高等学校化学研究 ›› 2021, Vol. 37 ›› Issue (3): 366-378.doi: 10.1007/s40242-021-1110-x
WANG Jun, FU Wanlin, XU Wanlin, WU Min, SUN Yueming, DAI Yunqian
收稿日期:
2021-03-14
修回日期:
2021-04-18
出版日期:
2021-06-01
发布日期:
2021-05-12
通讯作者:
DAI Yunqian
E-mail:daiy@seu.edu.cn
基金资助:
WANG Jun, FU Wanlin, XU Wanlin, WU Min, SUN Yueming, DAI Yunqian
Received:
2021-03-14
Revised:
2021-04-18
Online:
2021-06-01
Published:
2021-05-12
Contact:
DAI Yunqian
E-mail:daiy@seu.edu.cn
Supported by:
摘要: Ultrathin oxide nanofibers are widely used in an array of catalytic applications toward energy conversion and environmental protection. Remarkable progress has been made with regard to the development of engineering oxide nanofibers into unique structures to suit or enable various functions. We aim to provide a comprehensive overview of oxide nanofibers, including the structure engineering, derivates, assemblies and their applications. We begin with a brief introduction to the production of nanofibers with diversified compositions, structures and properties, followed by discussions of the wet-chemistry derivates. Afterward, we discuss the applications of catalytic oxide nanofibers, including electrocata-lysis, photocatalysis and thermal-catalysis. Then we highlight the most significant role of oxide nanofibers as catalyst support for the immobilization of metal nanoparticles. Moreover, we showcase the advanced assemblies based on oxide nanofibers, including their use as multi-functional membranes and foams. In the end, we offer perspectives on the challenges, opportunities and new directions for future development.
WANG Jun, FU Wanlin, XU Wanlin, WU Min, SUN Yueming, DAI Yunqian. Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection[J]. 高等学校化学研究, 2021, 37(3): 366-378.
WANG Jun, FU Wanlin, XU Wanlin, WU Min, SUN Yueming, DAI Yunqian. Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection[J]. Chemical Research in Chinese Universities, 2021, 37(3): 366-378.
[1] | Brown T. D., Daltona P. D., Hutmacher D. W., Prog. Poly. Sci., 2016, 56, 116 |
[2] | Ramaseshan R., Sundarrajan S., Jose R., Ramakrishna S., J. Appl. Phys., 2007, 102, 111101 |
[3] | Dai Y. Q., Liu W. Y., Formo E., Sun Y. M., Xia Y. N., Polym. Adv. Technol., 2011, 22(3), 326 |
[4] | Lu X. F., Wang C., Wei Y., Small, 2009, 5(21), 2349 |
[5] | Lu X. F., Wang C., Favier F., Pinna N., Adv. Energy Mater., 2017, 7, 1601301 |
[6] | Liu D., Wan J., Wang H., Pang G., Tang Z., Inorg. Chem. Commun., 2019, 102, 203 |
[7] | Gupta R., Kumar A., Biomed. Mater., 2008, 3, 034005 |
[8] | Takamura N., Taguchi K., Gunji T., Abe Y., J. Sol-Gel Sci. Techn., 1999, 16(3), 227 |
[9] | Su L., Zhu K., Qiu J., Ji H., J. Mater. Sci., 2010, 45(12), 3311 |
[10] | Li D., Xia Y. N., Nano Lett., 2003, 3(4), 555 |
[11] | Yang X. G., Shao C. L., Liu Y. C., Mu R. X., Guan H. Y., Thin Solid Films, 2005, 478(1/2), 228 |
[12] | Cui Z., Wang S., Zhang Y., Cao M., Electrochim. Acta, 2015, 182, 507 |
[13] | Ban C., Chernova N. A., Whittingham M. S., Electrochem. Commun., 2009, 11(3), 522 |
[14] | Formo E., Camargo P. H. C., Lim B., Jiang M., Xia Y., Chem. Phys. Lett., 2009, 476(1-3), 56 |
[15] | Zheng W., Li Z. Y., Zhang H. N., Wang W., Wang Y., Wang C., Mater. Res. Bull., 2009, 44(6), 1432 |
[16] | Hwang S. H., Song J., Jung Y., Kweon O. Y., Song H., Jang J., Chem. Commun., 2011, 47(32), 9164 |
[17] | Mahmoodi N. M., Keshavarzi S., Oveisi M., Rahimi S., Hayati B., J. Mol. Liq., 2019, 291, 111333 |
[18] | Liu R., Ye H., Xiong X., Liu H., Mater. Chem. Phys., 2010, 121(3), 432 |
[19] | Du X., Dong F., Tang Z., Zhang J., Appl. Surf. Sci., 2020, 505, 144471 |
[20] | Huang J., Liu X., Chen G., Zhang N., Ma R., Qiu G., Solid State Sci., 2018, 82, 24 |
[21] | Lu Q., Liu S., Ren M., Song L., Zhao G., J. Sol-Gel Sci. Techn., 2012, 61(1), 169 |
[22] | Ouyang W., Liu S., Yao K., Zhao L., Cao L., Jiang S., Compos. Commun., 2018, 9, 76 |
[23] | Tsang CHA., Li K., Zeng Y., Zhao W., Zhang T., Zhan Y., Environ. Int., 2019, 125, 200 |
[24] | Fu W., Li Z., Xu W., Wang Y., Sun Y., Dai Y., Mater. Today Nano, 2020, 11, 100088 |
[25] | Fu W., Dai Y., Li J. P. H, Liu Z., Yang Y., Sun Y., ACS Appl. Mater. Interfaces, 2017, 9(25), 21258 |
[26] | Long C., Li X., Guo J., Shi Y., Liu S., Tang Z., Small Methods, 2019, 3, 1800369 |
[27] | Yan C., Chen G., Zhou X., Sun J., Lv C., Adv. Funct. Mater., 2016, 26(9), 1428 |
[28] | Choi S. H., Ankonina G., Youn D. Y., Oh S. G., Hong J. M., Rothschild A., ACS Nano, 2009, 3(9), 2623 |
[29] | Li L. L., Peng S. J., Lee J. K. Y., Ji D. X., Srinivasan M., Ramakrishna S., Nano Energy, 2017, 39, 111 |
[30] | Zhu M., Tang J., Wei W., Li S., Mater. Chem. Front., 2020, 4(4), 1105 |
[31] | Oh J. H., Jo M. S., Jeong S. M., Cho C., Kang Y. C., Cho J. S., J. Ind. Eng. Chem., 2019, 77, 76 |
[32] | Dai Y. Q., Chai Y. L., Sun Y. B., Fu W. L., Wang X. T., Gu Q., Zeng T. H., Sun Y. M., J. Mater. Chem. A, 2015, 3(1), 125 |
[33] | Dai Y., Tian J., Fu W., J. Mater. Sci., 2019, 54(14), 10141 |
[34] | Liu S., Tian J., Yin K., Li Z., Meng X., Zhu M., Dai Y., Mater. Today Chem., 2020, 17, 100333 |
[35] | Fu W., Dai Y., Tian J., Huang C., Liu Z., Liu K., Nanotechnology, 2018, 29(34), 345607 |
[36] | Tiwari J. N., Tiwari R. N., Kim K. S., Prog. Mater. Sci., 2012, 57(4), 724 |
[37] | Wang X., Xi M., Fong H., Zhu Z., ACS Appl. Mater. Interfaces, 2014, 6(18), 15925 |
[38] | Li B., Hao Y., Zhang B., Shao X., Hu L., Appl. Catal. A:Gen., 2017, 531, 1 |
[39] | Dai Y., Cobley C. M., Zeng J., Sun Y., Xia Y., Nano Lett., 2009, 9(6), 2455 |
[40] | Dai Y., Qi X., Fu W., Huang C., Wang S., Zhou J., RSC Adv., 2017, 7(27), 16379 |
[41] | Fu W., Liu K., Zou X., Xu W., Zhao J., Zhu M., Sun Y., ACS Sustain. Chem. Eng., 2019, 7(15), 12750 |
[42] | Dai Y., Lu X., McKiernan M., Lee E. P., Sun Y., Xia Y., J. Mater. Chem., 2010, 20(16), 3157 |
[43] | Fu W., Li Z., Wang Y., Sun Y., Dai Y., Chem. Eng. J., 2020, 401, 126013 |
[44] | Schneider J., Matsuoka M., Takeuchi M., Zhang J. L., Horiuchi Y., Anpo M., Chem. Rev., 2014, 114(19), 9919 |
[45] | Fujishima A., Honda K., Nature, 1972, 238(5358), 37 |
[46] | Chuangchote S., Jitputti J., Sagawa T., Yoshikawa S., ACS Appl. Mater. Interfaces, 2009, 1(5), 1140 |
[47] | Singh P., Sharma K., Hasija V., Sharma V., Sharma S., Raizada P., Mater. Today Chem., 2019, 14, 100186 |
[48] | Patel A. C., Li S., Wang C., Zhang W., Wei Y., Chem. Mater., 2007, 19(6), 1231 |
[49] | Rajak A., Miftahul M. M., Abdullah M., Khairurrijal., Mater. Sci. Forum., 2015, 827, 7 |
[50] | Lee S. S., Bai H., Liu Z., Sun D. D., Water Res., 2013, 47(12), 4059 |
[51] | Li L., Cheng B., Wang Y., Yu J., J. Colloid Interface Sci., 2015, 449, 115 |
[52] | Barakat N. A. M., Taha A., Motlak M., Nassar M. M., Mahmoud M. S., Al-Deyab S. S., Appl. Catal. A:Gen.,2014, 481, 19 |
[53] | Xu F., Zhang J., Zhu B., Yu J., Xu J., Appl. Catal. B:Environ., 2018, 230, 194 |
[54] | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I. B., Norskov J. K., Jaramillo T. F., Science, 2017, 355, 146 |
[55] | Suen N. T., Hung S. F., Quan Q., Zhang N., Xu Y. J., Chen H. M., Chem. Soc. Rev., 2017, 46(2), 337 |
[56] | Xue J., Wu T., Dai Y., Xia Y., Chem. Rev., 2019, 119(8), 5298 |
[57] | Hosseini S. R., Ghasemi S., Kamali-Rousta M., J. Power Sources, 2017, 343, 467 |
[58] | Chao G., An X., Zhang L., Tian J., Fan W., Liu T., Compos. Commun., 2021, 24, 100603 |
[59] | Long C., Wang K., Shi Y., Yang Z., Zhang X., Zhang Y.,Tang Z., Inorg. Chem. Front., 2019, 6(10), 2900 |
[60] | Zhang W., Wang H., Guan K., Wei Z., Zhang X., Meng J., ACS Appl. Mater. Interfaces, 2019, 11(30), 26830 |
[61] | Chen L., Xu X., Yang W., Jia J., Chin. Chem. Lett., 2020, 31(3), 626 |
[62] | Du Q., Wu J., Yang H., ACS Catal., 2014, 4(1), 144 |
[63] | Savych I., Subianto S., Nabil Y., Cavaliere S., Jones D., Roziere J., Phys. Chem. Chem. Phys., 2015, 17(26), 16970 |
[64] | Park H. W., Lee D. U., Zamani P., Seo M. H., Nazar L. F., Chen Z., Nano Energy, 2014, 10, 192 |
[65] | Bauer A., Chevallier L., Hui R., Cavaliere S., Zhang J., Jones D., Electrochim. Acta, 2012, 77, 1 |
[66] | Kakoria A., Devi B., Anand A., Halder A., Koner R. R., Sinha-Ray S., ACS Appl. Nano Mater., 2019, 2(1), 64 |
[67] | Zhang X., Gong Y., Li S., Sun C., ACS Catal., 2017, 7(11), 7737 |
[68] | Bian J., Su R., Yao Y., Wang J., Zhou J., Li F., ACS Appl. Energy Mater., 2019, 2(1), 923 |
[69] | Zhang Y. Q., Tao H. B., Chen Z., Li M., Sun Y. F., Hua B., J. Mater. Chem. A, 2019, 7(46), 26607 |
[70] | Piumetti M., Bensaid S., Russo N., Fino D., Appl. Catal. B:Environ., 2016, 180, 271 |
[71] | Obeid E., Lizarraga L., Tsampas M. N., Cordier A., Boreave A., Steil M. C., J. Catal., 2014, 309, 87 |
[72] | Pena M. A., Fierro J. L. G., Chem. Rev., 2001, 101(7), 1981 |
[73] | Lee C., Jeon Y., Hata S., Park J. I., Akiyoshi R., Saito H., Appl. Catal. B:Environ., 2016, 191, 157 |
[74] | Dai Y., Lu P., Cao Z., Campbell C. T., Xia Y., Chem. Soc. Rev., 2018, 47(12), 4314 |
[75] | Campbell C. T., Mao Z., ACS Catal., 2017, 7(12), 8460 |
[76] | Rahmati M., Safdari M. S., Fletcher T. H., Argyle M. D., Bartholomew C. H., Chem. Rev., 2020, 120(10), 4455 |
[77] | Rosman N., Salleh W. N. W., Aziz F., Ismail A. F., Harun Z., Bahri S. S., Catalysts, 2019, 9, 565 |
[78] | Gupta D., Venugopal J., Mitra S., Dev VRG., Ramakrishna S., Biomaterials, 2009, 30(11), 2085 |
[79] | Guo D., Wang J., Zhang L., Chen X., Wan Z., Xi B., Small, 2020, 16, 2002432 |
[80] | He Y., Guo H., Hwang S., Yang X., He Z., Braaten J., Adv. Mater., 2020, 32, 2003577 |
[81] | Dai Y., Lim B., Yang Y., Cobley C. M., Li W., Cho E. C., Grayson B., Fanson T. P., Campbell T. C., Sun Y., Xia Y., Angew. Chem. Int. Ed., 2010, 49(44), 8165 |
[82] | Li Z., Zhang H., Zheng W., Wang W., Huang H., Wang C., J. Am. Chem. Soc., 2008, 130(15), 5036 |
[83] | Zhang H., Li Z., Liu L., Xu X., Wang Z., Wang W., Sens. Actuators B:Chem., 2010, 147(1), 111 |
[84] | Wang W., Li Z., Zheng W., Huang H., Wang C., Sun J., Sens. Actuators B:Chem., 2010, 143(2), 754 |
[85] | Liu P., Hou J., Zhang Y., Li L., Lu X., Tang Z., Inorg. Chem. Front., 2020, 7(13), 2560 |
[86] | Xu B., Qi S., Jin M., Cai X., Lai L., Sun Z., Chin. Chem. Lett., 2019, 30(12), 2053 |
[87] | Li X., Wang C., Yang Y., Wang X. F., Zhu M. F., Hsiao B. S., ACS Appl. Mater. Interfaces, 2014, 6(4), 2431 |
[88] | Lin P., Pan C., Wang Z. L., Mater. Today Nano, 2018, 4, 17 |
[89] | Li W., Wang Y., Ji B., Jiao X., Chen D., RSC Adv., 2015, 5(72), 58120 |
[90] | Wang X., Dou L., Yang L., Yu J., Ding B., J. Hazard. Mater., 2017, 324, 203 |
[91] | Dai Y., Formo E., Li H., Xue J., Xia Y., Chemsuschem, 2016, 9(20), 2912 |
[92] | Formo E., Lee E., Campbell D., Xia Y., Nano Lett., 2008, 8(2), 668 |
[93] | Sun B., Long Y. Z., Zhang H. D., Li M. M., Duvail J. L., Jiang X. Y., Prog. Poly. Sci., 2014, 39(5), 862 |
[94] | Kim T. W., Park S. J., J. Colloid Interface Sci., 2017, 486, 287 |
[95] | Meng X., Xu W., Li Z., Yang J., Zhao J., Zou X., Sun Y., Dai Y., Adv. Fiber Mater., 2020, 2, 93 |
[96] | Yin H., Zhao S., Wan J., Tang H., Chang L., He L., Zhao H., Gao Y., Tang Z., Adv. Mater., 2013, 25(43), 6270 |
[97] | Meng X., Peng X., Xue J., Wei Y., Sun Y., Dai Y., J. Mater. Chem. A, 2021, DOI:10.1039/D1TA02004H |
[98] | Tanimu A., Jaenicke S., Alhooshani K., Chem. Eng. J., 2017, 327, 792 |
[99] | Global Nanofibers Market, Trends Analysis & Forecasts to 2021, Research and Markets, https://www.researchandmarkets.com/research/5psrpd/global_nanofibers |
[100] | Lu X. F., Liu X. C., Zhang W. J., Wang C., Wei Y., J. Colloid Interface Sci., 2006, 298(2), 996 |
[101] | Akampumuza O., Gao H., Zhang H., Wu D., Qin X. H., Macromol Mater. Eng., 2018, 303, 1700269 |
[102] | Persano L., Camposeo A., Tekmen C., Pisignano D., Macromol Mater. Eng., 2013, 298(5), 504 |
[103] | Jia C., Liu Y., Li L., Song J., Wang H., Liu Z., Li Z., Li B., Fang M., Wu H., Nano Lett., 2020, 20(7), 4993 |
[104] | Khalid B., Bai X., Wei H., Huang Y., Wu H., Cui Y., Nano Lett., 2017, 17(2), 1140 |
[1] | LIU Zailun, SUN Like, ZHANG Qitao, TENG Zhenyuan, SUN Hongli, SU Chenliang. TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application[J]. 高等学校化学研究, 2022, 38(5): 1123-1138. |
[2] | WU Fan, LIU Pengxin. Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis[J]. 高等学校化学研究, 2022, 38(5): 1139-1145. |
[3] | XU Guangyuan, LIU Qin, YAN Huan. Recent Advances of Single-atom Catalysts for Electro-catalysis[J]. 高等学校化学研究, 2022, 38(5): 1146-1150. |
[4] | BU Ran, LU Yingying, ZHANG Bing. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction[J]. 高等学校化学研究, 2022, 38(5): 1151-1162. |
[5] | MA Yanfu, WANG Liwei, LIU Jian. Single Atom Catalysts in Liquid Phase Selective Hydrogenations[J]. 高等学校化学研究, 2022, 38(5): 1163-1171. |
[6] | WANG Guowei, KE Xiaoxing, SUI Manling. Advanced TEM Characterization for Single-atom Catalysts: from Ex-situ Towards In-situ[J]. 高等学校化学研究, 2022, 38(5): 1172-1184. |
[7] | FAN Kui, SUN Yining, XU Pengcheng, GUO Jian, LI Zhenhua, SHAO Mingfei. Single-atom Catalysts Based on Layered Double Hydroxides[J]. 高等学校化学研究, 2022, 38(5): 1185-1196. |
[8] | MIAO Tianchang, DI Xin, HAO Feini, ZHENG Gengfeng, HAN Qing. Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products[J]. 高等学校化学研究, 2022, 38(5): 1197-1206. |
[9] | TENG Zhenyuan, YANG Hongbin, ZHANG Qitao, OHNO Teruhisa. Carrier Dynamics and Surface Reaction Boosted by Polymer-based Single-atom Photocatalysts[J]. 高等学校化学研究, 2022, 38(5): 1207-1218. |
[10] | MA Chunrong, SONG Bingyi, MA Zhentao, WANG Xiaoqian, TIAN Lin, ZHANG Haoran, CHEN Cai, ZHENG Xusheng, YANG Li-ming, WU Yuen. A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction[J]. 高等学校化学研究, 2022, 38(5): 1219-1225. |
[11] | QIAN Shengjie, WANG Yanggang, LI Jun. Single Iron-dimer Catalysts on MoS2 Nanosheet for Potential Nitrogen Activation[J]. 高等学校化学研究, 2022, 38(5): 1226-1231. |
[12] | SONG Jingting, LIU Jia, LOH Kian Ping, CHEN Zhongxin. Ultrahigh Loading Copper Single Atom Catalyst for Palladium-free Wacker Oxidation[J]. 高等学校化学研究, 2022, 38(5): 1239-1242. |
[13] | LI Yang, WANG Xian, LIU Jie, JIN Zhao, LIU Changpeng, GE Junjie, XING Wei. Anode Catalytic Dependency Behavior on Ionomer Content in Direct CO Polymer Electrolyte Membrane Fuel Cell[J]. 高等学校化学研究, 2022, 38(5): 1251-1257. |
[14] | ZHANG Xingcong, ZHONG Yunzhu, CHEN Hongyu, CHENG Yujie, SUN Qingdi, ZHANG Hao, HE Qian, ZHANG Ying, GUO Guanghui, HE Xiaohui, JI Hongbing. Synthesis of Nitrogen-doped Carbon Supported Cerium Single Atom Catalyst by Ball Milling for Selective Oxidation of Ethylbenzene[J]. 高等学校化学研究, 2022, 38(5): 1258-1262. |
[15] | ZHENG Meng, WANG Jin. Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity[J]. 高等学校化学研究, 2022, 38(5): 1275-1281. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||