高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (2): 203-210.doi: 10.1007/s40242-020-9036-2
YANG Linlin1,2, MIAO Yanyan1, HAN Da1
收稿日期:
2019-10-31
修回日期:
2019-12-18
出版日期:
2020-04-01
发布日期:
2020-03-18
通讯作者:
HAN Da
E-mail:dahan@sjtu.edu.cn
基金资助:
YANG Linlin1,2, MIAO Yanyan1, HAN Da1
Received:
2019-10-31
Revised:
2019-12-18
Online:
2020-04-01
Published:
2020-03-18
Contact:
HAN Da
E-mail:dahan@sjtu.edu.cn
Supported by:
摘要: Recent developments in DNA nanotechnology have brought various nanoscale structures, devices and functional systems for different applications. As biological barriers with significant functions, cell membranes provide direct interfaces for studying cellular environment and states. So far, DNA nanotechnology engineered on live cell membranes has advanced our fundamental understandings of DNA nanomaterials and facilitated the designs of novel sensing, imaging and therapeutic platforms. In this review, we highlighted strategies and outcomes of using DNA nanotechnology on cell membranes towards various biomedical applications, including biosensing, imaging, cellular function regulations and targeted cancer therapy. Furthermore, we also discussed the challenges and opportunities of DNA nanotechnology on cell membranes towards broader applications.
YANG Linlin, MIAO Yanyan, HAN Da. DNA Nanotechnology on Live Cell Membranes[J]. 高等学校化学研究, 2020, 36(2): 203-210.
YANG Linlin, MIAO Yanyan, HAN Da. DNA Nanotechnology on Live Cell Membranes[J]. Chemical Research in Chinese Universities, 2020, 36(2): 203-210.
[1] | Munro S., Cell, 2003, 115(4), 377 |
[2] | Singer S. J., Nicolson G. L., Science, 1972, 175(4023), 720 |
[3] | Ren K., Liu Y., Wu J., Zhang Y., Zhu J., Yang M., Ju H., Nat. Commun., 2016, 7, 13580 |
[4] | Liu Y. C., Yen H. Y., Chen C. Y., Chen C. H., Cheng P. F., Juan Y. H., Chen C. H., Khoo K. H., Yu C. J., Yang P. C., Hsu T. L., Wong C. H., Proc. Natl. Acad. Sci. USA, 2011, 108(28), 11332 |
[5] | Yuzwa S. A., Shan X., Macauley M. S., Clark T., Skorobogatko Y., Vosseller K., Vocadlo D. J., Nat. Chem. Biol., 2012, 8(4), 393 |
[6] | Chen J., Seeman N. C., Nature, 1991, 350(6319), 631 |
[7] | Seeman N. C., Nature, 2003, 421(6921), 427 |
[8] | Rothemund P. W. K., Nature, 2006, 440(7082), 297 |
[9] | Ding B., Seeman N. C., Science, 2006, 314(5805), 1583 |
[10] | Douglas S. M., Dietz H., Liedl T., Högberg B., Graf F., Shih W. M., Nature, 2009, 459(7245), 414 |
[11] | Ke Y., Ong L. L., Shih W. M., Yin P., Science, 2012, 338(6111), 1177 |
[12] | Acuna G. P., Möller F. M., Holzmeister P., Beater S., Lalkens B., Tinnefeld P., Science, 2012, 338(6106), 506 |
[13] | Gerling T., Wagenbauer K. F., Neuner A. M., Dietz H., Science, 2015, 347(6229), 1446 |
[14] | Angelin A., Weigel S., Garrecht R., Meyer R., Bauer J., Kumar R. K., Hirtz M., Niemeyer C. M., Angew. Chem., Int. Ed., 2015, 54(52), 15813 |
[15] | Seeman N. C., J. Theor. Biol., 1982, 99(2), 237 |
[16] | Kallenbach N. R., Ma R. I., Seeman N. C., Nature, 1983, 305(5937), 829 |
[17] | Tay C. Y., Yuan L., Leong D. T., ACS Nano, 2015, 9(5), 5609 |
[18] | Setyawati M. I., Kutty R. V., Tay C. Y., Yuan X., Xie J., Leong D. T., ACS Appl. Mater. Interfaces, 2014, 6(24), 21822 |
[19] | Meyer R., Niemeyer C. M., Small, 2011, 7(22), 3211 |
[20] | Douglas S. M., Chou J. J., Shih W. M., Proc. Natl. Acad. Sci. USA, 2007, 104(16), 6644 |
[21] | Zhao W., Loh W., Droujinine I. A., Teo W., Kumar N., Schafer S., Cui C. H., Zhang L., Sarkar D., Karnik R., Karp J. M., The FASEB Journal, 2011, 25(9), 3045 |
[22] | Ren K., Liu Y., Wu J., Zhang Y., Zhu J., Yang M., Ju H., Nat. Commun., 2016, 7(1), 13580 |
[23] | Akbari E., Mollica M. Y., Lucas C. R., Bushman S. M., Patton R. A., Shahhosseini M., Song J. W., Castro C. E., Adv. Mater., 2017, 29(46), 1703632 |
[24] | Zhao W., Schafer S., Choi J., Yamanaka Y. J., Lombardi M. L., Bose S., Carlson A. L., Phillips J. A., Teo W., Droujinine I. A., Cui C. H., Jain R. K., Lammerding J., Love J. C., Lin C. P., Sarkar D., Karnik R., Karp J. M., Nat. Nanotechnol., 2011, 6(8), 524 |
[25] | Ying L., Xie N., Yang Y., Yang X., Zhou Q., Yin B., Huang J., Wang K., Chem. Commun., 2016, 52(50), 7818 |
[26] | Feng G., Luo X., Lu X., Xie S., Deng L., Kang W., He F., Zhang J., Lei C., Lin B., Huang Y., Nie Z., Yao S., Angew. Chem., Int. Ed., 2019, 58(20), 6590 |
[27] | Zeng S., Liu D., Li C., Yu F., Fan L., Lei C., Huang Y., Nie Z., Yao S., Anal. Chem., 2018, 90(22), 13459 |
[28] | Liu L., Dou C. X., Liu J. W., Wang X. N., Ying Z. M., Jiang J. H., Anal. Chem., 2018, 90(19), 11198 |
[29] | Qiu L., Zhang T., Jiang J., Wu C., Zhu G., You M., Chen X., Zhang L., Cui C., Yu R., Tan W., J. Am. Chem. Soc., 2014, 136(38), 13090 |
[30] | Han D., Zhu G., Wu C., Zhu Z., Chen T., Zhang X., Tan W., ACS Nano, 2013, 7(3), 2312 |
[31] | Chang X., Zhang C., Lv C., Sun Y., Zhang M., Zhao Y., Yang L., Han D., Tan W., J. Am. Chem. Soc., 2019, 141(32), 12738 |
[32] | Peng R., Zheng X., Lyu Y., Xu L., Zhang X., Ke G., Liu Q., You C., Huan S., Tan W., J. Am. Chem. Soc., 2018, 140(31), 9793 |
[33] | You M., Peng L., Shao N., Zhang L., Qiu L., Cui C., Tan W., J. Am. Chem. Soc., 2014, 136(4), 1256 |
[34] | You M., Lyu Y., Han D., Qiu L., Liu Q., Chen T., Wu C. S., Peng L., Zhang L., Bao G., Tan W., Nat. Nanotechnol., 2017, 12(5), 453 |
[35] | Xiong X., Liu H., Zhao Z., Altman M. B., Lopez-Colon D., Yang C. J., Chang L. J., Liu C., Tan W., Angew. Chem. Int. Ed., 2013, 52(5), 1472 |
[36] | Ke G., Zhu Z., Wang W., Zou Y., Guan Z., Jia S., Zhang H., Wu X., Yang C. J., ACS Appl. Mater. Interfaces, 2014, 6(17), 15329 |
[37] | Todhunter M. E., Jee N. Y., Hughes A. J., Coyle M. C., Cerchiari A., Farlow J., Garbe J. C., LaBarge M. A., Desai T. A., Gartner Z. J., Nat. Methods, 2015, 12(10), 975 |
[38] | Selden N. S., Todhunter M. E., Jee N. Y., Liu J. S., Broaders K. E., Gartner Z. J., J. Am. Chem. Soc., 2012, 134(2), 765 |
[39] | Peng R., Wang H., Lyu Y., Xu L., Liu H., Kuai H., Liu Q., Tan W., J. Am. Chem. Soc., 2017, 139(36), 12410 |
[40] | Liang H., Chen S., Li P., Wang L., Li J., Li J., Yang H. H., Tan W., J. Am. Chem. Soc., 2018, 140(12), 4186 |
[41] | Ang Y. S., Li J. E. J., Chua P. J., Ng C. T., Bay B. H., Yung L. Y. L., Anal. Chem., 2018, 90(10), 6193 |
[42] | Tang Y., Lin Y., Yang X., Wang Z., Le X. C., Li F., Anal. Chem., 2015, 87(16), 8063 |
[43] | Kurz A., Bunge A., Windeck A. K., Rost M., Flasche W., Arbuzova A., Strohbach D., Müller S., Liebscher J., Huster D., Herrmann A., Angew. Chem., Int. Ed., 2006, 45(27), 4440 |
[44] | Breaker R. R., Joyce G. F., Chem. Boil., 1994, 1(4), 223 |
[45] | Liu J., Lu Y., J. Am. Chem. Soc., 2007, 129(32), 9838 |
[46] | Pavlov V., Xiao Y., Gill R., Dishon A., Kotler M., Willner I., Anal. Chem., 2004, 76(7), 2152 |
[47] | Travascio P., Witting P. K., Mauk A. G., Sen D., J. Am. Chem. Soc., 2001, 123(7), 1337 |
[48] | Li J., Lu Y., J. Am. Chem. Soc., 2000, 122(42), 10466 |
[49] | Li J., Zheng W., Kwon A. H., Lu Y., Nucleic Acids Res., 2000, 28(2), 481 |
[50] | Hollenstein M., Hipolito C., Lam C., Dietrich D., Perrin D. M., Angew. Chem., Int. Ed., 2008, 47(23), 4346 |
[51] | Liu J., Lu Y., Angew. Chem., Int. Ed., 2007, 46(40), 7587 |
[52] | Zhang J., Lan T., Lu Y., Adv. Healthc. Mat., 2019, 8(6), 1801158 |
[53] | Zhang J., Catalysts, 2018, 8(11), 550 |
[54] | Choi J., Kim S., Tachikawa T., Fujitsuka M., Majima T., J. Am. Chem. Soc., 2011, 133(40), 16146 |
[55] | Day H. A., Pavlou P., Waller Z. A. E., Bioorgan. Med. Chem., 2014, 22(16), 4407 |
[56] | Zhang G., Surwade S. P., Zhou F., Liu H., Chem. Soc. Rev., 2013, 42(7), 2488 |
[57] | Chao J., Liu H., Su S., Wang L., Huang W., Fan C., Small, 2014, 10(22), 4626 |
[58] | Zadegan R. M., Norton M. L., Int. J. Mol. Sci., 2012, 13(6), 7149 |
[59] | Ke Y., Castro C., Choi J. H., Annu. Rev. Biomed. Eng., 2018, 20, 375 |
[60] | Burns J. R., Seifert A., Fertig N., Howorka S., Nat. Nanotechnol., 2016, 11(2), 152 |
[61] | Gopfrich K., Li C. Y., Mames I., Bhamidimarri S. P., Ricci M., Yoo J., Mames A., Ohmann A., Winterhalter M., Stulz E., Aksimentiev A., Keyser U. F., Nano Lett., 2017, 17(7), 4548 |
[62] | Seifert A., Goepfrich K., Burns J. R., Fertig N., Keyser U. F., Howorka S., ACS Nano, 2015, 9(2), 1117 |
[63] | Burns J. R., Goepfrich K., Wood J. W., Thacker V. V., Stulz E., Keyser U. F., Howorka S., Angew. Chem., Int. Ed., 2013, 52(46), 12069 |
[64] | Ohmann A., Li C. Y., Maffeo C., Al Nahas K., Baumann K. N., Göpfrich K., Yoo J., Keyser U. F., Aksimentiev A., Nat. Commun., 2018, 9(1), 2426 |
[65] | Akbari E., Mollica M. Y., Lucas C. R., Bushman S. M., Patton R. A., Shahhosseini M., Song J. W., Castro C. E., Adv. Mater., 2017, 29(46), 1703632 |
[66] | Wang K. S., Kim H. T., Nikiforow S., Heubeck A. T., Ho V. T., Koreth J., Alyea E. P., Armand P., Blazar B. R., Soiffer R. J., Antin J. H., Cutler C. S., Ritz J., Blood, 2017, 130(26), 2889 |
[67] | Sengers B. G., McGinty S., Nouri F. Z., Argungu M., Hawkins E., Hadji A., Weber A., Taylor A., Sepp A., MAbs, 2016, 8(5), 905 |
[68] | Kokla A., Blouchos P., Livaniou E., Zikos C., Kakabakos S. E., Petrou P. S., Kintzios S., J. Mol. Recognit., 2013, 26(12), 627 |
[69] | Bino T., Frey J. L., Ortaldo J. R., Cell. Immunol., 1992, 142(1), 28 |
[70] | Zhang K., Hao L., Hurst S. J., Mirkin C. A., J. Am. Chem. Soc., 2012, 134(40), 16488 |
[71] | Rudchenko M., Taylor S., Pallavi P., Dechkovskaia A., Khan S., Butler V. P., Jr., Rudchenko S., Stojanovic M. N., Nat. Nanotechnol., 2013, 8(8), 580 |
[72] | Keefe A. D., Pai S., Ellington A., Nature Reviews Drug Discovery, 2010, 9(8), 537 |
[73] | Rusconi C. P., Roberts J. D., Pitoc G. A., Nimjee S. M., White R. R., Quick G., Scardino E., Fay W. P., Sullenger B. A., Nat. Biotechnol., 2004, 22(11), 1423 |
[74] | Famulok M., Hartig J. S., Mayer G., Chem. Rev., 2007, 107(9), 3715 |
[75] | Zhu H., Li J., Zhang X. B., Ye M., Tan W., ChemMedChem, 2015, 10(1), 39 |
[76] | Tuerk C., Gold L., Science, 1990, 249(4968), 505 |
[77] | Ellington A. D., Szostak J. W., Nature, 1990, 346(6287), 818 |
[78] | Liu Q., Jin C., Wang Y., Fang X., Zhang X., Chen Z., Tan W., NPG Asia Materials, 2014, 6(4), e95 |
[79] | Yang L., Zhang X., Ye M., Jiang J., Yang R., Fu T., Chen Y., Wang K., Liu C., Tan W., Adv. Drug Deliver. Rev., 2011, 63(14), 1361 |
[80] | Brody E. N., Gold L., Rev. Mol. Biotechnol., 2000, 74(1), 5 |
[81] | Wang Y. M., Wu Z., Liu S. J., Chu X., Anal. Chem., 2015, 87(13), 6470 |
[82] | Wu X. R., Wu C. W., Zhang C., Chinese J. Polym. Sci., 2017, 35(1), 1 |
[83] | Lee D. S., Qian H., Tay C. Y., Leong D. T., Chem. Soc. Rev., 2016, 45(15), 4199 |
[84] | Angell C., Xie S., Zhang L., Chen Y., Small, 2016, 12(9), 1117 |
[85] | Jones M. R., Seeman N. C., Mirkin C. A., Science, 2015, 347(6224), 1260901 |
[86] | Chao J., Zhu D., Zhang Y., Wang L., Fan C., Biosens. Bioelectron., 2016, 76, 68 |
[87] | Ni X., Castanares M., Mukherjee A., Lupold S. E., Curr. Med. Chem., 2011, 18(27), 4206 |
[88] | Lee J. F., Stovall G. M., Ellington A. D., Curr. Opin. Chem. Biol., 2006, 10(3), 282 |
[89] | Tasset D. M., Kubik M. F., Steiner W., J. Mol. Biol., 1997, 272(5), 688 |
[90] | Bock L. C., Griffin L. C., Latham J. A., Vermaas E. H., Toole J. J., Nature, 1992, 355(6360), 564 |
[91] | Trusolino L., Bertotti A., Comoglio P. M., Nat. Rev. Mol. Cell Bio., 2010, 11(12), 834 |
[92] | Organ S. L., Tsao M. S., Ther. Adv. Med. Oncol., 2011, 3(1), 7 |
[93] | Wang L., Liang H., Sun J., Liu Y., Li J., Li J., Li J., Yang H., J. Am. Chem. Soc., 2019, 141(32), 12673 |
[94] | Shaw A., Lundin V., Petrova E., Fordos F., Benson E., Al-Amin A., Herland A., Blokzijl A., Hogberg B., Teixeira A. I., Nat. Methods, 2014, 11(8), 841 |
[95] | Zhang K., Deng R., Sun Y., Zhang L., Li J., Chem. Sci., 2017, 8(10), 7098 |
[96] | Dougherty T. J., Gomer C. J., Henderson B. W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q., JNCI: J. Natl. Cancer I., 1998, 90(12), 889 |
[97] | Idris N. M., Gnanasammandhan M. K., Zhang J., Ho P. C., Mahendran R., Zhang Y., Nat. Med., 2012, 18(10), 1580 |
[98] | Bugaj A. M., Photoch. Photobio. Sci., 2011, 10(7), 1097 |
[99] | Wang J., Zhu G., You M., Song E., Shukoor M. I., Zhang K., Altman M. B., Chen Y., Zhu Z., Huang C. Z., Tan W., ACS Nano, 2012, 6(6), 5070 |
[100] | Lacroix A., Edwardson T. G. W., Hancock M. A., Dore M. D., Sleiman H. F., J. Am. Chem. Soc., 2017, 139(21), 7355 |
[101] | Osborn M. F., Coles A. H., Biscans A., Haraszti R. A., Roux L., Davis S., Ly S., Echeverria D., Hassler M. R., Godinho B. M. D. C., Nikan M., Khvorova A., Nucleic Acids Res., 2018, 47(3), 1070 |
[102] | Palte M. J., Raines R. T., J. Am. Chem. Soc., 2012, 134(14), 6218 |
[103] | Xiong X., Liu H., Zhao Z., Altman M. B., Lopez-Colon D., Yang C. J., Chang L. J., Liu C., Tan W., Angew. Chem., Int. Ed., 2013, 52(5), 1472 |
[1] | ZHANG Qian, LIANG Yuyan, XING Hang. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging[J]. 高等学校化学研究, 2022, 38(4): 902-911. |
[2] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy[J]. 高等学校化学研究, 2022, 38(4): 928-934. |
[3] | WANG Yue, WANG Jinling, MA Jianxin, ZHANG Yue, XU Na, WANG Xiuli. Multi-functional Photoelectric Sensor Based on a Three-fold Interpenetrated Cd(II) Coordination Polymer for Sensitively Detecting Different Ions[J]. 高等学校化学研究, 2022, 38(4): 1105-1110. |
[4] | WANG Youjuan, YE Zhifei, SONG Guosheng, LIU Zhuang. Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy[J]. 高等学校化学研究, 2022, 38(2): 481-492. |
[5] | XU Kai, HUANG Ning. Recent Advances of Covalent Organic Frameworks in Chemical Sensing[J]. 高等学校化学研究, 2022, 38(2): 339-349. |
[6] | WU Liting, XIN Yujia, GUO Zhaoyang, GAO Wei, ZHU Yanpeng, br, WANG Yinsong, RAN Ruixue, YANG Xiaoying. Cell Membrane-camouflaged Multi-functional Dendritic Large Pore Mesoporous Silica Nanoparticles for Combined Photothermal Therapy and Radiotherapy of Cancer[J]. 高等学校化学研究, 2022, 38(2): 562-571. |
[7] | WANG Bingya, GUO Xiaomei, LIU Zuodong, WU Yongquan, HOU Ji-Ting. A Long-wavelength Emissive Phenothiazine Derived Fluorescent Probe for Detecting HOCl Upregulation in 5-FU Stimulated Living Cells[J]. 高等学校化学研究, 2022, 38(2): 609-615. |
[8] | XU Haijiao, WANG Hongda. Conventional Molecular and Novel Structural Mechanistic Insights into Orderly Organelle Interactions[J]. 高等学校化学研究, 2021, 37(4): 829-839. |
[9] | YUAN Hui, LIANG Hanyu, HOU Peidong, LI Juan. Advanced Nanomaterials for Multimodal Molecular Imaging[J]. 高等学校化学研究, 2021, 37(4): 840-845. |
[10] | LI Haonan, WANG Zhao, HUO Fengwei, WANG Shutao. Dip-Pen Nanolithography(DPN): from Micro/Nano-patterns to Biosensing[J]. 高等学校化学研究, 2021, 37(4): 846-854. |
[11] | LIU Zhiyu, LIANG Gaolin, ZHAN Wenjun. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging[J]. 高等学校化学研究, 2021, 37(4): 889-899. |
[12] | YIN Fangfei, CAO Nan, XIANG Xuelin, FENG Hao, LI Fan, LI Min, XIA Qiang, ZUO Xiaolei. DNA Framework-based Topological Aptamer for Differentiating Subtypes of Hepatocellular Carcinoma Cells[J]. 高等学校化学研究, 2021, 37(4): 919-924. |
[13] | CHU Binbin, WANG Houyu, HE Yao. Fluorescent Silicon-based Nanomaterials Imaging Technology in Diseases[J]. 高等学校化学研究, 2021, 37(4): 880-888. |
[14] | LU Feng, ZHAO Ting, SUN Xiaojun, WANG Zuqiang, FAN Quli, HUANG Wei. Rare-earth Doped Nanoparticles with Narrow NIR-II Emission for Optical Imaging with Reduced Autofluorescence[J]. 高等学校化学研究, 2021, 37(4): 943-950. |
[15] | YUAN Fang, LI Yang, CHEN Zhenjuan, ZHANG Jianjian, NING Lulu, YANG Xiao-Feng, PU Kanyi. Excimer-based Activatable Fluorescent Sensor for Sensitive Detection of Alkaline Phosphatase[J]. 高等学校化学研究, 2021, 37(4): 960-966. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||