高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (2): 211-218.doi: 10.1007/s40242-019-0038-x
LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei
收稿日期:
2019-11-06
修回日期:
2019-11-26
出版日期:
2020-04-01
发布日期:
2019-11-27
通讯作者:
WANG Pengfei
E-mail:pengfei.wang@sjtu.edu.cn
基金资助:
LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei
Received:
2019-11-06
Revised:
2019-11-26
Online:
2020-04-01
Published:
2019-11-27
Contact:
WANG Pengfei
E-mail:pengfei.wang@sjtu.edu.cn
Supported by:
摘要: DNA is the genetic information carrier for most known living organisms on Earth, while proteins are the functional component that carry out most biological processes. Many natural machineries are DNA-protein hybrid complexes to cooperatively and efficiently conduct sophisticated biological tasks. It has drawn increasing interest to the research field to construct artificial DNA-protein hybrid structures towards a variety of applications including biological studies, nanofabrication, biomedical research, etc. In this regard, here in this report we reviewed the up-to-date progress on making DNA-protein hybrid structures, with a particular focus on DNA nanotechnology-enabled programmable assembly of DNA-protein hybrid structures.
LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei. Programmable Assembly of DNA-protein Hybrid Structures[J]. 高等学校化学研究, 2020, 36(2): 211-218.
LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei. Programmable Assembly of DNA-protein Hybrid Structures[J]. Chemical Research in Chinese Universities, 2020, 36(2): 211-218.
[1] | Seeman N. C., J. Theor. Biol., 1982, 99(2), 237 |
[2] | Seeman N. C., Nano Letters, 2001, 1(1), 22 |
[3] | Yan H., Park S. H., Finkelstein G., Reif J. H., Labean T. H., Science, 2003, 301(5641), 1882 |
[4] | Seeman N. C., Nature, 2003, 421(6921), 427 |
[5] | He Y., Tian Y., Ribbe A. E., Mao C., J. Am. Chem. Soc., 2006, 128(50), 15978 |
[6] | Ke Y., Liu Y., Zhang J., Yan H., J. Am. Chem. Soc., 2006, 128(13), 4414 |
[7] | Li Z., Wei B., Nangreave J., Lin C., Liu Y., Mi Y., Yan H., J. Am. Chem. Soc., 2009, 131(36), 13093 |
[8] | Ke Y., Ong L. L., Shih W. M., Yin P., Science, 2012, 338(6111), 1177 |
[9] | Wei B., Dai M., Yin P., Nature, 2012, 485(7400), 623 |
[10] | Li J., Fan C. H., Pei H., Shi J. Y., Huang Q., Adv. Mater., 2013, 25(32), 4386 |
[11] | Song C., Wang Z. G., Ding B. Q., Small, 2013, 9(14), 2382 |
[12] | Wang P. F., Wu S. Y., Tian C., Yu G. M., Jiang W., Wang G. S., Mao C. D., J. Am. Chem. Soc., 2016, 138(41), 13579 |
[13] | Winfree E., Liu F., Wenzler L. A., Seeman N. C., Nature, 1998, 394(6693), 539 |
[14] | He Y., Ye T., Su M., Zhang C., Ribbe A. E., Jiang W., Mao C., Nature, 2008, 452(7184), 198 |
[15] | Zheng J., Birktoft J. J., Chen Y., Wang T., Sha R., Constantinou P. E., Ginell S. L., Mao C., Seeman N. C., Nature, 2009, 461(7260), 74 |
[16] | Ong L. L., Hanikel N., Yaghi O. K., Grun C., Strauss M. T., Bron P., Lai-Kee-Him J., Schueder F., Wang B., Wang P., Kishi J. Y., Myhrvold C., Zhu A., Jungmann R., Bellot G., Ke Y., Yin P., Nature, 2017, 552(7683), 72 |
[17] | Song J., Li Z., Wang P., Meyer T., Mao C., Ke Y., Science, 2017, 357(6349), eaan3377 |
[18] | Woods D., Doty D., Myhrvold C., Hui J., Zhou F., Yin P., Winfree E., Nature, 2019, 567(7748), 366 |
[19] | Zhang Y., Pan V., Li X., Yang X., Li H., Wang P., Ke Y., Small, 2019, 15(26), e1900228 |
[20] | Rothemund P. W. K., Nature, 2006, 440(7082), 297 |
[21] | Andersen E. S., Dong M., Nielsen M. M., Jahn K., Subramani R., Mamdouh W., Golas M. M., Sander B., Stark H., Cristiano L. P. O., Pedersen J. S., Birkedal V., Besenbacher F., Gothelf K. V., Kjems J., Nature, 2009, 459(7243), 73 |
[22] | Dietz H., Douglas S. M., Shih W. M., Science, 2009, 325(5941), 725 |
[23] | Douglas S. M., Dietz H., Liedl T., Hogberg B., Graf F., Shih W. M., Nature, 2009, 459(7245), 414 |
[24] | Han D., Pal S., Nangreave J., Deng Z., Liu Y., Yan H., Science, 2011, 332(6027), 342 |
[25] | Wang P. F., Ko S. H., Tian C., Hao C. H., Mao C. D., Chem. Commun., 2013, 49(48), 5462 |
[26] | Iinuma R., Ke Y., Jungmann R., Schlichthaerle T., Woehrstein J. B., Yin P., Science, 2014, 344(6179), 65 |
[27] | Zhang F., Jiang S., Wu S., Li Y., Liu Y., Mao C., Nat. Nanotechnol., 2015, 10(9), 779 |
[28] | Wang P., Gaitanaros S., Lee S., Bathe M., Shih W. M., Ke Y., J. Am. Chem. Soc., 2016, 138(24), 7733 |
[29] | Hong F., Zhang F., Liu Y., Yan H., Chem. Rev., 2017, 117(20), 12584 |
[30] | Tikhomirov G., Petersen P., Qian L. L., Nature, 2017, 552(7683), 67 |
[31] | Wang P. F., Meyer T. A., Pan V., Dutta P. K., Ke Y. G., Chem., 2017, 2(3), 359 |
[32] | Zhou K., Dong J., Zhou Y., Dong J., Wang M., Wang Q., Small, 2019, 15(26), e1804044 |
[33] | Mattiroli F., Bhattacharyya S., Dyer P. N., White A. E., Sandman K., Burkhart B. W., Byrne K. R., Lee T., Ahn N. G., Santangelo T. J., Reeve J. N., Luger K., Science, 2017, 357(6351), 609 |
[34] | Gatchalian J., Wang X., Ikebe J., Cox K. L., Tencer A. H., Zhang Y., Burge N. L., Di L., Gibson M. D., Musselman C. A., Poirier M. G., Kono H., Hayes J. J., Kutateladze T. G., Nat. Commun., 2017, 8(1), 1489 |
[35] | Zhou Y. B., Gerchman S. E., Ramakrishnan V., Travers A., Muyldermans S., Nature, 1998, 395(6700), 402 |
[36] | Agback P., Baumann H., Knapp S., Ladenstein R., Hard T., Nat. Struct. Biol., 1998, 5(7), 579 |
[37] | Driessen R. P. C., Meng H., Suresh G., Shahapure R., Lanzani G., Priyakumar U. D., White M. F., Schiessel H., Van Noort J., Dame R. T., Nucleic Acids Res., 2013, 41(1), 196 |
[38] | Robinson H., Gao Y. G., McCrary B. S., Edmondson S. P., Shriver J. W., Wang A. H. J., Nature, 1998, 392(6672), 202 |
[39] | Durniak K. J., Bailey S., Steitz T. A., Science, 2008, 322(5901), 553 |
[40] | Knott G. J., Doudna J. A., Science, 2018, 361(6405), 866 |
[41] | Nishimasu H., Ran F. A., Hsu P. D., Konermann S., Shehata S. I., Dohmae N., Ishitani R., Zhang F., Nureki O., Cell, 2014, 156(5), 935 |
[42] | Liszczak G. P., Brown Z. Z., Kim S. H., Oslund R. C., David Y., Muir T. W., P. Natl. Acad. Sci. USA, 2017, 114(4), 681 |
[43] | Deng W. L., Shi X. H., Tjian R., Lionnet T., Singer R. H., P. Natl. Acad. Sci. USA, 2015, 112(38), 11870 |
[44] | Fu Y., Rocha P. P., Luo V. M., Raviram R., Deng Y., Mazzoni E. O., Skok J. A., Nat. Commun., 2016, 7, 11707 |
[45] | Fu J., Yang Y. R., Dhakal S., Zhao Z., Liu M., Zhang T., Walter N. G., Yan H., Nat. Protoc., 2016, 11(11), 2243 |
[46] | Fu J., Liu M., Liu Y., Woodbury N. W., Yan H., J. Am. Chem. Soc., 2012, 134(12), 5516 |
[47] | McMillan J. R., Mirkin C. A., J. Am. Chem. Soc., 2018, 140(22), 6776 |
[48] | Henning-Knechtel A., Knechtel J., Magzoub M., Nucleic. Acids Res., 2017, 45(21), 12057 |
[49] | Zhao Z., Zhang M., Hogle J. M., Shih W. M., Wagner G., Nasr M. L., J. Am. Chem. Soc., 2018, 140(34), 10639 |
[50] | Liang S. I., McFarland J. M., Rabuka D., Gartner Z. J., J. Am. Chem. Soc., 2014, 136(31), 10850 |
[51] | Ke G. L., Liu M. H., Jiang S. X., Qi X. D., Yang Y. R., Wootten S., Zhang F., Zhu Z., Liu Y., Yang C. J., Yan H., Angew. Chem. Int. Ed., 2016, 55(26), 7483 |
[52] | Marth G., Hartley A. M., Reddington S. C., Sargisson L. L., Parcollet M., Dunn K. E., Jones D. D., Stulz E., ACS Nano, 2017, 11(5), 5003 |
[53] | Rosen C. B., Kodal A. L., Nielsen J. S., Schaffert D. H., Scavenius C., Okholm A. H., Voigt N. V., Enghild J. J., Kjems J., Torring T., Gothelf K. V., Nat. Chem., 2014, 6(9), 804 |
[54] | Wollman A. J., Sanchez-Cano C., Carstairs H. M., Cross R. A., Turberfield A. J., Nat. Nanotechnol., 2014, 9(1), 44 |
[55] | Sagredo S., Pirzer T., Rafat A. A., Goetzfried M. A., Moncalian G., Simmel F. C., De La Cruz F., Angew. Chem. Int. Ed., 2016, 55(13), 4348 |
[56] | Xiong X., Liu H., Zhao Z., Altman M. B., Lopez-Colon D., Yang C. J., Chang L. J., Liu C., Tan W., Angew. Chem. Int. Ed. Engl., 2013, 52(5), 1472 |
[57] | Vinkenborg J. L., Mayer G., Famulok M., Angew. Chem. Int. Ed., 2012, 51(36), 9176 |
[58] | Lovrinovic M., Seidel R., Wacker R., Schroeder H., Seitz O., Engelhard M., Goody R. S., Niemeyer C. M., Chem. Commun.(Camb), 2003, (7), 822 |
[59] | Duckworth B. P., Chen Y., Wollack J. W., Sham Y., Mueller J. D., Taton T. A., Distefano M. D., Angew. Chem. Int. Ed., 2007, 46(46), 8819 |
[60] | Valero J., Pal N., Dhakal S., Walter N. G., Famulok M., Nat. Nanotechnol., 2018, 13(6), 496 |
[61] | Li S., Jiang Q., Liu S., Zhang Y., Tian Y., Song C., Wang J., Zou Y., Anderson G. J., Han J. Y., Chang Y., Liu Y., Zhang C., Chen L., Zhou G., Nie G., Yan H., Ding B., Zhao Y., Nat. Biotechnol., 2018, 36(3), 258 |
[62] | Nielsen T. B., Thomsen R. P., Mortensen M. R., Kjems J., Nielsen P. F., Nielsen T. E., Kodal A. L. B., Clo E., Gothelf K. V., Angew. Chem. Int. Ed., 2019, 58(27), 9068 |
[63] | Jiang T., Meyer T. A., Modlin C., Zuo X., Conticello V. P., Ke Y., J. Am. Chem. Soc., 2017, 139(40), 14025 |
[64] | Lacroix A., Edwardson T. G. W., Hancock M. A., Dore M. D., Sleiman H. F., J. Am. Chem. Soc., 2017, 139(21), 7355 |
[65] | Dong Y., Chen S., Zhang S., Sodroski J., Yang Z., Liu D., Mao Y., Angew. Chem. Int. Ed., 2018, 57(8), 2072 |
[66] | Hernandez-Garcia A., Estrich N. A., Werten M. W., Van Der Maarel J. R., Labean T. H., De Wolf F. A., Cohen Stuart M. A., De Vries R., ACS Nano, 2017, 11(1), 144 |
[67] | Thompson R. E., Stevens A. J., Muir T. W., Nat. Chem., 2019, 11(8), 737 |
[68] | Zhang C., Tian C., Guo F., Liu Z., Jiang W., Mao C., Angew. Chem. Int. Ed., 2012, 51(14), 3382 |
[69] | Udomprasert A., Bongiovanni M. N., Sha R., Sherman W. B., Wang T., Arora P. S., Canary J. W., Gras S. L., Seeman N. C., Nat. Nanotechnol., 2014, 9(7), 537 |
[70] | Mao X. H., Li K., Liu M. M., Wang X. Y., Zhao T. X., An B. L., Cui M. K., Li Y. F., Pu J. H., Li J., Wang L. H., Lu T. K., Fan C. H., Zhong C., Nat. Commun., 2019, 10, 1395 |
[71] | Zhou K., Ke Y., Wang Q., J. Am. Chem. Soc., 2018, 140(26), 8074 |
[72] | Jin J., Baker E. G., Wood C. W., Bath J., Woolfson D. N., Turberfield A. J., ACS Nano, 2019, 13, 9927 |
[73] | Praetorius F., Dietz H., Science, 2017, 355(6331), eaam5488 |
[74] | Raz M. H., Hidaka K., Sturla S. J., Sugiyama H., Endo M., J. Am. Chem. Soc., 2016, 138(42), 13842 |
[75] | Funke J. J., Ketterer P., Lieleg C., Schunter S., Korber P., Dietz H., Sci. Adv., 2016, 2(11), e1600974 |
[76] | Ke Y., Meyer T., Shih W. M., Bellot G., Nat. Commun., 2016, 7, 10935 |
[77] | Grossi G., Jepsen M. D. E., Kjems J., Andersen E. S., Nat. Commun., 2017, 8(1), 992 |
[78] | Auvinen H., Zhang H., Nonappa, Kopilow A., Niemela E. H., Nummelin S., Correia A., Santos H. A., Linko V., Kostiainen M. A., Adv. Healthc. Mater., 2017, 6(18), 1700692 |
[79] | Schaffert D. H., Okholm A. H., Sorensen R. S., Nielsen J. S., Torring T., Rosen C. B., Kodal A. L., Mortensen M. R., Gothelf K. V., Kjems J., Small, 2016, 12(19), 2634 |
[80] | Mao J. Y., Li H. W., Wei S. C., Harroun S. G., Lee M. Y., Lin H. Y., Chung C. Y., Hsu C. H., Chen Y. R., Lin H. J., Huang C. C., ACS Appl. Mater. Interfaces, 2017, 9(51), 44307 |
[1] | GAO Huimin, SHI Rui, ZHU Youliang, QIAN Hujun and LU Zhongyuan. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties[J]. 高等学校化学研究, 2022, 38(3): 653-670. |
[2] | YANG Miao, WANG Wenjing, SU Kongzhao, YUAN Daqiang. Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation[J]. 高等学校化学研究, 2022, 38(2): 428-432. |
[3] | QIAO Junyi, LIU Xinyao, ZHANG Lirong, LIU Yunling. Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective[J]. 高等学校化学研究, 2022, 38(1): 31-44. |
[4] | FENG Enduo, TIAN Yang. Surface-enhanced Raman Scattering of Self-assembled Superstructures[J]. 高等学校化学研究, 2021, 37(5): 989-1007. |
[5] | Andy Shun-Hoi CHEUNG, Sammual Yu-Lut LEUNG, Franky Ka-Wah HAU, Vivian Wing-Wah YAM. Supramolecular Self-assembly of Amphiphilic Alkynyl-platinum(II) 2,6-Bis(N-alkylbenzimidazol-2'-yl) pyridine Complexes[J]. 高等学校化学研究, 2021, 37(5): 1079-1084. |
[6] | HAN Lin, WANG Yuang, TANG Wantao, LIU Jianbing, DING Baoquan. Bioimaging Based on Nucleic Acid Nanostructures[J]. 高等学校化学研究, 2021, 37(4): 823-828. |
[7] | REN Yiqing, LIU Xinlong, GE Huan, GUO Yuanyuan, ZHANG Qiushuang, XIE Miao, WANG Ping, ZHU Xinyuan, ZHANG Chuan. A Combinatorial Approach Based on Nucleic Acid Assembly and Electrostatic Compression for siRNA Delivery[J]. 高等学校化学研究, 2021, 37(4): 906-913. |
[8] | YANG Jia, ZHENG Rui, AN Hongwei, WANG Hao. In vivo Self-assembled Peptide Nanoprobes for Disease Diagnosis[J]. 高等学校化学研究, 2021, 37(4): 855-869. |
[9] | LIU Zhiyu, LIANG Gaolin, ZHAN Wenjun. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging[J]. 高等学校化学研究, 2021, 37(4): 889-899. |
[10] | LI Lun, XUE Xiaoxia, SUN Yimeng, ZHAO Wuduo, LI Tiesheng, LIU Minghua, WU Yangjie. Self-assembly Palladacycle Thiophene Imine Monolayer—Investigating on Catalytic Activity and Mechanism for Coupling Reaction[J]. 高等学校化学研究, 2020, 36(5): 821-828. |
[11] | ZHANG Junjie, WANG Can, DUAN Ruomeng, PENG Chencheng, YANG Biao, CAO Nan, ZHANG Haiming, CHI Lifeng. Two-dimensional Molecular Phase Transition of Alkylated-TDPB on Au(111) and Cu(111) Surfaces[J]. 高等学校化学研究, 2020, 36(4): 685-689. |
[12] | LIU Shengtang, YANG Miao, LIU Cheng, TIAN Bailin, DING Mengning. Superlattice Structure from Re-stacked NiFe Layer Double Hydroxides for Oxygen Evolution Reaction[J]. 高等学校化学研究, 2020, 36(4): 680-684. |
[13] | WANG Congli, DI Zhenghan, FAN Zetan, LI Lele. Self-assembly of DNA Nanostructures via Bioinspired Metal Ion Coordination[J]. 高等学校化学研究, 2020, 36(2): 268-273. |
[14] | YIN Jue, WANG Junke, NIU Renjie, REN Shaokang, WANG Dexu, CHAO Jie. DNA Nanotechnology-based Biocomputing[J]. 高等学校化学研究, 2020, 36(2): 219-226. |
[15] | LI Tao, DUAN Ruilin, DUAN Zhijuan, HUANG Fujian, XIA Fan. Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection[J]. 高等学校化学研究, 2020, 36(2): 194-202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||