高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (1): 1-9.doi: 10.1007/s40242-019-9249-4
GE Zhilei, LI Qian, FAN Chunhai
收稿日期:
2019-09-16
修回日期:
2019-09-25
出版日期:
2020-02-01
发布日期:
2020-01-20
通讯作者:
FAN Chunhai
E-mail:fanchunhai@sjtu.edu.cn
基金资助:
GE Zhilei, LI Qian, FAN Chunhai
Received:
2019-09-16
Revised:
2019-09-25
Online:
2020-02-01
Published:
2020-01-20
Contact:
FAN Chunhai
E-mail:fanchunhai@sjtu.edu.cn
Supported by:
摘要: Over the past decade, structural DNA nanotechnology has been well developed to be a promising and powerful technique to generate various nanostructures with programmability, spatial organization and biocompatibi-lity. With the advent of computer-aided tools, framework nucleic acids have been employed in a series of biomedical applications, ranging from biosensing, bioimaging, diagnosis, to therapeutics. In this review, we summarized recent advances in the construction of precisely assembled DNA nanostructures, and DNA-engineered biomimetics. We also outlined the challenges and opportunities for the translational applications of framework nucleic acids.
GE Zhilei, LI Qian, FAN Chunhai. Framework Nucleic Acids for Cell Imaging and Therapy[J]. 高等学校化学研究, 2020, 36(1): 1-9.
GE Zhilei, LI Qian, FAN Chunhai. Framework Nucleic Acids for Cell Imaging and Therapy[J]. Chemical Research in Chinese Universities, 2020, 36(1): 1-9.
[1] | Seeman N. C., J. Theor. Biol., 1982, 99(2), 237 |
[2] | Kallenbach N. R., Ma R. I., Seeman N. C., Nature, 1983, 305(5937), 829 |
[3] | Seeman N. C., Nature, 2003, 421(6921), 427 |
[4] | Goodman R. P., Schaap I. A. T., Tardin C. F., Erben C. M., Berry R. M., Schmidt C. F., Turberfield A. J., Science, 2005, 310(5754), 1661 |
[5] | Rothemund P. W. K., Nature, 2006, 440(7082), 297 |
[6] | Yang F., Li Q., Wang L., Zhang G. J., Fan C., ACS Sensors, 2018, 3(5), 903 |
[7] | Liu Q., Ge Z., Mao X., Zhou G., Zuo X., Shen J., Shi J., Li J., Wang L., Chen X., Fan C., Angew. Chem. Int. Ed., 2018, 57(24), 7131 |
[8] | Ge Z., Gu H., Li Q., Fan C., J. Am. Chem. Soc., 2018, 140(51), 17808 |
[9] | Lu N., Pei H., Ge Z. L., Simmons C. R., Yan H., Fan C. H., J. Am. Chem. Soc., 2012, 134(32), 13148 |
[10] | Ye D., Zuo X., Fan C., Annu. Rev. Anal. Chem., 2018, 11(1), 171 |
[11] | Yang F., Zuo X. L., Fan C. H., Zhang X. E., Natl. Sci. Rev., 2018, 5(5), 740 |
[12] | Andersen E. S., Dong M., Nielsen M. M., Jahn K., Subramani R., Mamdouh W., Golas M. M., Sander B., Stark H., Oliveira C. L. P., Pedersen J. S., Birkedal V., Besenbacher F., Gothelf K. V., Kjems J., Nature, 2009, 459(7243), 73 |
[13] | Chen J. H., Seeman N. C., Nature, 1991, 350(6319), 631 |
[14] | Douglas S. M., Dietz H., Liedl T., Hogberg B., Graf F., Shih W. M., Nature, 2009, 459(7250), 1154 |
[15] | Gu H. Z., Chao J., Xiao S. J., Seeman N. C., Nature, 2010, 465(7295), 202 |
[16] | Wei B., Dai M. J., Yin P., Nature, 2012, 485(7400), 623 |
[17] | Yan H., Park S. H., Finkelstein G., Reif J. H., LaBean T. H., Science, 2003, 301(5641), 1882 |
[18] | Yan H., Zhang X., Shen Z., Seeman N. C., Nature, 2002, 415(6867), 62 |
[19] | Pei H., Zuo X. L., Zhu D., Huang Q., Fan C. H., Acc. Chem. Res., 2014, 47(2), 550 |
[20] | Chen N., Li J., Song H. Y., Chao J., Huang Q., Fan C. H., Acc. Chem. Res., 2014, 47(6), 1720 |
[21] | Zhang F., Jiang S. X., Wu S. Y., Li Y. L., Mao C. D., Liu Y., Yan H., Nat. Nanotech., 2015, 10(9), 779 |
[22] | Han D. R., Pal S., Nangreave J., Deng Z. T., Liu Y., Yan H., Science, 2011, 332(6027), 342 |
[23] | Douglas S. M., Dietz H., Liedl T., Hogberg B., Graf F., Shih W. M., Nature, 2009, 459(7245), 414 |
[24] | Qi X. D., Zhang F., Su Z. M., Jiang S. X., Han D. R., Ding B. Q., Liu Y., Chiu W., Yin P., Yan H., Nat. Commun., 2018, 9, 4579 |
[25] | Han D. R., Qi X. D., Myhrvold C., Wang B., Dai M. J., Jiang S. X., Bates M., Liu Y., An B., Zhang F., Yan H., Yin P., Science, 2017, 358(6369), eaao2648 |
[26] | Cutler J. I., Auyeung E., Mirkin C. A., J. Am. Chem. Soc., 2012, 134(3), 1376 |
[27] | Mirkin C. A., Letsinger R. L., Mucic R. C., Storhoff J. J., Nature, 1996, 382(6592), 607 |
[28] | Alivisatos A. P., Johnsson K. P., Peng X., Wilson T. E., Loweth C. J., Bruchez M. P., Schultz P. G., Nature, 1996, 382(6592), 609 |
[29] | Macfarlane R. J., Lee B., Jones M. R., Harris N., Schatz G. C., Mirkin C. A., Science, 2011, 334(6053), 204 |
[30] | Auyeung E., Li T. I., Senesi A. J., Schmucker A. L., Pals B. C., de la Cruz M. O., Mirkin C. A., Nature, 2014, 505(7481), 73 |
[31] | Mastroianni A. J., Claridge S. A., Alivisatos A. P., J. Am. Chem. Soc., 2009, 131(24), 8455 |
[32] | Chao J., Wang J., Wang F., Ouyang X., Kopperger E., Liu H., Li Q., Shi J., Wang L., Hu J., Wang L., Huang W., Simmel F. C., Fan C., Nature Materials, 2019, 18(3), 273 |
[33] | Zhang H. L., Chao J., Pan D., Liu H. J., Qiang Y., Liu K., Cui C. J., Chen J. H., Huang Q., Hu J., Wang L. H., Huang W., Shi Y. Y., Fan C. H., Nat. Commun., 2017, 8, 14738 |
[34] | Li J., Pei H., Zhu B., Liang L., Wei M., He Y., Chen N., Li D., Huang Q., Fan C. H., ACS Nano, 2011, 5(11), 8783 |
[35] | Walsh A. S., Yin H. F., Erben C. M., Wood M. J. A., Turberfield A. J., ACS Nano, 2011, 5(7), 5427 |
[36] | He L., Lu D. Q., Liang H., Xie S. T., Zhang X. B., Liu O. L., Yuan Q., Tan W. H., J. Am. Chem. Soc., 2018, 140(1), 258 |
[37] | Liu W. Y., Halverson J., Tian Y., Tkachenko A. V., Gang O., Nat. Chem., 2016, 8(9), 867 |
[38] | Jiang D., Ge Z., Im H. J., England C. G., Ni D., Hou J., Zhang L., Kutyreff C. J., Yan Y., Liu Y., Cho S. Y., Engle J. W., Shi J., Huang P., Fan C., Yan H., Cai W., Nat. Biomed. Eng., 2018, 2(11), 865 |
[39] | Zhu G., Zheng J., Song E., Donovan M., Zhang K., Liu C., Tan W., Proc. Natl. Acad. Sci. USA, 2013, 110(20), 7998 |
[40] | Yang Y. R., Liu Y., Yan H., Bioconj. Chem., 2015, 26(8), 1381 |
[41] | Shelby M. L., Lestrange P. J., Jackson N. E., Haldrup K., Mara M. W., Stickrath A. B., Zhu D., Lemke H. T., Chollet M., Hoffman B. M., Li X., Chen L. X., J. Am. Chem. Soc., 2016, 138(28), 8752 |
[42] | Chhabra R., Sharma J., Liu Y., Yan H., Nano Lett., 2006, 6(5), 978 |
[43] | Zhang J., Liu Y., Ke Y., Yan H., Nano Lett., 2006, 6(2), 248 |
[44] | Liu X., Zhang F., Jing X., Pan M., Liu P., Li W., Zhu B., Li J., Chen H., Wang L., Lin J., Liu Y., Zhao D., Yan H., Fan C., Nature, 2018, 559(7715), 593 |
[45] | He Y., Ye T., Su M., Zhang C., Ribbe A. E., Jiang W., Mao C., Nature, 2008, 452(7184), 198 |
[46] | Pei H., Lu N., Wen Y., Song S., Liu Y., Yan H., Fan C., Adv. Mater., 2010, 22(42), 4754 |
[47] | Wang Y., Mueller J. E., Kemper B., Seeman N. C., Biochemistry, 1991, 30(23), 5667 |
[48] | Fu T. J., Seeman N. C., Biochemistry, 1993, 32(13), 3211 |
[49] | Tian C., Zhang C., Methods Mol. Biol., 2017, 1500, 11 |
[50] | Zhang C., Ko S. H., Su M., Leng Y., Ribbe A. E., Jiang W., Mao C., J. Am. Chem. Soc., 2009, 131(4), 1413 |
[51] | Zhang C., He Y., Su M., Ko S. H., Ye T., Leng Y., Sun X., Ribbe A. E., Jiangh W., Mao C., Faraday Discuss., 2009, 143, 221; discussion 265 |
[52] | Hong F., Zhang F., Liu Y., Yan H., Chem. Rev., 2017, 117(20), 12584 |
[53] | Liu L., You Y., Zhou K., Guo B., Cao Z., Zhao Y., Wu H. C., Angew. Chem. Int. Ed., 2019, 58, 14929 |
[54] | Maingi V., Burns J. R., Uusitalo J. J., Howorka S., Marrink S. J., Sansom M. S. P., Nat. Commun., 2017, 8, 14784 |
[55] | Shao Y., Jia H., Cao T., Liu D., Acc. Chem. Res., 2017, 50(4), 659 |
[56] | English M. A., Soenksen L. R., Gayet R. V., de Puig H., An-genent-Mari N. M., Mao A. S., Nguyen P. Q., Collins J. J., Science, 2019, 365(6455), 780 |
[57] | Ge Z., Lin M., Wang P., Pei H., Yan J., Shi J., Huang Q., He D., Fan C., Zuo X., Anal. Chem., 2014, 86(4), 2124 |
[58] | Ge Z., Pei H., Wang L., Song S., Fan C., Sci. Chi. Chem., 2011, 54(8), 1273 |
[59] | Lin M., Wang J., Zhou G., Wang J., Wu N., Lu J., Gao J., Chen X., Shi J., Zuo X., Fan C., Angew. Chem. Int. Ed., 2015, 54(7), 2151 |
[60] | Wen Y., Pei H., Shen Y., Xi J., Lin M., Lu N., Shen X., Li J., Fan C., Sci. Rep., 2012, 2, 867 |
[61] | Ge Z., Su Z., Simmons C. R., Li J., Jiang S., Li W., Yang Y., Liu Y., Chiu W., Fan C., Yan H., ACS Appl. Mater. Interfaces, 2019, 11(15), 13874 |
[62] | Ge Z., Fu J., Liu M., Jiang S., Andreoni A., Zuo X., Liu Y., Yan H., Fan C., ACS Appl. Mater. Interfaces, 2019, 11(15), 13881 |
[63] | Pei H., Li F., Wan Y., Wei M., Liu H., Su Y., Chen N., Huang Q., Fan C., J. Am. Chem. Soc., 2012, 134, 11876 |
[64] | Zhao Z., Liu Y., Yan H., Nano Lett., 2011, 11, 2997 |
[65] | Tian Y., Zhang Y., Wang T., Xin H. L., Li H., Gang O., Nature Materials, 2016, 15, 654 |
[66] | Langer R., Nature, 1998, 392, 5 |
[67] | Liang L., Li J., Li Q., Huang Q., Shi J. Y., Yan H., Fan C. H., Angew. Chem. Int. Ed., 2014, 53(30), 7745 |
[68] | Wiraja C., Zhu Y., Lio D. C. S., Yeo D. C., Xie M., Fang W., Li Q., Zheng M., van Steensel M., Wang L., Fan C., Xu C., Nat. Commun., 2019, 10(1), 1147 |
[69] | Ko S., Liu H., Chen Y., Mao C., Biomacromolecules, 2008, 9(11), 3039 |
[70] | Sefah K., Shangguan D., Xiong X., O'Donoghue M. B., Tan W., Nat. Protoc., 2010, 5(6), 1169 |
[71] | Varkouhi A. K., Scholte M., Storm G., Haisma H. J., J. Control Re-lease, 2011, 151(3), 220 |
[72] | Howorka S., Science, 2016, 352(6288), 890 |
[73] | Burns J. R., Seifert A., Fertig N., Howorka S., Nat. Nanotech., 2016, 11(2), 152 |
[74] | Burns J. R., Stulz E., Howorka S., Nano Lett., 2013, 13(6), 2351 |
[75] | Langecker M., Arnaut V., Martin T. G., List J., Renner S., Mayer M., Dietz H., Simmel F. C., Science, 2012, 338(6109), 932 |
[76] | Czogalla A., Kauert D. J., Franquelim H. G., Uzunova V., Zhang Y., Seidel R., Schwille P., Angew. Chem. Int. Ed. Engl., 2015, 54(22), 6501 |
[77] | Burns J. R., Göpfrich K., Wood J. W., Thacker V. V., Stulz E., Keyser U. F., Howorka S., Angew. Chem. Int. Ed. Engl., 2013, 52(46), 12069 |
[78] | Johnson-Buck A., Jiang S., Yan H., Walter N. G., ACS Nano, 2014, 8(6), 5641 |
[79] | Johnson-Buck A., Jiang S., Yan H., Walter N. G., ACS Nano, 2014, 8, 5641 |
[80] | Xie N., Liu S., Yang X., He X., Huang J., Wang K., Analyst, 2017, 142, 3322 |
[81] | Hu Q., Li H., Wang L., Gu H., Fan C., Chem. Rev., 2018, 119(10), 6459 |
[82] | Hu Q., Wang S., Wang L., Gu H., Fan C., Advanced Healthcare Materials, 2018, 20, e1701153 |
[83] | Doherty G. J., McMahon H. T., Annu. Rev. Biochem., 2009, 78, 857 |
[84] | Meng M., Gan Z. X., Zhang J., Liu K. L., Wang L. H., Li S. F., Yao Y., Zhu Y., Li J., Physica Status Solidi B:Basic Solid State Physics, 2017, 254(7), 1700011 |
[85] | Banerjee A., Berezhkovskii A., Nossal R., Phys. Biol., 2016, 13(1), 016005 |
[86] | McMahon H. T., Boucrot E., Nat. Rev. Mol. Cell Biol., 2011, 12(8), 517 |
[87] | Peters P. J., Mironov A., Peretz D., van Donselaar E., Leclerc E., Erpel S., de Armond S. J., Burton D. R., Williamson R. A., Vey M., Prusiner S. B., J. Cell Biol., 2003, 162(4), 703 |
[88] | Nabi I. R., Le P. U., J. Cell Biol., 2003, 161(4), 673 |
[89] | Schaffert D. H., Okholm A. H., Sørensen R. S., Nielsen J. S., Tørring T., Rosen C. B., Kodal A. L., Mortensen M. R., Gothelf K. V., Kjems J., Small, 2016, 12(19), 2634 |
[90] | Lee H., Lytton-Jean A. K. R., Chen Y., Love K. T., Park A. I., Kara-giannis E. D., Sehgal A., Querbes W., Zurenko C. S., Jayaraman M., Peng C. G., Charisse K., Borodovsky A., Manoharan M., Donahoe J. S., Truelove J., Nahrendorf M., Langer R., Anderson D. G., Nat. Nanotech., 2012, 7(6), 389 |
[91] | Li S. P., Jiang Q., Liu S. L., Zhang Y. L., Tian Y. H., Song C., Wang J., Zou Y. G., Anderson G. J., Han J. Y., Chang Y., Liu Y., Zhang C., Chen L., Zhou G. B., Nie G. J., Yan H., Ding B. Q., Zhao Y. L., Nat. Biotechnol., 2018, 36(3), 258 |
[92] | Schwarzenbach H., Hoon D. S., Pantel K., Nat. Rev. Cancer, 2011, 11(6), 426 |
[93] | Choi H. M. T., Chang J. Y., Trinh L. A., Padilla J. E., Fraser S. E., Pierce N. A., Nat. Biotechnol., 2010, 28(11), 1208 |
[94] | Tay C. Y., Yuan L., Leong D. T., ACS Nano, 2015, 9(5), 5609 |
[95] | Zhou W., Li D., Xiong C., Yuan R., Xiang Y., ACS Appl. Mater, Interfaces, 2016, 8(21), 13303 |
[96] | Li S., Xu L., Ma W., Wu X., Sun M., Kuang H., Wang L., Kotov N. A., Xu C., J. Am. Chem. Soc., 2016, 138(1), 306 |
[97] | Thekkan S., Jani M. S., Cui C., Dan K., Zhou G., Becker L., Krishnan Y., Nat. Chem. Biol., 2018, doi:10.1038/s41589-018-0176-3 |
[98] | Zhou G., Lin M., Song P., Chen X., Chao J., Wang L., Huang Q., Huang W., Fan C., Zuo X., Anal. Chem., 2014, 86, 7843 |
[99] | Zhou W., Liang W., Li D., Yuan R., Xiang Y., Biosens. Bioelectron., 2016, 85, 573 |
[100] | Dan K., Veetil A. T., Chakraborty K., Krishnan Y. Nat. Nanotech., 2019, 14(3), 252 |
[101] | Nagrath S., Sequist L. V., Maheswaran S., Bell D. W., Irimia D., Ulkus L., Smith M. R., Kwak E. L., Digumarthy S., Muzikansky A., Ryan P., Balis U. J., Tompkins R. G., Haber D. A., Toner M., Nature, 2007, 450(7173), 1235 |
[102] | Wen C. Y., Wu L. L., Zhang Z. L., Liu Y. L., Wei S. Z., Hu J., Tang M., Sun E. Z., Gong Y. P., Yu J., Pang D. W., ACS Nano, 2014, 8(1), 941 |
[103] | Zhao W., Cui C. H., Bose S., Guo D., Shen C., Wong W. P., Hal-vorsen K., Farokhzad O. C., Teo G. S., Phillips J. A., Dorfman D. M., Karnik R., Karp J. M., Proc. Natl. Acad. Sci., USA, 2012, 109(48), 19626 |
[104] | Sheng W., Chen T., Tan W., Fan Z. H., ACS Nano, 2013, 7(8), 7067 |
[105] | Qu X., Wang S., Ge Z., Wang J., Yao G., Li J., Zuo X., Shi J., Song S., Wang L., Li L., Pei H., Fan C., J. Am. Chem. Soc., 2017, 139(30), 10176 |
[106] | Li S., Chen N., Zhang Z., Wang Y., Biomaterials, 2013, 34(2), 460 |
[107] | Seferos D. S., Giljohann D. A., Hill H. D., Prigodich A. E., Mirkin C. A., J. Am. Chem. Soc., 2007, 129, 15477 |
[108] | Halo T. L., McMahon K. M., Angeloni N. L., Xu Y., Wang W., Chinen A. B., Malin D., Strekalova E., Cryns V. L., Cheng C., Mirkin C. A., Thaxton C. S., Proc. Natl. Acad. Sci. USA, 2014, 111(48), 17104 |
[109] | Briley W. E., Bondy M. H., Randeria P. S., Dupper T. J., Mirkin C. A., Proc. Natl. Acad. Sci. USA, 2015, 112(31), 9591 |
[110] | Song S., Liang Z., Zhang J., Wang L., Li G., Fan C., Angew. Chem. Int. Ed., 2009, 48(46), 8670 |
[111] | Pei H., Liang L., Yao G., Li J., Huang Q., Fan C., Angew. Chem. Int. Ed., 2012, 51(36), 9020 |
[112] | Peng P., Du Y., Zheng J., Wang H., Li T., Angew. Chem. Int. Ed., 2019, 58, 1648 |
[113] | Bhatia D., Arumugam S., Nasilowski M., Joshi H., Wunder C., Chambon V., Prakash V., Grazon C., Nadal B., Maiti P. K., Johannes L., Dubertret B., Krishnan Y., Nat. Nanotechnol., 2016, 11(12), 1112 |
[114] | Wu C., Chen T., Han D., You M., Peng L., Cansiz S., Zhu G., Li C., Xiong X., Jimenez E., Yang C. J., Tan W., ACS Nano, 2013, 7(7), 5724 |
[115] | Saha S., Prakash V., Halder S., Chakraborty K., Krishnan Y., Nat. Nanotech., 2015, 10(7), 645 |
[116] | Modi S., Nizak C., Surana S., Halder S., Krishnan Y., Nat. Nano-technol., 2013, 8(6), 459 |
[117] | Surana S., Bhat J. M., Koushika S. P., Krishnan Y., Nat. Commun., 2011, 2, 340 |
[118] | Jiang Q., Song C., Nangreave J., Liu X., Lin L., Qiu D., Wang Z. G., Zou G., Liang X., Yan H., Ding B., J. Am. Chem. Soc., 2012, 134, 13396 |
[119] | Liu X., Xu Y., Yu T., Clifford C., Liu Y., Yan H., Chang Y., Nano Lett., 2012, 12, 4254 |
[120] | Sun W., Ji W., Hall J. M., Hu Q., Wang C., Beisel C. L., Gu Z., Angew. Chem. Int. Ed., 2015, 54, 12029 |
[121] | Tian J., Ding L., Ju H., Yang Y., Li X., Shen Z., Zhu Z., Yu J. S., Yang C. J., Angew. Chem. Int. Ed., 2014, 53, 9544 |
[122] | Bagalkot V., Farokhzad O. C., Langer R., Jon S., Angew. Chem. Int. Ed. Engl., 2006, 45(48), 8149 |
[123] | Yuan Q., Zhang Y., Chen T., Lu D., Zhao Z., Zhang X., Li Z., Yan C. H., Tan W., ACS Nano, 2012, 6(7), 6337 |
[124] | Zhang P., He Z., Wang C., Chen J., Zhao J., Zhu X., Li C. Z., Min Q., Zhu J. J., ACS Nano, 2015, 9(1), 789 |
[125] | Huang F., Liao W. C., Sohn Y. S., Nechushtai R., Lu C. H., Willner I., J. Am. Chem. Soc., 2016, 138(28), 8936 |
[126] | Sun W., Jiang T., Lu Y., Reiff M., Mo R., Gu Z., J. Am. Chem. Soc., 2014, 136(42), 14722 |
[127] | Chen W. H., Liao W. C., Sohn Y. S., Fadeev M., Cecconello A., Nechushtai R., Willner I., Adv. Funct. Mater., 2018, 28(8), 1705137 |
[128] | Chen W. H., Yu X., Liao W. C., Sohn Y. S., Cecconello A., Kozell A., Nechushtai R., Willner I., Adv. Funct. Mater., 2017, 27(37), 1702102 |
[129] | Liu H., Kwong B., Irvine D. J., Angew. Chem. Int. Ed. Engl., 2011, 50(31), 7052 |
[130] | Mohri K., Nishikawa M., Takahashi N., Shiomi T., Matsuoka N., Ogawa K., Endo M., Hidaka K., Sugiyama H., Takahashi Y., Takakura Y., ACS Nano, 2012, 6(7), 5931 |
[131] | Liu X. W., Xu Y., Yu T., Clifford C., Liu Y., Yan H., Chang Y., Nano Lett., 2012, 12(8), 4254 |
[132] | Xiong X., Liu H., Zhao Z., Altman M. B., Lopez-Colon D., Yang C. J., Chang L. J., Liu C., Tan W., Angew. Chem. Int. Ed., 2013, 52(5), 1472 |
[133] | Celli J. P., Spring B. Q., Rizvi I., Evans C. L., Samkoe K. S., Verma S., Pogue B. W., Hasan T., Chem. Rev., 2010, 110(5), 2795 |
[134] | Wang K., You M., Chen Y., Han D., Zhu Z., Huang J., Williams K., Yang C. J., Tan W., Angew. Chem. Int. Ed., 2011, 50(27), 6098 |
[135] | You M., Peng L., Shao N., Zhang L., Qiu L., Cui C., Tan W., J. Am. Chem. Soc., 2014, 136(4), 1256 |
[136] | You M., Zhu G., Chen T., Donovan M. J., Tan W., J. Am. Chem. Soc., 2015, 137(2), 667 |
[137] | Naldini L., Nature, 2015, 526(7573), 351 |
[138] | Kotterman M. A., Schaffer D. V., Nat. Rev. Genet., 2014, 15(7), 445 |
[139] | Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C., Nature, 1998, 391(6669), 806 |
[140] | Zamore P. D., Tuschl T., Sharp P. A., Bartel D. P., Cell, 2000, 101(1), 25 |
[141] | Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T., Nature, 2001, 411(6836), 494 |
[142] | Brummelkamp T. R., Bernards R., Agami R., Science, 2002, 296(5567), 550 |
[143] | Hong C. A., Eltoukhy A. A., Lee H., Langer R., Anderson D. G., Nam Y. S., Angew. Chem. Int. Ed., 2015, 54(23), 6740 |
[144] | Li J., Zheng C., Cansiz S., Wu C., Xu J., Cui C., Liu Y., Hou W., Wang Y., Zhang L., Teng I. T., Yang H. H., Tan W., J. Am. Chem. Soc., 2015, 137(4), 1412 |
[145] | Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Char-pentier E., Science, 2012, 337(6096), 816 |
[146] | Cong L., Ran F. A., Cox D., Lin S., Barretto R., Habib N., Hsu P. D., Wu X., Jiang W., Marraffini L. A., Zhang F., Science, 2013, 339(6121), 819 |
[147] | Mali P., Yang L., Esvelt K. M., Aach J., Guell M., DiCarlo J. E., Norville J. E., Church G. M., Science, 2013, 339(6121), 823 |
[148] | Huang J., Li J., Lyu Y., Miao Q., Pu K., Nat Mater., 2019, doi:10.1038/s41563-019-0378-4 |
[149] | Granger D. N., Kvietys P. R., Redox. Biol., 2015, 6, 524 |
[150] | Boor P., Ostendorf T., Floege J., Nat. Rev. Nephrol., 2010, 6(11), 643 |
[151] | Praetorius F., Kick B., Behler K. L., Honemann M. N., Weuster-Botz D., Dietz H., Nature, 2017, 552(7683), 84 |
[152] | Agarwal N. P., Matthies M., Gür F. N., Osada K., Schmidt T. L., Angew. Chem. Int. Ed., 2017, 56(20), 5460 |
[153] | Ponnuswamy N., Bastings M. M. C., Nathwani B., Ryu J. H., Chou L. Y. T., Vinther M., Li W. A., Anastassacos F. M., Mooney D. J., Shih W. M., Nat. Commun., 2017, 8, 15654 |
[1] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy[J]. 高等学校化学研究, 2022, 38(4): 928-934. |
[2] | WU Liting, XIN Yujia, GUO Zhaoyang, GAO Wei, ZHU Yanpeng, br, WANG Yinsong, RAN Ruixue, YANG Xiaoying. Cell Membrane-camouflaged Multi-functional Dendritic Large Pore Mesoporous Silica Nanoparticles for Combined Photothermal Therapy and Radiotherapy of Cancer[J]. 高等学校化学研究, 2022, 38(2): 562-571. |
[3] | WANG Youjuan, YE Zhifei, SONG Guosheng, LIU Zhuang. Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy[J]. 高等学校化学研究, 2022, 38(2): 481-492. |
[4] | TANG Lin, ZENG Xiaodong, ZHOU Hui, GUI Conghao, LUO Qiulin, ZHOU Wenyi, WU Jing, LI Qianqian, LI Yang, XIAO Yuling. Theranostic Gold Nanoclusters for NIR-II Imaging and Photodynamic Therapy[J]. 高等学校化学研究, 2021, 37(4): 934-942. |
[5] | LIU Zhenyu, DONG Jinyi, PAN Jiahao, ZHOU Chao, FAN Chunhai, WANG Qiangbin. Catalytic DNA Origami-based Chiral Plasmonic Biosensor[J]. 高等学校化学研究, 2021, 37(4): 914-918. |
[6] | YU Qing, HUANG Xuan, ZHANG Tian, WANG Weili, YANG Dongliang, SHAO Jinjun, DONG Xiaochen. Near-infrared Aza-BODIPY Dyes Through Molecular Surgery for Enhanced Photothermal and Photodynamic Antibacterial Therapy[J]. 高等学校化学研究, 2021, 37(4): 951-959. |
[7] | LI Mengqi, MA He, SHI Chao, ZHANG Han, LONG Saran, SUN Wen, DU Jianjun, FAN Jiangli, PENG Xiaojun. A Cyanine-based Liposomal Nanophotosensitizer for Enhanced Cancer Chemo-Photodynamic Therapy[J]. 高等学校化学研究, 2021, 37(4): 925-933. |
[8] | ZHANG Xindan, GONG Bowen, ZHAI Jiliang, ZHAO Yu, LU Yonglai, ZHANG Liqun, XUE Jiajia. A Perspective: Electrospun Fibers for Repairing Spinal Cord Injury[J]. 高等学校化学研究, 2021, 37(3): 404-410. |
[9] | LI Jun, OU Hanlin, DING Dan. Recent Progress in Boosted PDT Induced Immunogenic Cell Death for Tumor Immunotherapy[J]. 高等学校化学研究, 2021, 37(1): 83-89. |
[10] | FANG Fang, GAO Yuting, LUO Liang. Mitochondrion-anchoring AIEgen with Large Stokes Shift for Imaging-guided Photodynamic Therapy[J]. 高等学校化学研究, 2021, 37(1): 137-142. |
[11] | HAO Yuxuan, XU Shengpeng, CHEN Ming, QIAN Jun, TANG Ben Zhong. Bioapplications Manipulated by AIEgens with Nonlinear Optical Effect[J]. 高等学校化学研究, 2021, 37(1): 25-37. |
[12] | LIU Jie, CHEN Bo, ZHANG Jianjun. Preparation of pH-Responsive Doxorubicin Nanocapsules by Combining High-gravity Antisolvent Precipitation with In-situ Polymerization for Intracellular Anticancer Drug Delivery[J]. 高等学校化学研究, 2020, 36(5): 927-933. |
[13] | CAO Mengyao, SUN Yueyang, XIAO Mingshu, LI Li, LIU Xiaohui, JIN Hong, PEI Hao. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy[J]. 高等学校化学研究, 2020, 36(2): 254-260. |
[14] | LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei. Programmable Assembly of DNA-protein Hybrid Structures[J]. 高等学校化学研究, 2020, 36(2): 211-218. |
[15] | WANG Congli, DI Zhenghan, FAN Zetan, LI Lele. Self-assembly of DNA Nanostructures via Bioinspired Metal Ion Coordination[J]. 高等学校化学研究, 2020, 36(2): 268-273. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||