiol J., Cornil J., Ghazzal M. N., Advanced Functional Materials, 2021, 31, 2170210 [74] Lin Z. Z., Carbon, 2015, 86, 301 [75] Ma D. W., Li T., Wang Q., Yang G., He C., Ma B., Lu Z., Carbon, 2015, 95, 756 [76] Li J., Gao X., Jiang X., Li X. B., Liu Z., Zhang J., Tung C. H., Wu L. Z., ACS Catalysis, 2017, 7, 5209 [77] Mashhadzadeh A. H., Vahedi A. M., Ardjmand M., Ahangari M. G., Superlattices and Microstructures, 2016, 100, 1094 [78] Lin Z., Wei Q., Zhu X., Carbon, 2014, 66, 504 [79] He J., Zhou P., Jiao N., Ma S. Y., Zhang K. W., Wang R. Z., Sun L. Z., Scientific Reports, 2014, 4, 4014 [80] Pan C., Wang C., Fang Y., Zhu Y., Deng H., Guo Y., Environmental Science:Nano, 2021, 8, 1863 [81] Fang Y., Xue Y., Hui L., Yu H., Li Y., Angewandte Chemie International Edition, 2021, 60, 3170 [82] Chen Y., Li J., Wang F., Guo J., Jiu T., Liu H., Li Y., Nano Energy, 2019, 64, 103932 [83] Zhang Y., Xie Q., Xia Z., Gui G., Deng F., Journal of Electroanalytical Chemistry, 2020, 863, 114058 [84] Wu L., Gao J., Lu X., Huang C., Dhanjai, Chen J., Carbon, 2020, 156, 568 [85] Li J., Wan C., Wang C., Zhang H., Chen X., Chemical Research Chinese Universities, 2020, 36(4), 622 [86] Xiao J., Liu Z., Li C., Wang J., Huang H., Yi Q., Deng K., Li X., Analytical and Bioanalytical Chemistry, 2021, 413, 3847 [87] Chang F., Huang L., Guo C., Xie G., Li J., Diao Q., ACS Applied Materials & Interfaces, 2019, 11, 35622 [88] Gaggelli E., Kozlowski H., Valensin D., Valensin G., Chemical Review, 2006, 106, 1995 [89] Li X., Li Y., Zhang J., Meng Y., Yu X., Wang X., Hun X., Sensors and Actuators B:Chemical, 2019, 297, 126808 [90] Dave V. P., Ngo T. A., Pernestig A. K., Tilevik D., Kant K., Nguyen T., Wolff A., Bang D. D., Laboratory Investigation, 2019, 99, 452 [91] Chen X., Gao P., Guo L., Zhang S., Scientific Reports, 2015, 5, 16720 [92] Chang F., International Journal of Electrochemical Science, 2017, 10348 [93] Zhuang X., Mao L., Li Y., Electrochemistry Communications, 2017, 83, 96 [94] Liu J., Shen X., Baimanov D., Wang L., Xiao Y., Liu H., Li Y., Gao X., Zhao Y., Chen C., ACS Applied Materials & Interfaces, 2019, 11, 2647 [95] Lin L., Liu Y., Zhao X., Li J., Analytical Chemistry, 2011, 83, 8396 [96] Ding J., Qiao Z., Feng W., Yao Y., Niu Q., Physical Review B, 2011, 84, 195444 [97] Li K., Li Y., Tang H., Jiao M., Wang Y., Wu Z., RSC Advances, 2015, 5, 16394 [98] Chen S., Yuan R., Chai Y., Hu F., Microchimica Acta, 2013, 180, 15 [99] Chen W., Cai S., Ren Q. Q., Wen W., Zhao Y. D., Analyst, 2012, 137, 49 [100] Ge C., Li J., Wang D., Lv K., Liu Q., Shen Y., Zhuang X., Luo W., Wu Z., Zhang Y., Shi L., Liu L., Bao S., Zhang H., RSC Advances, 2021, 11, 5320 [101] Bandara C. D., Singh S., Afara I. O., Wolff A., Tesfamichael T., Ostrikov K., Oloyede A., ACS Applied Materials & Interfaces, 2017, 9, 6746 [102] Lu X., Feng X., Werber J. R., Chu C., Zucker I., Kim J. H., Osuji C. O., Elimelech M., Proceedings of the National Academy of Sciences of the united states of America, 2017, 114, E9793 [103] Linklater D. P., De Volder M., Baulin V. A., Werner M., Jessl S., Golozar M., Maggini L., Rubanov S., Hanssen E., Juodkazis S., Ivanova E. P., ACS Nano, 2018, 12, 6657 [104] Zhu W., von demBussche A., Yi X., Qiu Y., Wang Z., Weston P., Hurt R. H., Kane A. B., Gao H., Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12374 [105] Chen J., Zhou G., Chen L., Wang Y., Wang X. G., Zeng S.W., Journal of Physical Chemistry C, 2016, 120, 6231 [106] Xin Q., Liu Q., Geng L., Fang Q., Gong J., Advanced Healthcare Materials, 2017, 6 [107] Zhu Z., Bai Q., Li S., Li S., Liu M., Du F., Sui N., Yu W., Small, 2020, 16, e2001440 [108] Wu J., Wang X., Wang Q., Lou Z., Li S., Zhu Y., Qin L., Wei H., Chemical Society Reviews, 2019, 48, 1004 [109] Dugan L. L., Turetsky D. M., Du C., Lobner D., Wheeler M., Almli C. R., Shen C. K. F., Luh T. Y., Choi D. W., Lin T., Proceedings of the National Academy of Sciences, 1997, 94, 9434 [110] Gao L., Yan X., Science China Life Sciences, 2016, 59, 400 [111] Wang L., Gao F., Wang A., Chen X., Li H., Zhang X., Zheng H., Ji R., Li B., Yu X., Liu J., Gu Z., Chen F., Chen C., Advanced Materials, 2020, 32, 2005423 [112] Wang L., Zhang X., Yu X., Gao F., Shen Z., Zhang X., Ge S., Liu J., Gu Z., Chen C., Advanced Materials, 2019, 31, 1901965 [113] Zhou X., You M., Wang F., Wang Z., Gao X., Jing C., Liu J., Guo M., Li J., Luo A., Liu H., Liu Z., Chen C., Advanced Materials, 2021, 33, e2100556 [114] Ali A., Liu J., Zhou H., Liu T., Ovais M., Liu H., Rui Y., Chen C., Materials Chemistry Frontiers, 2021, 5, 6041 [115] Wilson W. R., Hay M. P., Nature Reviews Cancer, 2011, 11, 393 [116] Liu J., Wang L., Shen X., Gao X., Chen Y., Liu H., Liu Y., Yin D., Liu Y., Xu W., Cai R., You M., Guo M., Wang Y., Li J., Li Y., Chen C., Nano Today, 2020, 34, 100907 [117] Zhi D., Yang T., O'Hagan J., Zhang S., Donnelly R. F., Journal of Control Release, 2020, 325, 52 [118] Li S., Chen Y., Liu H., Wang Y., Liu L., Lv F., Li Y., Wang S., Chemistry of Materials, 2017, 29, 6087 [119] Hessel C. M., Pattani V. P., Rasch M., Panthani M. G., Koo B., Tunnell J. W., Korgel B. A., Nano Letters, 2011, 11, 2560 [120] Sun Z., Xie H., Tang S., Yu X. F., Guo Z., Shao J., Zhang H., Huang H., Wang H., Chu P. K., Angewandte Chemie International Edition, 2015, 54, 11526 [121] Min H., Qi Y., Zhang Y., Han X., Cheng K., Liu Y., Liu H., Hu J., Nie G., Li Y., Advanced Materials, 2020, 32, 2000038 [122] Bechet D., Couleaud P., Frochot C., Viriot M. L., Guillemin F., BarberiHeyob M., Trends in Biotechnology, 2008, 26, 612 [123] Yi G., Hong S. H., Son J., Yoo J., Park C., Choi Y., Koo H., Quantative Imaging in Medicine and Surgery, 2018, 8, 433 [124] Fusco L., Gazzi A., Peng G., Shin Y., Vranic S., Bedognetti D., Vitale F., Yilmazer A., Feng X., Fadeel B., Casiraghi C., Delogu L. G., Theranostics, 2020, 10, 5435 [125] Zanganeh S., Hutter G., Spitler R., Lenkov O., Mahmoudi M., Shaw A., Pajarinen J. S., Nejadnik H., Goodman S., Moseley M., Coussens L. M., Daldrup Link H. E., Nature Nanotechnology, 2016, 11, 986 [126] Guo M., Zhao L., Liu J., Wang X., Yao H., Chang X., Liu Y., Liu J., You M., Ren J., Wang F., Wang L., Wang Y., Liu H., Li Y., Zhao Y., Cai R., Chen C., Nano Letters, 2021, 21, 6005 [127] Xie J., Wang N., Dong X., Wang C., Du Z., Mei L., Yong Y., Huang C., Li Y., Gu Z., Zhao Y., ACS Applied Materials & Interfaces, 2019, 11, 2579 [128] Xie J., Wang C., Wang N., Zhu S., Mei L., Zhang X., Yong Y., Li L., Chen C., Huang C., Gu Z., Li Y., Zhao Y., Biomaterials, 2020, 244, 119940 [129] Yuan J., Liu G., Wang Z., Fu S., Ge X., Man Z., Han K., Zhang F., Xing F., Xu X., Journal of Materials Science, 2021, 56, 3653 [130] Wei H., Shi R., Sun L., Yu H., Gong J., Liu C., Xu Z., Ni Y., Xu J., Xu W., Nature Portfolio, 2020DOI:10.21203/rs.3.rs-53329/v1 [131] Wei H., Shi R., Sun L., Yu H., Gong J., Liu C., Xu Z., Ni Y., Xu J., Xu W., Nature Communications, 2021, 12, 1068 [132] Li Y., Li X., Meng Y., Hun X., Biosensors and Bioelectronics, 2019, 130, 269 [133] Park S., Boo H., Chung T. D., Analytica Chimica Acta, 2006, 556, 46 [134] Alberti K. G., Zimmet P. Z., Diabet Medicine, 1998, 15, 539 [135] Wei H., Wang E., Analytical Chemistry, 2008, 80, 2250 [136] Li Y., Zhang M., Hu X., Yu L., Fan X., Huang C., Li Y., Nano Today, 2021, 39, 101214 [137] Xiao W., Kang H., Lin Y., Liang M., Li J., Huang F., Feng Q., Zheng Y., Huang Z., RSC Advances, 2019, 9, 18377 [138] Min H., Qi Y., Chen Y., Zhang Y., Han X., Xu Y., Liu Y., Hu J., Liu H., Li Y., Nie G., ACS Applied Materials & Interfaces, 2019, 11, 32798 [139] Zhang D., Liu D., Li M., Yang Y., Wang Y., Yin H., Liu J., Jia B., Wu X., Analytica Chimica Acta, 2018, 1033, 180 [140] Guo J., Guo M., Wang F., Jin W., Chen C., Liu H., Li Y., Angewandte Chemie International Editor, 2020, 59, 16712 [141] MejíasCarpio I. E., Santos C. M., Wei X., Rodrigues D. F., Nanoscale, 2012, 4, 4746 [142] Luan B., Huynh T., Zhou R., The Journal of Physical Chemistry B, 2016, 120, 2124 [143] Rowlett V. W., Mallampalli V., Karlstaedt A., Dowhan W., Taegtmeyer H., Margolin W., Vitrac H., Journal of Bacteriology, 2017, 199, https://doi.org/10.1128/JB.00849-16 [144] Gu Z., Yang Z., Luan B., Zhou X., Hong L., Zhou H., Luo J., Zhou R., The Journal of Physical Chemistry C, 2017, 121, 2444 [145] Liu Y., Zhao Y., Sun B., Chen C., Accounts of Chemical Research, 2013, 46, 702 [146] Smith S. C., Rodrigues D. F., Carbon, 2015, 91, 122 [147] Wang R., Shi M., Xu F., Qiu Y., Zhang P., Shen K., Zhao Q., Yu J., Zhang Y., Nature Communications, 2020, 11, 4465 [148] Ma W., Xue Y., Guo S., Jiang Y., Wu F., Yu P., Mao L., Chemical Communications, 2020, 56, 5115 [149] Li Y., Zuo Z., Li Y., Handbook of Carbon-Based Nanomaterials, Elsevier Press, Amsterdam, 2021 [150] Jia Z., Li Y., Zuo Z., Liu H., Huang C., Li Y., Accounts of Chemical Research, 2017, 50, 2470 [151] Xue Y., Huang B., Yi Y., Guo Y., Zuo Z., Li Y., Jia Z., Liu H., Li Y., Nature Communications, 2018, 9, 1460 [152] Malko D., Neiss C., Viñes F., Görling A., Physical Review Letters, 2012, 108, 086804 [153] Lv J. X., Zhang Z. M., Wang J., Lu X. L., Zhang W., Lu T. B., ACS Applied Materials & Interfaces, 2019, 11, 2655 [154] Yu H., Xue Y., Hui L., Zhang C., Li Y., Zuo Z., Zhao Y., Li Z., Li Y., Advanced Materials, 2018, 30, e1707082 [155] Covacci A., Telford J., Del Giudice G., Parsonnet J., Rappuoli R., Science, 1999, 284, 1328 [156] Peng G., Duan T., Guo M., Xue Y., Chen C., Li Y., Leifer K., Fadeel B., Nanoscale, 2021, 13, 13072 [157] Vaughan H. J., Green J. J., Tzeng S. Y., Advanced Materials, 2020, 32, 1901081 [158] Wang Y., Xie Y., Luo J., Guo M., Hu X., Chen X., Chen Z., Lu X., Mao L., Zhang K., Wei L., Ma Y., Wang R., Zhou J., He C., Zhang Y., Zhang Y., Chen S., Shen L., Chen Y., Qiu N., Liu Y., Cui Y., Liao G., Liu Y., Chen C., Nano Today, 2021, 38, 101139 [159] Xu L., Xiang J., Liu Y., Xu J., Luo Y., Feng L., Liu Z., Peng R., Nanoscale, 2016, 8, 3785 [160] Cao W., He L., Cao W., Huang X., Jia K., Dai J., Acta Biomaterialia, 2020, 112, 14 [161] Zhou Q., Gu H., Sun S., Zhang Y., Hou Y., Li C., Zhao Y., Ma P., Lv L., Aji S., Sun S., Wang X., Zhan L., Advanced Materials, 2021, 2102528 [162] Wang Y., Cai R., Chen C., Accounts of Chemical Research, 2019, 52, 1507 [163] Zhang L., Wang X., RSC Advances, 2015, 5, 11776 |
[1] | TU Tingting, HUAN Shuangyan, KE Guoliang, ZHANG Xiaobing. Functional Xeno Nucleic Acids for Biomedical Application[J]. 高等学校化学研究, 2022, 38(4): 912-918. |
[2] | LIAN Xiaodong, SONG Chenhao and WANG Yapei. Regulating the Oil-Water Interface to Construct Double Emulsions: Current Understanding and Their Biomedical Applications[J]. 高等学校化学研究, 2022, 38(3): 698-715. |
[3] | HOU Wenhui, OU Yu and LIU Kai. Progress on High Voltage PEO-based Polymer Solid Electrolytes in Lithium Batteries[J]. 高等学校化学研究, 2022, 38(3): 735-743. |
[4] | QIN Xudong, TANG Xiaohui, MA Yu, XU Hong, XU Qing, YANG Weiting, GU Cheng. Decorating Covalent Organic Frameworks with High-density Chelate Groups for Uranium Extraction[J]. 高等学校化学研究, 2022, 38(2): 433-439. |
[5] | XIAO Jiapeng, ZHANG Wenhui, ZHANG Shujing, LI Yu. Molecular Modification of Benzophenone Derivatives for Lower Bioenrichment and Toxicity Through the Pharmacophore Model[J]. 高等学校化学研究, 2022, 38(2): 535-545. |
[6] | WONG Hon Ho, SUN Mingzi, HUANG Bolong. Synergistic Effect of Graphdiyne-based Electrocatalysts[J]. 高等学校化学研究, 2021, 37(6): 1242-1256. |
[7] | FU Xinliang, ZHU Aonan, CHEN Xiaojie, ZHANG Shifu, WANG Mei, YUAN Mingjian. Stabilization of Cu/Ni Alloy Nanoparticles with Graphdiyne Enabling Efficient CO2 Reduction[J]. 高等学校化学研究, 2021, 37(6): 1328-1333. |
[8] | ZHANG Mengqian, HE Peiyang, LI Yanmei. Contemporary Approaches to α,β-Dehydroamino Acid Chemical Modifications[J]. 高等学校化学研究, 2021, 37(5): 1044-1054. |
[9] | ZHANG Shujing, XIAO Jiapeng, CHEN Xinyi, LI Yu. Insulation and Flame Retardancy Improvement of PBDEs Using 3D-QSAR Model Combined with a Fuzzy Membership Function Method[J]. 高等学校化学研究, 2021, 37(3): 729-738. |
[10] | CHEN Zhijun, HAO Ming, QIAN Xiaoming, CHEN Wenyang, ZENG Ming, HUANG Juan, LI Ruixin, FAN Jintu, LIU Yanbo. Characterization on Modification and Biocompatibility of PCL Scaffold Prepared with Near-field Direct-writing Melt Electrospinning[J]. 高等学校化学研究, 2021, 37(3): 578-583. |
[11] | WU Ying, YAO Yu, WANG Lifeng, YU Yan. Recent Progress on Modification Strategies of Alloy-based Anode Materials for Alkali-ion Batteries[J]. 高等学校化学研究, 2021, 37(2): 200-209. |
[12] | HU Qinyu, WU Jun, CHEN Lulu, LOU Xiaoding, XIA Fan. Recent Development of DNA-modified AIEgen Probes for Biomedical Application[J]. 高等学校化学研究, 2021, 37(1): 66-72. |
[13] | LI Xianglin, ZHANG Qingyang, LI Bin, LI Zhijun, ZHANG Ziqing, JING Liqiang. Improved Photocatalytic Activity of Porous In2O3 by co-Modifying Nanosized CuO and Ag with Synergistic Effects[J]. 高等学校化学研究, 2020, 36(6): 1116-1121. |
[14] | WANG Hengliang, CHAI Luxiao, XIE Zhongjian, ZHANG Han. Recent Advance of Tellurium for Biomedical Applications[J]. 高等学校化学研究, 2020, 36(4): 551-559. |
[15] | LIU Shuo, YANG Mingjie, GUO Weiwei. Programmable and Reversible Regulation of Catalytic Hemin@MOFs Activities with DNA Structures[J]. 高等学校化学研究, 2020, 36(2): 301-306. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||