高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (2): 219-226.doi: 10.1007/s40242-020-9086-5
YIN Jue, WANG Junke, NIU Renjie, REN Shaokang, WANG Dexu, CHAO Jie
收稿日期:
2019-12-04
修回日期:
2020-01-02
出版日期:
2020-04-01
发布日期:
2020-01-03
通讯作者:
CHAO Jie
E-mail:iamjchao@njupt.edu.cn
基金资助:
YIN Jue, WANG Junke, NIU Renjie, REN Shaokang, WANG Dexu, CHAO Jie
Received:
2019-12-04
Revised:
2020-01-02
Online:
2020-04-01
Published:
2020-01-03
Contact:
CHAO Jie
E-mail:iamjchao@njupt.edu.cn
Supported by:
摘要: With silicon-based microelectronic technology pushed to its limit, scientists hunt to exploit biomolecules to power the bio-computer as substitutes. As a typical biomolecule, DNA now has been employed as a tool to create computing systems because of its superior parallel computing ability and outstanding data storage capability. How-ever, the key challenges in this area lie in the human intervention during the computation process and the lack of platforms for central processor. DNA nanotechnology has created hundreds of complex and hierarchical DNA nanostructures with highly controllable motions by exploiting the unparalleled self-recognition properties of DNA molecule. These DNA nanostructures can provide platforms for central processor and reduce the human intervention during the computation process, which can offer unprecedented opportunities for biocomputing. In this review, recent advances in DNA nanotechnology are briefly summarized and the newly emerging concept of biocomputing with DNA nanostructures is introduced.
YIN Jue, WANG Junke, NIU Renjie, REN Shaokang, WANG Dexu, CHAO Jie. DNA Nanotechnology-based Biocomputing[J]. 高等学校化学研究, 2020, 36(2): 219-226.
YIN Jue, WANG Junke, NIU Renjie, REN Shaokang, WANG Dexu, CHAO Jie. DNA Nanotechnology-based Biocomputing[J]. Chemical Research in Chinese Universities, 2020, 36(2): 219-226.
[1] | Reif J. H., Science, 2002, 296(5567), 478 |
[2] | Feynman R. P., J. Microelectromech. Syst., 1992, 1(1), 60 |
[3] | Scerri E. R., Interface Focus, 2012, 2(1), 20 |
[4] | Benenson Y., Gil B., Ben-Dor U., Adar R., ShapiroE., Nature, 2004, 429(6990), 423 |
[5] | Seelig G., Soloveichik D., Zhang D. Y., Winfree E., Science, 2006, 314(5805), 1585 |
[6] | Douglas S. M., Bachelet I., Church G. M., Science, 2012, 335(6070), 831 |
[7] | Srinivas N., Ouldridge T. E., Sulc P., Schaeffer J. M., Yurke B., Louis A. A., Doye J. P. K., Winfree E., Nucleic Acids Res., 2013, 41(22), 10641 |
[8] | Vedral V., Plenio M. B., Progress in Quantum Electronics, 1998, 22(1), 1 |
[9] | Gao F., Niu H., Zhao H., Bioimaging, 1997, 5(2), 51 |
[10] | Liu Q. H., Wang L. M., Frutos A. G., Condon A. E., Corn R. M., Smith L. M., Nature, 2000, 403(6766), 175 |
[11] | Braich R. S., Chelyapov N., Johnson C., Rothemund P. W. K., Adleman L., Science, 2002, 296(5567), 499 |
[12] | He Y., Ye T., Su M., Zhang C., Ribbe A. E., Jiang W., Mao C. D., Nature, 2008, 452(7184), 198 |
[13] | Seeman N. C., J. Theor. Biol., 1982, 99(2), 237 |
[14] | Fu T. J., Seeman N. C., Biochemistry, 1993, 32(13), 3211 |
[15] | Winfree E., Liu F. R., Wenzler L. A., Seeman N. C., Nature, 1998, 394(6693), 539 |
[16] | Yan H., Zhang X. P., Shen Z. Y., Seeman N. C., Nature, 2002, 415(6867), 62 |
[17] | Kuzuya A., Wang R. S., Sha R. J., Seeman N. C., Nano Lett., 2007, 7(6), 1757 |
[18] | Wang Y. L., Mueller J. E., Kemper B., Seeman N. C., Biochemistry, 1991, 30(23), 5667 |
[19] | Ma R. I., Kallenbach N. R., Sheardy R. D., Petrillo M. L., Seeman N. C., Nucleic Acids Res., 1986, 14(24), 9745 |
[20] | LaBean T. H., Yan H., Kopatsch J., Liu F., Winfree E., Reif J. H., Seeman N. C., J. Am. Chem. Soc., 2000, 122(9), 1848 |
[21] | Shen Z. Y., Yan H., Wang T., Seeman N. C., J. Am. Chem. Soc., 2004, 126(6), 1666 |
[22] | Mao C. D., Sun W. Q., Seeman N. C., J. Am. Chem. Soc., 1999, 121(23), 5437 |
[23] | Ding B. Q., Sha R. J., Seeman N. C., J. Am. Chem. Soc., 2004, 126(33), 10230 |
[24] | Mao C. D, Sun W. Q., Seeman N. C., J. Am. Chem. Soc., 1999, 121(23), 5437 |
[25] | Liu D., Wang M. S., Deng Z. X., Walulu R., Mao C. D., J. Am. Chem. Soc., 2004, 126(8), 2324 |
[26] | He Y., Tian Y., Ribbe A. E., Mao C. D., J. Am. Chem. Soc., 2006, 128(50), 15978 |
[27] | Pistol C., Dwyer C., Nanotechnology, 2007, 18(12), 125305 |
[28] | Lund K., Liu Y., Yan H., Organic & Biomolecular Chemistry, 2006, 4(18), 3402 |
[29] | Park S. H., Finkelstein G., LaBean T. H., J. Am. Chem. Soc., 2008, 130(1), 40 |
[30] | Lund K., Liu Y., Lindsay S., Yan H., J. Am. Chem. Soc., 2005, 127(50), 17606 |
[31] | Park S. H., Pistol C., Ahn S. J., Reif J. H., Lebeck A. R., Dwyer C., LaBean T. H., Angew. Chem. Int. Ed., 2006, 45(5), 735 |
[32] | Mathieu F., Liao S. P., Kopatscht J., Wang T., Mao C. D., Seeman N. C., Nano Lett., 2005, 5(4), 661 |
[33] | Park S. H., Barish R., Li H. Y., Reif J. H., Finkelstein G., Yan H., LaBean T. H., Nano Lett., 2005, 5(4), 693 |
[34] | Ke Y. G., Liu Y., Zhang J. P., Yan H., J. Am. Chem. Soc., 2006, 128(13), 4414 |
[35] | Zhang C., Su M., He Y., Zhao X., Fang P. A., Ribbe A. E., Jiang W., Mao C. D., P. Natl. Acad. Sci. USA, 2008, 105(31), 10665 |
[36] | Zhang C., Ko S. H., Su M., Leng Y. J., Ribbe A. E., Jiang W., Mao C. D., J. Am. Chem. Soc., 2009, 131(4), 1413 |
[37] | Ke Y. G., Ong L. L., Shih W. M., Yin P., Science, 2012, 338(6111), 1177 |
[38] | Yin P., Hariadi R. F., Sahu S., Choi H. M. T., Park S. H., LaBean T. H., Reif J. H., Science, 2008, 321(5890), 824 |
[39] | Wei B., Dai M. J., Yin P., Nature, 2012, 485(7400), 623 |
[40] | Rothemund P. W. K., Nature, 2006, 440(7082), 297 |
[41] | Andersen E. S., Dong M. D., Nielsen M. M., Jahn. K., Lind-Thomsen A., Mamdouh W., Gothelf K. V., Besenbacher F., Kjems J., ACS Nano, 2008, 2(6), 1213 |
[42] | Qian L. L., Wang Y., Zhang Z., Zhao J., Pan D., Zhang Y., Liu Q., Fan C. H., Hu J., He L., Chin. Sci. Bull., 2006, 51(24), 2973 |
[43] | Veneziano R., Ratanalert S., Zhang K. M., Zhang F., Yan H., Chiu W., Bathe M., Science, 2016, 352(6293), 4388 |
[44] | Han D. R., Pal S., Yang Y., Jiang S. X., Nangreave J., Liu Y., Yan H., Science, 2013, 339(6126), 1412 |
[45] | Han D. R., Pal S., Liu Y., Yan H., Nat. Nanotechnol., 2010, 5(10), 712 |
[46] | Ke Y. G., Sharma J., Liu M. H., Jahn K., Liu Y., Yan H., Nano Lett., 2009, 9(6), 2445 |
[47] | Dietz H., Douglas S. M., Shih W. M., Science, 2009, 325(5941), 725 |
[48] | Han D. R., Pal S., Nangreave J., Deng Z. T., Liu Y., Yan H., Science, 2011, 332(6027), 342 |
[49] | Gerling T., Wagenbauer K. F., Neuner A. M., Dietz H., Science, 2015, 347(6229), 1446 |
[50] | Modi S., Swetha M. G., Goswami D., Gupta G. D., Mayor S., Krishnan Y., Nat. Nanotechnol., 2009, 4(5), 325 |
[51] | Saha S., Prakash V., Halder S., Chakraborty K., Krishnan Y., Nat. Nanotechnol., 2015, 10(7), 645 |
[52] | Liu D. S., Balasubramanian S., Angew. Chem. Int. Ed., 2003, 42(46), 5734 |
[53] | Li S. P., Jiang Q., Liu S. L., Zhang Y. L., Tian Y. H., Song C., Wang J., Zou Y. G., Anderson G. J., Han J. Y., Chang Y., Liu Y., Zhang C., Chen L., Zhou G. B., Nie G. J., Yan H., Ding B. Q., Zhao Y. L., Nat. Biotechnol., 2018, 36(3), 258 |
[54] | Joshua D. B., Klavins E., Nano Lett., 2007, 7(9), 2574 |
[55] | Yin P., Yan H., Daniell X. G., Turberfield A. J., Reif J. H., Angew. Chem. Int. Ed., 2004, 43(37), 4906 |
[56] | Liu M. H., Fu J. L., Hejesen C., Yang Y. H., Woodbury N. W., Gothelf K., Liu Y., Yan H., Nat. Commun., 2013, 4, 2127 |
[57] | Turek V. A., Chikkaraddy R., Cormier S., Stockham B., Ding T., Keyser U. F., Baumberg J. J., Adv. Funct. Mater., 2018, 28(25), 1706410 |
[58] | Kopperger E., List J., Madhira S., Rothfischer F., Lamb D. C., Simmel F. C., Science, 2018, 359, 296 |
[59] | Kuzyk A., Yang Y. Y., Duan X. Y., Stoll S., Govorov A. O., Sugiyama H., Endo M., Liu N., Nat. Commun., 2016, 7, 10591 |
[60] | Hernandez A. S., Misiunas K., Thacker V. V., Hemmig E. A., Keyser U. F., Nano Lett., 2014, 14(3), 1270 |
[61] | Kang H. Z., Liu H. P., Phillips J. A., Cao Z. H., Kim Y. M., Chen Y., Yang Z. Y., Li J. W., Tan W. H., Nano Lett., 2009, 9(7), 2690 |
[62] | Liu H. J., Xu Y., Li F. Y., Yang Y., Wang W. X., Song Y. L., Liu D. S., Angew. Chem. Int. Ed., 2007, 46(14), 2515 |
[63] | Mao C. D., Sun W. Q., Shen Z. Y., Seeman N. C., Nature, 1999, 397(6715), 144 |
[64] | Kay E. R., Leigh D. A., Zerbetto F., Angew. Chem. Int. Ed., 2007, 46(1/2), 72 |
[65] | Bath J., Turberfield A. J., Nat. Nanotechnol., 2007, 2(5), 275 |
[66] | Yurke B., Turberfield A. J., Mills A. P., Simmel F. C., Neumann J. L., Nature, 2000, 406(6796), 605 |
[67] | Simmel F. C., Yurke B., Appl. Phys. Lett., 2002, 80(5), 883 |
[68] | Tian Y., Mao C. D., J. Am. Chem. Soc., 2004, 126(37), 11410 |
[69] | Engelen W., Meijer L. H., Somers B., de Greef T. F., Merkx M., Nat. Commun., 2017, 8, 14473 |
[70] | Shin J. S., Pierce N. A., J. Am. Chem. Soc., 2004, 126(35), 10834 |
[71] | Gu H. Z., Chao J., Xiao S. J., Seeman N. C., Nature, 2010, 465(7295), 202 |
[72] | Kosuri P., Altheimer B. D., Dai M., Yin P., Zhuang X., Nature, 2019, 572(7767), 136 |
[73] | Zhang C., Ma L. N., Dong Y. F., Yang J., Xu J., Chin. Sci. Bull., 2013, 58(1), 32 |
[74] | Li W., Yang Y., Yan H., Liu Y., Nano Lett., 2013, 13(6), 2980 |
[75] | Zadegan R. M., Jepsen M. D. E., Hildebrandt L. L., Birkedal V., Kjems J., Small, 2015, 11(15), 1811 |
[76] | Yang J., Wu R. F., Li Y. F., Wang Z. Y., Pan L. Q., Zhang Q., Lu Z. H., Zhang C., Nucleic Acids Res., 2018, 46(16), 8532 |
[77] | Chen J., Pan J., Chen S., Chemical Science, 2018, 9(2), 300 |
[78] | McCulloch W. S., Pitts W. H., Bull. Math. Biol., 1943, 52(1/2), 99 |
[79] | Qian L. L., Winfree E., Science, 2011, 332(6034), 1196 |
[80] | Qian L. L., Winfree E., Bruck J., Nature, 2011, 475(7356), 368 |
[81] | Cherry K. M., Qian L. L., Nature, 2018, 559(7714), 370 |
[82] | Elbaz J., Lioubashevski O., Wang F., Remacle F., Levine R. D., Willner I., Nat. Nanotechnol., 2010, 5(6), 417 |
[83] | Song T. Q., Garg S., Mokhtar R., Bui H., Reif J., ACS Synthetic Biology, 2016, 5(8), 898 |
[84] | Song T. Q., Eshra A., Shah S., Bui H., Fu D., Yang M., Mokhtar R., Reif J., Nat. Nanotechnol., 2019, 14(11),1075 |
[85] | Liu H. J., Wang J. B., Song S. P., Fan C. H., Gothelf K. V., Nat. Commun., 2015, 6, 10089 |
[86] | Winfree E., J. Biomol. Struct. Dyn., 2000, 17(Suppl. 1), 263 |
[87] | Mao C. D., LaBean T. H., Reif J. H., Seeman N. C., Nature, 2000, 407(6807), 493 |
[88] | Yan H., LaBean T. H., Feng L. P., Reif J. H., P. Natl. Acad. Sci. USA, 2003, 100(14), 8103 |
[89] | Rothemund P. W. K., Papadakis N., Winfree E., PLoS Biol., 2004, 2(12), 2041 |
[90] | Winfree E., Bekbolatov R., DNA Computing, Madison, 2004, 126 |
[91] | Fujibayashi K, Murata S., DNA Computing, Milan, 2005, 113 |
[92] | Tikhomirov G., Petersen P., Qian L. L., Nature, 2017, 552(7683), 67 |
[93] | Brun Y., Theoretical Computer Science, 2007, 378(1), 17 |
[94] | Tikhomirov G., Petersen P., Qian L. L., Nat. Nanotechnol., 2017, 12(3), 251 |
[95] | Woods D., Doty D., Myhrvold C., Hui J., Zhou F., Yin P., Winfree E., Nature, 2019, 567(7748), 366 |
[96] | Liu Q. H., Frutos A. G., Thiel A. J., Corn R. M., Smith L. M., J. Comput. Biol., 1998, 5(2), 269 |
[97] | Boemo M. A., Lucas A. E., Turberfield A. J., Cardelli L., ACS Synthetic Biology, 2016, 5(8), 878 |
[98] | Chatterjee G., Dalchau N., Muscat R. A., Phillips A., Seelig G., Nat. Nanotechnol., 2017, 12(9), 920 |
[99] | Cha T. G., Pan J., Chen H. R., Salgado J., Li X., Mao C. D., Choi J. H., Nat. Nanotechnol., 2014, 9(1), 39 |
[100] | Wickham S. F. J., Bath J., Katsuda Y., Endo M., Hidaka K., Sugiyama H., Turberfield A. J., Nat. Nanotechnol., 2012, 7(3), 169 |
[101] | Douglas S. M., Bachelet I., Church G. M., Science, 2012, 335(6070), 831 |
[102] | Thubagere A. J., Li W., Johnson R. F., Chen Z., Doroudi S., Lee Y. L., Izatt G., Wittman S., Srinivas N., Woods D., Winfree E., Qian L. L., Science, 2017, 357(6356), 6558 |
[103] | Chao J., Wang J. B., Wang F., Ouyang X. Y., Kopperger E., Liu H. J., Li Q., Shi J. Y., Wang L. H., Hu J., Wang L. H., Huang W., Simmel F. C., Fan C. H., Nature Mater., 2019, 18(3), 273 |
[1] | LIU Zhenyu, DONG Jinyi, PAN Jiahao, ZHOU Chao, FAN Chunhai, WANG Qiangbin. Catalytic DNA Origami-based Chiral Plasmonic Biosensor[J]. 高等学校化学研究, 2021, 37(4): 914-918. |
[2] | CAO Mengyao, SUN Yueyang, XIAO Mingshu, LI Li, LIU Xiaohui, JIN Hong, PEI Hao. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy[J]. 高等学校化学研究, 2020, 36(2): 254-260. |
[3] | LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei. Programmable Assembly of DNA-protein Hybrid Structures[J]. 高等学校化学研究, 2020, 36(2): 211-218. |
[4] | WANG Congli, DI Zhenghan, FAN Zetan, LI Lele. Self-assembly of DNA Nanostructures via Bioinspired Metal Ion Coordination[J]. 高等学校化学研究, 2020, 36(2): 268-273. |
[5] | LONG Qipeng, YU Hanyang, LI Zhe. Reconfigurable Plasmonic Nanostructures Controlled by DNA Origami[J]. 高等学校化学研究, 2020, 36(2): 296-300. |
[6] | ZHU Jinjin, SHANG Yingxu, YU Haiyin, LI Na, DING Baoquan. Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates[J]. 高等学校化学研究, 2020, 36(2): 171-176. |
[7] | LI Tao, DUAN Ruilin, DUAN Zhijuan, HUANG Fujian, XIA Fan. Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection[J]. 高等学校化学研究, 2020, 36(2): 194-202. |
[8] | YANG Linlin, MIAO Yanyan, HAN Da. DNA Nanotechnology on Live Cell Membranes[J]. 高等学校化学研究, 2020, 36(2): 203-210. |
[9] | WANG Mingyang, DUAN Jialin, DAI Lizhi, XIN Xiaodong, WANG Fangfang, LI Zheng, TIAN Ye. Characterization of 3D DNA Assemblies Using Cryogenic Electron Microscopy[J]. 高等学校化学研究, 2020, 36(2): 227-236. |
[10] | DONG Yuhang, PAN Xiaorui, LI Feng, YANG Dayong. pH-Responsive Reversible DNA Self-assembly Mediated by Zwitterion[J]. 高等学校化学研究, 2020, 36(2): 285-290. |
[11] | GE Zhilei, LI Qian, FAN Chunhai. Framework Nucleic Acids for Cell Imaging and Therapy[J]. 高等学校化学研究, 2020, 36(1): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||