高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (4): 525-550.doi: 10.1007/s40242-020-0200-5
WAN Xi1, LI Hao2, CHEN Kun3, XU Jianbin2
收稿日期:
2020-06-20
修回日期:
2020-07-13
出版日期:
2020-08-01
发布日期:
2020-07-14
通讯作者:
WAN Xi, CHEN Kun, XU Jianbin
E-mail:xwan@jiangnan.edu.cn;chenk69@mail.sysu.edu.cn;jbxu@ee.cuhk.edu.hk
基金资助:
WAN Xi1, LI Hao2, CHEN Kun3, XU Jianbin2
Received:
2020-06-20
Revised:
2020-07-13
Online:
2020-08-01
Published:
2020-07-14
Contact:
WAN Xi, CHEN Kun, XU Jianbin
E-mail:xwan@jiangnan.edu.cn;chenk69@mail.sysu.edu.cn;jbxu@ee.cuhk.edu.hk
Supported by:
摘要: Among 108423 unique, experimentally known 3D compounds, there exist 1825 ones that are either easily or potentially exfoliable. This increasingly broad library of 2D layered materials(2DLMs) with variable physical properties as well as the unique ability to vertical stacking or lateral stitching 2DLMs into complex heterostructures enables a new dimension for materials engineering and device design, offering novel functional electronics and optoelectronics for flexible industry. In this review, we present a comprehensive summary of the state-of-the-art scalable fabrication technologies, the unique properties as well as the potential device applications of the emerging 2D heterostructures. Firstly, we depict an overall picture of the 2D vertical van der Waals heterostructures. Secondly, we focus on the 2D lateral heterostructures by CVD technique. For a quick access and full coverage, both the vertical and lateral 2D heterostructures are classified into several types according to their chemical compounds with different dimensions. In the end, both the challenges and potential applications of these 2D heterostructures are discussed.
WAN Xi, LI Hao, CHEN Kun, XU Jianbin. Towards Scalable Fabrications and Applications of 2D Layered Material-based Vertical and Lateral Heterostructures[J]. 高等学校化学研究, 2020, 36(4): 525-550.
WAN Xi, LI Hao, CHEN Kun, XU Jianbin. Towards Scalable Fabrications and Applications of 2D Layered Material-based Vertical and Lateral Heterostructures[J]. Chemical Research in Chinese Universities, 2020, 36(4): 525-550.
[1] | Zhang W., Chuu C. P., Huang J. K., Chen C. H., Tsai M. L., Chang Y. H., Liang C. T., Chen Y. Z., Chueh Y. L., He J. H., Chou M. Y., Li L. J., Scientific Reports, 2014, 4, 3826 |
[2] | Wan X., Chen K., Chen Z. F., Xie F. Y., Zeng X. L., Xie W. G., Chen J., Xu J. B., Advanced Functional Materials, 2017, 27(19), 1603998 |
[3] | Roy K., Padmanabhan M., Goswami S., Sai T. P., Ramalingam G., Raghavan S., Ghosh A., Nature Nanotechnology, 2013, 8(11), 826 |
[4] | Yu W. J., Liu Y., Zhou H., Yin A., Li Z., Huang Y., Duan X. F., Nature Nanotechnology, 2013, 8(12), 952 |
[5] | Tersoff J., Physical Review B, 1984, 30(8), 4874 |
[6] | Kroemer H., Proceedings of the IEEE, 1963, 51(12), 1782 |
[7] | Kum H., Lee D., Kong W., Kim H., Park Y., Kim Y., Baek Y., Bae S.-H., Lee K., Kim J., Nature Electronics, 2019, 2, 439 |
[8] | Smith C. G., Reports on Progress in Physics, 1996, 59(2), 235 |
[9] | Sze S. M., Ng K. K., Physics of Semiconductor Devices, 3rd Ed., John Wiley &Sons, New Jersey, 2007 |
[10] | Dong Y., Wu Z.-S., Ren W., Cheng H.-M., Bao X., Science Bulletin, 2017, 62(10), 724 |
[11] | Novoselov K. S., Fal'ko V. I., Colombo L., Gellert P. R., Schwab M. G., Kim K., Nature, 2012, 490(7419), 192 |
[12] | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306(5696), 666 |
[13] | Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K., Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30), 10451 |
[14] | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., Nature, 2005, 438(7065), 197 |
[15] | Kubota Y., Watanabe K., Tsuda O., Taniguchi T., Science, 2007, 317(5840), 932 |
[16] | Cun H., Hemmi A., Miniussi E., Bernard C., Probst B., Liu K., Alexander D. T. L., Kleibert A., Mette G., Weinl M., Schreck M., Osterwalder J., Radenovic A., Greber T., Nano Letters, 2018, 18(2), 1205 |
[17] | Song L., Ci L., Lu H., Sorokin P. B., Jin C., Ni J., Kvashnin A. G., Kvashnin D. G., Lou J., Yakobson B. I., Ajayan P. M., Nano Letters, 2010, 10(8), 3209 |
[18] | Shi Y., Hamsen C., Jia X., Kim K. K., Reina A., Hofmann M., Hsu A. L., Zhang K., Li H., Juang Z. Y., Dresselhaus M. S., Li L. J., Kong J., Nano Letters, 2010, 10(10), 4134 |
[19] | Lee K. H., Shin H. J., Lee J., Lee I. Y., Kim G. H., Choi J. Y., Kim S. W., Nano Letters, 2012, 12(2), 714 |
[20] | Wang Q. H., Kalantar-Zadeh K., Kis A., Coleman J. N., Strano M. S., Nature Nanotechnology, 2012, 7(11), 699 |
[21] | Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A., Nature Nanotechnology, 2011, 6(3), 147 |
[22] | Radisavljevic B., Kis A., Nature Materials, 2013, 12(9), 815 |
[23] | Chhowalla M., Shin H. S., Eda G., Li L. J., Loh K. P., Zhang H., Nature Chemistry, 2013, 5(4), 263 |
[24] | Yuan J., Chen W., Lou J., Science Bulletin, 2017, 62(6), 381 |
[25] | Wan X., Chen K., Xu J. B., Small, 2014, 10(22), 4443 |
[26] | Dean C. R., Young A. F., Meric I., Lee C., Wang L., Sorgenfrei S., Watanabe K., Taniguchi T., Kim P., Shepard K. L., Hone J., Nature Nanotechnology, 2010, 5(10), 722 |
[27] | Chen X., Xia F., Science Bulletin, 2017, 62(23), 1557 |
[28] | Hu Z., Bao Y., Li Z., Gong Y., Feng R., Xiao Y., Wu X., Zhang Z., Zhu X., Ajayan P. M., Fang Z., Science Bulletin, 2017, 62(1), 16 |
[29] | Schaibley J. R., Yu H. Y., Clark G., Rivera P., Ross J. S., Seyler K. L., Yao W., Xu X. D., Nature Reviews Materials, 2016, 1(11), 16055 |
[30] | Zhao W., Fei Z., Song T., Choi H. K., Palomaki T., Sun B., Malinowski P., McGuire M. A., Chu J.-H., Xu X., Nature Materials, 2020, 19(5), 503 |
[31] | Kappera R., Voiry D., Yalcin S. E., Branch B., Gupta G., Mohite A. D., Chhowalla M., Nature Materials, 2014, 13(12), 1128 |
[32] | Liu L., Wu J., Wu L., Ye M., Liu X., Wang Q., Hou S., Lu P., Sun L., Zheng J., Xing L., Gu L., Jiang X., Xie L., Jiao L., Nature Materials, 2018, 17(12), 1108 |
[33] | Mounet N., Gibertini M., Schwaller P., Campi D., Merkys A., Marrazzo A., Sohier T., Castelli I. E., Cepellotti A., Pizzi G., Marzari N., Nature Nanotechnology, 2018, 13(3), 246 |
[34] | Tan C. L., Chen J. Z., Wu X. J., Zhang H., Nature Reviews Materials, 2018, 3(2), 17089 |
[35] | Chen P., Zhang Z., Duan X., Duan X. F., Chemical Society Reviews, 2018, 47(9), 3129 |
[36] | Cai Z., Liu B., Zou X., Cheng H. M., Chemical Reviews, 2018, 118(13), 6091 |
[37] | Cai X., Luo Y., Liu B., Cheng H. M., Chemical Society Reviews, 2018, 47(16), 6224 |
[38] | Liu Y., Weiss N. O., Duan X. D., Cheng H. C., Huang Y., Duan X. F., Nature Reviews Materials, 2016, 1(9), 16042 |
[39] | Liu Y., Guo J., Zhu E., Liao L., Lee S. J., Ding M., Shakir I., Gambin V., Huang Y., Duan X. F., Nature, 2018, 557(7707), 696 |
[40] | Huo C., Yan Z., Song X., Zeng H., Science Bulletin, 2015, 60(23), 1994 |
[41] | Liu P., Xiang B., Science Bulletin, 2017, 62(16), 1148 |
[42] | Liu J., Science Bulletin, 2018, 63(9), 527 |
[43] | Lin Z., Huang Y., Duan X., Nature Electronics, 2019, 2(9), 378 |
[44] | Lee J. H., Lee E. K., Joo W. J., Jang Y., Kim B. S., Lim J. Y., Choi S. H., Ahn S. J., Ahn J. R., Park M. H., Yang C. W., Choi B. L., Hwang S. W., Whang D., Science, 2014, 344(6181), 286 |
[45] | Hao Y., Bharathi M. S., Wang L., Liu Y., Chen H., Nie S., Wang X., Chou H., Tan C., Fallahazad B., Ramanarayan H., Magnuson C. W., Tutuc E., Yakobson B. I., McCarty K. F., Zhang Y. W., Kim P., Hone J., Colombo L., Ruoff R. S., Science, 2013, 342(6159), 720 |
[46] | Xu X., Zhang Z., Qiu L., Zhuang J., Zhang L., Wang H., Liao C., Song H., Qiao R., Gao P., Hu Z., Liao L., Liao Z., Yu D., Wang E., Ding F., Peng H., Liu K., Nature Nanotechnology, 2016, 11(11), 930 |
[47] | Hao Y., Wang L., Liu Y., Chen H., Wang X., Tan C., Nie S., Suk J. W., Jiang T., Liang T., Xiao J., Ye W., Dean C. R., Yakobson B. I., McCarty K. F., Kim P., Hone J., Colombo L., Ruoff R. S., Nature Nanotechnology, 2016, 11(5), 426 |
[48] | Wu T., Zhang X., Yuan Q., Xue J., Lu G., Liu Z., Wang H., Wang H., Ding F., Yu Q., Xie X., Jiang M., Nature Materials, 2016, 15(1), 43 |
[49] | Lee J. S., Choi S. H., Yun S. J., Kim Y. I., Boandoh S., Park J. H., Shin B. G., Ko H., Lee S. H., Kim Y. M., Lee Y. H., Kim K. K., Kim S. M., Science, 2018, 362(6416), 817 |
[50] | Xu X. Z., Zhang Z. H., Dong J. C., Yi D., Niu J. J., Wu M. H., Lin L., Yin R. K., Li M. Q., Zhou J. Y., Wang S. X., Sun J. L., Duan X. J., Gao P., Jiang Y., Wu X. S., Peng H. L., Ruoff R. S., Liu Z. F., Yu D. P., Wang E. G., Ding F., Liu K. H., Science Bulletin, 2017, 62(15), 1074 |
[51] | Zhou J., Lin J., Huang X., Zhou Y., Chen Y., Xia J., Wang H., Xie Y., Yu H., Lei J., Wu D., Liu F., Fu Q., Zeng Q., Hsu C. H., Yang C., Lu L., Yu T., Shen Z., Lin H., Yakobson B. I., Liu Q., Suenaga K., Liu G., Liu Z., Nature, 2018, 556(7701), 355 |
[52] | Lin Z., Liu Y., Halim U., Ding M., Liu Y., Wang Y., Jia C., Chen P., Duan X., Wang C., Song F., Li M., Wan C., Huang Y., Duan X. F., Nature, 2018, 562(7726), 254 |
[53] | Li S., Lin Y. C., Zhao W., Wu J., Wang Z., Hu Z., Shen Y., Tang D. M., Wang J., Zhang Q., Zhu H., Chu L., Zhao W., Liu C., Sun Z., Taniguchi T., Osada M., Chen W., Xu Q. H., Wee A. T. S., Suenaga K., Ding F., Eda G., Nature Materials, 2018, 17(6), 535 |
[54] | Lu A. Y., Zhu H., Xiao J., Chuu C. P., Han Y., Chiu M. H., Cheng C. C., Yang C. W., Wei K. H., Yang Y., Wang Y., Sokaras D., Nordlund D., Yang P., Muller D. A., Chou M. Y., Zhang X., Li L. J., Nature Nanotechnology, 2017, 12(8), 744 |
[55] | Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., Banerjee S. K., Colombo L., Ruoff R. S., Science, 2009, 324(5932), 1312 |
[56] | Wan X., Chen K., Liu D., Chen J., Miao Q., Xu J. B., Chemistry of Materials, 2012, 24(20), 3906 |
[57] | Wan X., Chen K., Du J., Liu D., Chen J., Lai X., Xie W., Xu J. B., The Journal of Physical Chemistry C, 2013, 117(9), 4800 |
[58] | Chen K., Wan X., Liu D., Kang Z., Xie W., Chen J., Miao Q., Xu J. B., Nanoscale, 2013, 5(13), 5784 |
[59] | Wan X., Chen K., Xie W., Wen J., Chen H., Xu J. B., Small, 2016, 12(4), 438 |
[60] | Chen T.-A., Chuu C.-P., Tseng C.-C., Wen C.-K., Wong H. S. P., Pan S., Li R., Chao T.-A., Chueh W.-C., Zhang Y., Fu Q., Yabobson B. I., Chang W.-H., Li L.-J., Nature, 2020, 579(7798), 219 |
[61] | Bhimanapati G. R., Lin Z., Meunier V., Jung Y., Cha J., Das S., Xiao D., Son Y., Strano M. S., Cooper V. R., ACS Nano, 2015, 9(12), 11509 |
[62] | Yang P., Zou X., Zhang Z., Hong M., Shi J., Chen S., Shu J., Zhao L., Jiang S., Zhou X., Huan Y., Xie C., Gao P., Chen Q., Zhang Q., Liu Z., Zhang Y., Nature Communications, 2018, 9(1), 979 |
[63] | Fan S., Vu Q. A., Tran M. D., Adhikari S., Lee Y. H., 2D Materials, 2020, 7(2), 022005 |
[64] | Elias A. L., Perea-Lopez N., Castro-Beltran A., Berkdemir A., Lv R. T., Feng S. M., Long A. D., Hayashi T., Kim Y. A., Endo M., Gutierrez H. R., Pradhan N. R., Balicas L., Houk T. E. M., Lopez-Urias F., Terrones H., Terrones M., ACS Nano, 2013, 7(6), 5235 |
[65] | Gurarslan A., Yu Y., Su L., Yu Y., Suarez F., Yao S., Zhu Y., Ozturk M., Zhang Y., Cao L., ACS Nano, 2014, 8(11), 11522 |
[66] | Li H., Wu J., Huang X., Yin Z., Liu J., Zhang H., ACS Nano, 2014, 8(7), 6563 |
[67] | Castellanos-Gomez A., Buscema M., Molenaar R., Singh V., Janssen L., van der Zant H. S. J., Steele G. A., 2D Materials, 2014, 1(1), 011002 |
[68] | Withers F., Del Pozo-Zamudio O., Mishchenko A., Rooney A. P., Gholinia A., Watanabe K., Taniguchi T., Haigh S. J., Geim A. K., Tartakovskii A. I., Nature Materials, 2015, 14(3), 301 |
[69] | Zomer P. J., Dash S. P., Tombros N., Van Wees B. J., Applied Physics Letters, 2011, 99(23), 232104 |
[70] | Li J., Yang X., Liu Y., Huang B., Wu R., Zhang Z., Zhao B., Ma H., Dang W., Wei Z., Nature, 2020, 579(7799), 368 |
[71] | Wang Y., Kim J. C., Wu R. J., Martinez J., Song X., Yang J., Zhao F., Mkhoyan A., Jeong H. Y., Chhowalla M., Nature, 2019, 568(7750), 70 |
[72] | Britnell L., Gorbachev R. V., Geim A. K., Ponomarenko L. A., Mishchenko A., Greenaway M. T., Fromhold T. M., Novoselov K. S., Eaves L., Nature Communications, 2013, 4(1), 1 |
[73] | Kim K., Prasad N., Movva H. C. P., Burg G. W., Wang Y., Larentis S., Taniguchi T., Watanabe K., Register L. F., Tutuc E., Nano Letters, 2018, 18(9), 5967 |
[74] | Lee G. H., Yu Y. J., Cui X., Petrone N., Lee C. H., Choi M. S., Lee D. Y., Lee C., Yoo W. J., Watanabe K., Taniguchi T., Nuckolls C., Kim P., Hone J., ACS Nano, 2013, 7(9), 7931 |
[75] | Lin Y.-C., Ghosh R. K., Addou R., Lu N., Eichfeld S. M., Zhu H., Li M.-Y., Peng X., Kim M. J., Li L.-J., Nature Communications, 2015, 6(1), 1 |
[76] | Cho B., Yoon J., Lim S. K., Kim A. R., Kim D.-H., Park S.-G., Kwon J.-D., Lee Y.-J., Lee K.-H., Lee B. H., ACS Applied Materials & Interfaces, 2015, 7(30), 16775 |
[77] | Yu W. J., Li Z., Zhou H., Chen Y., Wang Y., Huang Y., Duan X. F., Nature Materials, 2013, 12(3), 246 |
[78] | Lee C.-H., Lee G.-H., van der Zande A. M., Chen W., Li Y., Han M., Cui X., Arefe G., Nuckolls C., Heinz T. F., Guo J., Hone J., Kim P., Nature Nanotechnology, 2014, 9(9), 676 |
[79] | Liu Z., Ma L., Shi G., Zhou W., Gong Y., Lei S., Yang X., Zhang J., Yu J., Hackenberg K. P., Babakhani A., Idrobo J. C., Vajtai R., Lou J., Ajayan P. M., Nature Nanotechnology, 2013, 8(2), 119 |
[80] | Ling X., Lin Y., Ma Q., Wang Z., Song Y., Yu L., Huang S., Fang W., Zhang X., Hsu A. L., Bie Y., Lee Y. H., Zhu Y., Wu L., Li J., Jarillo-Herrero P., Dresselhaus M., Palacios T., Kong J., Advanced Materials, 2016, 28(12), 2322 |
[81] | Zhao M. V., Ye Y., Han Y. M., Xia Y., Zhu H. Y., Wang S. Q., Wang Y., Muller D. A., Zhang X., Nature Nanotechnology, 2016, 11(11), 954 |
[82] | Chen K., Wan X., Wen J., Xie W., Kang Z., Zeng X., Chen H., Xu J. B., ACS Nano, 2015, 9(10), 9868 |
[83] | Duan X., Wang C., Shaw J. C., Cheng R., Chen Y., Li H., Wu X., Tang Y., Zhang Q., Pan A., Jiang J., Yu R., Huang Y., Duan X., Nature Nanotechnology, 2014, 9(12), 1024 |
[84] | Li M. Y., Shi Y., Cheng C. C., Lu L. S., Lin Y. C., Tang H. L., Tsai M. L., Chu C. W., Wei K. H., He J. H., Chang W. H., Suenaga K., Li L. J., Science, 2015, 349(6247), 524 |
[85] | Ferrari A. C., Meyer J. C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K. S., Roth S., Geim A. K., Physical Review Letters, 2006, 97(18), 187401 |
[86] | Lee C., Yan H., Brus L. E., Heinz T. F., Hone J., Ryu S., ACS Nano, 2010, 4(5), 2695 |
[87] | Yamamoto M., Wang S. T., Ni M., Lin Y.-F., Li S.-L., Aikawa S., Jian W.-B., Ueno K., Wakabayashi K., Tsukagoshi K., ACS Nano, 2014, 8(4), 3895 |
[88] | Berkdemir A., Gutiérrez H. R., Botello-Méndez A. R., Perea-López N., Elías A. L., Chia C.-I., Wang B., Crespi V. H., López-Urías F., Charlier J.-C., Terrones H., Terrones M., Scientific Reports, 2013, 3(1), 1755 |
[89] | Okada M., Sawazaki T., Watanabe K., Taniguch T., Hibino H., Shinohara H., Kitaura R., ACS Nano, 2014, 8(8), 8273 |
[90] | Xu Z. Q., Zhang Y. P., Lin S. H., Zheng C. X., Zhong Y. L., Xia X., Li Z. P., Sophia P. J., Fuhrer M. S., Cheng Y. B., Bao Q. L., ACS Nano, 2015, 9(6), 6178 |
[91] | Huang C., Wu S., Sanchez A. M., Peters J. J., Beanland R., Ross J.S., Rivera P., Yao W., Cobden D. H., Xu X., Nature Materials, 2014, 13(12), 1096 |
[92] | Gong Y., Lin J., Wang X., Shi G., Lei S., Lin Z., Zou X., Ye G., Vajtai R., Yakobson B. I., Terrones H., Terrones M., Tay B. K., Lou J., Pantelides S. T., Liu Z., Zhou W., Ajayan P. M., Nature Materials, 2014, 13(12), 1135 |
[93] | Chen J., Zhao X., Tan S. J. R., Xu H., Wu B., Liu B., Fu D., Fu W., Geng D., Liu Y., Liu W., Tang W., Li L., Zhou W., Sum T. C., Loh K. P., Journal of the American Chemical Society, 2017, 139(3), 1073 |
[94] | Liu G., Liu H. M., Zhou J., Wan X. G., Journal of Applied Physics, 2017, 121(4), 045104 |
[95] | Rice C., Young R. J., Zan R., Bangert U., Wolverson D., Georgiou T., Jalil R., Novoselov K. S., Physical Review B, 2013, 87(8), 081307 |
[96] | Xie S., Tu L., Han Y., Huang L., Kang K., Lao K. U., Poddar P., Park C., Muller D. A., DiStasio R. A., Park J., Science, 2018, 359(6380), 1131 |
[97] | Amin B., Kaloni T. P., Schwingenschlogl U., RSC Advances, 2014, 4(65), 34561 |
[98] | Reich S., Maultzsch J., Thomsen C., Ordejon P., Physical Review B, 2002, 66(3), 035412 |
[99] | Elias D. C., Nair R. R., Mohiuddin T. M., Morozov S. V., Blake P., Halsall M. P., Ferrari A. C., Boukhvalov D. W., Katsnelson M. I., Geim A. K., Novoselov K. S., Science, 2009, 323(5914), 610 |
[100] | Lyon M., Bergeson S. D., Hart G., Murillo M. S., Scientific Reports, 2015, 5, 15693 |
[101] | Malard L. M., Pimenta M. A., Dresselhaus G., Dresselhaus M. S., Physics Reports-Review Section of Physics Letters, 2009, 473(5/6), 51 |
[102] | Nag A., Raidongia K., Hembram K. P., Datta R., Waghmare U. V., Rao C. N., ACS Nano, 2010, 4(3), 1539 |
[103] | Bhattacharyya S., Singh A. K., Physical Review B, 2012, 86(7), 075454 |
[104] | Böker T., Severin R., Müller A., Janowitz C., Manzke R., Voß D., Krüger P., Mazur A., Pollmann J., Physical Review B, 2001, 64(23), 235305 |
[105] | Lee Y. H., Zhang X. Q., Zhang W., Chang M. T., Lin C. T., Chang K. D., Yu Y. C., Wang J. T., Chang C. S., Li L. J., Lin T. W., Advanced Materials, 2012, 24(17), 2320 |
[106] | Splendiani A., Sun L., Zhang Y., Li T., Kim J., Chim C.-Y., Galli G., Wang F., Nano Letters, 2010, 10(4), 1271 |
[107] | Chang Y. H., Zhang W., Zhu Y., Han Y., Pu J., Chang J. K., Hsu W. T., Huang J. K., Hsu C. L., Chiu M. H., Takenobu T., Li H., Wu C. I., Chang W. H., Wee A. T., Li L. J., ACS Nano, 2014, 8(8), 8582 |
[108] | Ruppert C., Aslan O. B., Heinz T. F., Nano Letters, 2014, 14(11), 6231 |
[109] | Cho S., Kim S., Kim J. H., Zhao J., Seok J., Keum D. H., Baik J., Choe D. H., Chang K. J., Suenaga K., Kim S. W., Lee Y. H., Yang H., Science, 2015, 349(6248), 625 |
[110] | Kan M., Nam H. G., Lee Y. H., Sun Q., Physical Chemistry Chemical Physics, 2015, 17(22), 14866 |
[111] | Naylor C. H., Parkin W. M., Ping J., Gao Z., Zhou Y. R., Kim Y., Streller F., Carpick R. W., Rappe A. M., Drndic M., Kikkawa J. M., Johnson A. T., Nano Letters, 2016, 16(7), 4297 |
[112] | Chen K., Chen Z., Wan X., Zheng Z., Xie F., Chen W., Gui X., Chen H., Xie W., Xu J. B., Advanced Materials, 2017, 29(38), 1700704 |
[113] | Schutte W. J., De Boer J. L., Jellinek F., Journal of Solid State Chemistry, 1987, 70(2), 207 |
[114] | Zhang Y., Zhang Y. F., Ji Q. Q., Ju J., Yuan H. T., Shi J. P., Gao T., Ma D. L., Liu M. X., Chen Y. B., Song X. J., Hwang H. Y., Cui Y., Liu Z. F., ACS Nano, 2013, 7(10), 8963 |
[115] | Huang J.-K., Pu J., Hsu C.-L., Chiu M.-H., Juang Z.-Y., Chang Y.-H., Chang W.-H., Iwasa Y., Takenobu T., Li L.-J., ACS Nano, 2013, 8(1), 923 |
[116] | Li S., Wang S., Tang D.-M., Zhao W., Xu H., Chu L., Bando Y., Golberg D., Eda G., Applied Materials Today, 2015, 1(1), 60 |
[117] | Mar A., Jobic S., Ibers J. A., Journal of the American Chemical Society, 1992, 114(23), 8963 |
[118] | Zhang E., Chen R., Huang C., Yu J., Zhang K., Wang W., Liu S., Ling J., Wan X., Lu H.-Z., Xiu F., Nano Letters, 2017, 17(2), 878 |
[119] | Zhou J., Liu F., Lin J., Huang X., Xia J., Zhang B., Zeng Q., Wang H., Zhu C., Niu L., Wang X., Fu W., Yu P., Chang T. R., Hsu C. H., Wu D., Jeng H. T., Huang Y., Lin H., Shen Z., Yang C., Lu L., Suenaga K., Zhou W., Pantelides S. T., Liu G., Liu Z., Advanced Materials, 2017, 29(3), 1603471 |
[120] | Kallatt S., Das S., Chatterjee S., Majumdar K., NPJ 2D Materials and Applications, 2019, 3(1), 1 |
[121] | Rosul M. G., Lee D., Olson D. H., Liu N., Wang X., Hopkins P. E., Lee K., Zebarjadi M., Science Advances, 2019, 5(11), eaax7827 |
[122] | Britnell L., Ribeiro R. M., Eckmann A., Jalil R., Belle B. D., Mishchenko A., Kim Y. J., Gorbachev R. V., Georgiou T., Morozov S. V., Grigorenko A. N., Geim A. K., Casiraghi C., Castro Neto A. H., Novoselov K. S., Science, 2013, 340(6138), 1311 |
[123] | Ong Z.-Y., Bae M.-H., 2D Materials, 2019, 6(3), 032005 |
[124] | Liu H., Jiao L., Yang F., Cai Y., Wu X., Ho W., Gao C., Jia J., Wang N., Fan H., Physical Review Letters,2014, 113(6), 066105 |
[125] | Shi J., Liu M., Wen J., Ren X., Zhou X., Ji Q., Ma D., Zhang Y., Jin C., Chen H., Advanced Materials, 2015, 27(44), 7086 |
[126] | Huang Y. L., Chen Y., Zhang W., Quek S. Y., Chen C.-H., Li L.-J., Hsu W.-T., Chang W.-H., Zheng Y. J., Chen W., Nature Communications, 2015, 6(1), 1 |
[127] | McCreary K. M., Hanbicki A. T., Robinson J. T., Cobas E., Culbertson J. C., Friedman A. L., Jernigan G. G., Jonker B. T., Advanced Functional Materials, 2014, 24(41), 6449 |
[128] | Chen C., Feng Z., Feng Y., Yue Y., Qin C., Zhang D., Feng W., ACS Applied Materials & Interfaces, 2016, 8(29), 19004 |
[129] | Kim H.-U., Kim M., Jin Y., Hyeon Y., Kim K. S., An B.-S., Yang C.-W., Kanade V., Moon J.-Y., Yeom G. Y., Applied Surface Science, 2019, 470, 129 |
[130] | Chen Y., Zou J., Campbell S. J., Le Caer G., Applied Physics Letters, 2004, 84(13), 2430 |
[131] | Kho J. G., Moon K. T., Kim J. H., Kim D. P., Journal of the American Ceramic Society, 2000, 83(11), 2681 |
[132] | Lipp A., Schwetz K. A., Hunold K., Journal of the European Ceramic Society, 1989, 5(1), 3 |
[133] | Ouyang T., Chen Y., Xie Y., Yang K., Bao Z., Zhong J., Nanotechnology, 2010, 21(24), 245701 |
[134] | Kim K. K., Hsu A., Jia X., Kim S. M., Shi Y., Dresselhaus M., Palacios T., Kong J., ACS Nano, 2012, 6(10), 8583 |
[135] | Haigh S. J., Gholinia A., Jalil R., Romani S., Britnell L., Elias D. C., Novoselov K. S., Ponomarenko L. A., Geim A. K., Gorbachev R., Nature Materials, 2012, 11(9), 764 |
[136] | Wang L., Meric I., Huang P. Y., Gao Q., Gao Y., Tran H., Taniguchi T., Watanabe K., Campos L. M., Muller D. A., Guo J., Kim P., Hone J., Shepard K. L., Dean C. R., Science, 2013, 342(6158), 614 |
[137] | Ponomarenko L. A., Gorbachev R. V., Yu G. L., Elias D. C., Jalil R., Patel A. A., Mishchenko A., Mayorov A. S., Woods C. R., Wallbank J. R., Mucha-Kruczynski M., Piot B. A., Potemski M., Grigorieva I. V., Novoselov K. S., Guinea F., Fal'ko V. I., Geim A. K., Nature, 2013, 497(7451), 594 |
[138] | Xue J., Sanchez-Yamagishi J., Bulmash D., Jacquod P., Deshpande A., Watanabe K., Taniguchi T., Jarillo-Herrero P., LeRoy B. J., Nature Materials, 2011, 10(4), 282 |
[139] | Yankowitz M., Xue J. M., Cormode D., Sanchez-Yamagishi J. D., Watanabe K., Taniguchi T., Jarillo-Herrero P., Jacquod P., LeRoy B. J., Nature Physics, 2012, 8(5), 382 |
[140] | Amidror I., Journal of the Optical Society of America A, 2003, 20(10), 1900 |
[141] | Miller D. L., Kubista K. D., Rutter G. M., Ruan M., de Heer W. A., First P. N., Stroscio J. A., Physical Review B, 2010, 81(12), 125427 |
[142] | Yang W., Chen G., Shi Z., Liu C. C., Zhang L., Xie G., Cheng M., Wang D., Yang R., Shi D., Watanabe K., Taniguchi T., Yao Y., Zhang Y., Zhang G., Nature Materials, 2013, 12(9), 792 |
[143] | Song T., Cai X., Tu M. W.-Y., Zhang X., Huang B., Wilson N. P., Seyler K. L., Zhu L., Taniguchi T., Watanabe K., McGuire M. A., Cobden D. H., Xiao D., Yao W., Xu X., Science, 2018, 360(6394), 1214 |
[144] | Spanton E. M., Zibrov A. A., Zhou H., Taniguchi T., Watanabe K., Zaletel M. P., Young A. F., Science, 2018, 360(6384), 62 |
[145] | Tang S., Wang H., Zhang Y., Li A., Xie H., Liu X., Liu L., Li T., Huang F., Xie X., Scientific Reports, 2013, 3, 2666 |
[146] | Shi Z., Wang X., Li Q., Yang P., Lu G., Jiang R., Wang H., Zhang C., Cong C., Liu Z., Nature Communications, 2020, 11(1), 1 |
[147] | Zhang C., Zhao S., Jin C., Koh A. L., Zhou Y., Xu W., Li Q., Xiong Q., Peng H., Liu Z., Nature Communications, 2015, 6, 6519 |
[148] | Gao T., Song X., Du H., Nie Y., Chen Y., Ji Q., Sun J., Yang Y., Zhang Y., Liu Z., Nature Communications, 2015, 6(1), 1 |
[149] | Li Q., Zhao Z., Yan B., Song X., Zhang Z., Li J., Wu X., Bian Z., Zou X., Zhang Y., Advanced Materials, 2017, 29(32), 1701325 |
[150] | Cui X., Lee G. H., Kim Y. D., Arefe G., Huang P. Y., Lee C. H., Chenet D. A., Zhang X., Wang L., Ye F., Pizzocchero F., Jessen B. S., Watanabe K., Taniguchi T., Muller D. A., Low T., Kim P., Hone J., Nature Nanotechnology, 2015, 10(6), 534 |
[151] | Katoch J., Ulstrup S., Koch R. J., Moser S., McCreary K. M., Singh S., Xu J. S., Jonker B. T., Kawakami R. K., Bostwick A., Rotenberg E., Jozwiak C., Nature Physics, 2018, 14(4), 355 |
[152] | Hong X., Kim J., Shi S. F., Zhang Y., Jin C., Sun Y., Tongay S., Wu J., Zhang Y., Wang F., Nature Nanotechnology, 2014, 9(9), 682 |
[153] | Huang Y., Pan Y.-H., Yang R., Bao L.-H., Meng L., Luo H.-L., Cai Y.-Q., Liu G.-D., Zhao W.-J., Zhou Z., Nature Communications, 2020, 11(1), 1 |
[154] | Liao W., Huang Y., Wang H., Zhang H., Applied Materials Today, 2019, 16, 435 |
[155] | Rivera P., Yu H., Seyler K. L., Wilson N. P., Yao W., Xu X., Nature Nanotechnology, 2018, 13(11), 1004 |
[156] | Rivera P., Seyler K. L., Yu H., Schaibley J. R., Yan J., Mandrus D. G., Yao W., Xu X., Science, 2016, 351(6274), 688 |
[157] | Shi J., Tong R., Zhou X., Gong Y., Zhang Z., Ji Q., Zhang Y., Fang Q., Gu L., Wang X., Advanced Materials, 2016, 28(48), 10664 |
[158] | Yang T., Zheng B., Wang Z., Xu T., Pan C., Zou J., Zhang X., Qi Z., Liu H., Feng Y., Nature Communications, 2017, 8(1), 1 |
[159] | Choudhary N., Park J., Hwang J. Y., Chung H.-S., Dumas K. H., Khondaker S. I., Choi W., Jung Y., Scientific Reports, 2016, 6, 25456 |
[160] | Islam M. A., Kim J. H., Schropp A., Kalita H., Choudhary N., Weitzman D., Khondaker S. I., Oh K. H., Roy T., Chung H.-S., Nano Letters, 2017, 17(10), 6157 |
[161] | Xue Y., Zhang Y., Liu Y., Liu H., Song J., Sophia J., Liu J., Xu Z., Xu Q., Wang Z., ACS Nano, 2016, 10(1), 573 |
[162] | Phan H. D., Kim Y., Lee J., Liu R., Choi Y., Cho J. H., Lee C., Advanced Materials, 2017, 29(7), 1603928 |
[163] | Lin Z., Zhao Y., Zhou C., Zhong R., Wang X., Tsang Y. H., Chai Y., Scientific Reports, 2015, 5(1), 1 |
[164] | Zhao J., Yu H., Chen W., Yang R., Zhu J., Liao M., Shi D., Zhang G., ACS Applied Materials & Interfaces, 2016, 8(26), 16546 |
[165] | Cha S., Cha M., Lee S., Kang J.H., Kim C., Scientific Reports, 2015, 5, 17877 |
[166] | Lee Y.-H., Yu L., Wang H., Fang W., Ling X., Shi Y., Lin C.-T., Huang J.-K., Chang M.-T., Chang C.-S., Nano Letters, 2013, 13(4), 1852 |
[167] | Lu Z., Sun L., Xu G., Zheng J., Zhang Q., Wang J., Jiao L., ACS Nano, 2016, 10(5), 5237 |
[168] | Zhang Z., Du J., Zhang D., Sun H., Yin L., Ma L., Chen J., Ma D., Cheng H.-M., Ren W., Nature Communications, 2017, 8, 14560 |
[169] | Hong J. Y., Shin Y. C., Zubair A., Mao Y., Palacios T., Dresselhaus M. S., Kim S. H., Kong J., Advanced Materials, 2016, 28(12), 2382 |
[170] | Bae S., Kim H., Lee Y., Xu X., Park J.-S., Zheng Y., Balakrishnan J., Lei T., Kim H. R., Song Y. I., Nature Nanotechnology, 2010, 5(8), 574 |
[171] | Lim Y. R., Han J. K., Kim S. K., Lee Y. B., Yoon Y., Kim S. J., Min B. K., Kim Y., Jeon C., Won S., Advanced Materials, 2018, 30(5), 1705270 |
[172] | Marta B., Leordean C., Istvan T., Botiz I., Astilean S., Applied Surface Science, 2016, 363, 613 |
[173] | Tao L., Li H., Gao Y., Chen Z., Wang L., Deng Y., Zhang J., Xu J. B., Advanced Materials Technologies, 2018, 3(5), 1700282 |
[174] | Kidambi P. R., Boutilier M. S. H., Wang L., Jang D., Kim J., Karnik R., Advanced Materials, 2017, 29(19), 1605896 |
[175] | Ci L., Song L., Jin C., Jariwala D., Wu D., Li Y., Srivastava A., Wang Z. F., Storr K., Balicas L., Liu F., Ajayan P. M., Nature Materials, 2010, 9(5), 430 |
[176] | Wu M., Zhang Z., Xu X., Zhang Z., Duan Y., Dong J., Qiao R., You S., Wang L., Qi J., Nature, 2020, 581(7809), 406 |
[177] | Shi Y., Zhou W., Lu A. Y., Fang W., Lee Y. H., Hsu A. L., Kim S. M., Kim K. K., Yang H. Y., Li L. J., Idrobo J. C., Kong J., Nano Letters, 2012, 12(6), 2784 |
[178] | Chen K., Wan X., Xu J. B., Advanced Functional Materials, 2017, 27(19), 1603884 |
[179] | Zhang Z., Chen P., Duan X., Zang K., Luo J., Duan X., Science, 2017, 357(6353), 788 |
[180] | Sahoo P. K., Memaran S., Xin Y., Balicas L., Gutierrez H. R., Nature, 2018, 553(7686), 63 |
[181] | Zhang X. Q., Lin C. H., Tseng Y. W., Huang K. H., Lee Y. H., Nano Letters, 2015, 15(1), 410 |
[182] | Chen K., Wan X., Xie W., Wen J., Kang Z., Zeng X., Chen H., Xu J. B., Advanced Materials, 2015, 27(41), 6431 |
[183] | Jung Y., Shen J., Sun Y., Cha J. J., ACS Nano, 2014, 8(9), 9550 |
[184] | Gong Y., Lei S., Ye G., Li B., He Y., Keyshar K., Zhang X., Wang Q., Lou J., Liu Z., Vajtai R., Zhou W., Ajayan P. M., Nano Letters, 2015, 15(9), 6135 |
[185] | Heo H., Sung J. H., Jin G., Ahn J. H., Kim K., Lee M. J., Cha S., Choi H., Jo M. H., Advanced Materials, 2015, 27(25), 3803 |
[186] | Bogaert K., Liu S., Chesin J., Titow D., Gradecak S., Garaj S., Nano Letters, 2016, 16(8), 5129 |
[187] | Yoo Y., Degregorio Z. P., Johns J. E., Journal of the American Chemical Society, 2015, 137(45), 14281 |
[188] | Mahjouri-Samani M., Lin M. W., Wang K., Lupini A. R., Lee J., Basile L., Boulesbaa A., Rouleau C. M., Puretzky A. A., Ivanov I. N., Xiao K., Yoon M., Geohegan D. B., Nature Communications, 2015, 6, 7749 |
[189] | Regan E. C., Wang D., Jin C., Utama M. I. B., Gao B., Wei X., Zhao S., Zhao W., Zhang Z., Yumigeta K., Nature, 2020, 579(7799), 359 |
[190] | Zhang C., Li M. Y., Tersoff J., Han Y., Su Y., Li L. J., Muller D. A., Shih C. K., Nature Nanotechnology, 2018, 13(2), 152 |
[191] | Liu C., Chen H., Wang S., Liu Q., Jiang Y.-G., Zhang D. W., Liu M., Zhou P., Nature Nanotechnology, 2020, 15, 545 |
[192] | Li H., Ye L., Xu J. B., ACS Photonics, 2017, 4(4), 823 |
[193] | Wang F., Wang Z., Yin L., Cheng R., Wang J., Wen Y., Shifa T. A., Wang F., Zhang Y., Zhan X., Chemical Society Reviews, 2018, 47(16), 6296 |
[194] | Deilmann T., Rohlfing M., Wurstbauer U., Journal of Physics:Condensed Matter, 2020, 32(33), 333002 |
[195] | Li H., Li X., Park J.-H., Tao L., Kim K. K., Lee Y. H., Xu J. B., Nano Energy, 2019, 57, 214 |
[196] | Jie W., Yang Z., Bai G., Hao J., Advanced Optical Materials, 2018, 6(10), 1701296 |
[197] | Novoselov K. S., Mishchenko A., Carvalho A., Neto A. H. C., Science, 2016, 353(6298), aac9439 |
[198] | Geim A. K., Grigorieva I. V., Nature, 2013, 499(7459), 419 |
[199] | Liu Y., Huang Y., Duan X. F., Nature, 2019, 567(7748), 323 |
[200] | Sung J. H., Heo H., Si S., Kim Y. H., Noh H. R., Song K., Kim J., Lee C.-S., Seo S.-Y., Kim D.-H., Kim H. K., Yeom H. W., Kim T.-H., Choi S.-Y., Kim J. S., Jo M.-H., Nature Nanotechnology, 2017, 12, 1064 |
[201] | Wang Y., Xiao J., Zhu H., Li Y., Alsaid Y., Fong K. Y., Zhou Y., Wang S., Shi W., Wang Y., Zettl A., Reed E. J., Zhang X., Nature, 2017, 550(7677), 487 |
[1] | ZHENG Xuelian, LIU Ling, YANG Cuicui, HE Yuanyuan, CHEN Jiu, TIAN Wei Quan. Modulation of the Second Order Nonlinear Optical Properties of Helical Graphene Nanoribbons Through Introducing Azulene Defects or/and BN Units[J]. 高等学校化学研究, 2022, 38(4): 974-984. |
[2] | ZHU Junlun, CUI Qian, WEN Wei, ZHANG Xiuhua, WANG Shengfu. Cu/CuO-Graphene Foam with Laccase-like Activity for Identification of Phenolic Compounds and Detection of Epinephrine[J]. 高等学校化学研究, 2022, 38(4): 919-927. |
[3] | GAO Wei, LI Yufeng, ZHAO Jitao, ZHANG Zhe, TANG Weiwei, WANG Jun, WU Zhenyu, LI Zhenyu. Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor[J]. 高等学校化学研究, 2022, 38(4): 1097-1104. |
[4] | Hakan, AHAL, Gülben TORĞUT, Erdal CANPOLAT. Optimization of Electrical Conductivity of SA-graphene Nanocomposites Using Response Surface Methodology[J]. 高等学校化学研究, 2022, 38(2): 596-602. |
[5] | CHEN Kaichun, ZHENG Xuelian, YANG Cuicui, TIAN Wei Quan, LI Weiqi, YANG Ling. Theoretical Studies on the Electronic Structure of Nano-graphenes for Applications in Nonlinear Optics[J]. 高等学校化学研究, 2022, 38(2): 579-587. |
[6] | ZHAO Xue, ZHANG Xinrui, LIU Qidong, ZHANG Zeyao, LI Yan. Growth of Single-walled Carbon Nanotubes on Substrates Using Carbon Monoxide as Carbon Source[J]. 高等学校化学研究, 2021, 37(5): 1125-1129. |
[7] | SONG Yang, TAO Lei, ZHANG Yanfang, PAN Jinbo, DU Shixuan. A DFT Investigation on the Electronic Structures and Au Adatom Assisted Hydrogenation of Graphene Nanoflake Array[J]. 高等学校化学研究, 2021, 37(5): 1110-1115. |
[8] | YU Ruomeng, SHI Yongzheng, YANG Dongzhi. Oil-Water Separation Performance of Electrospray Reduced Graphene Oxide Microspheres with a Local Radially Aligned and Porous Structure[J]. 高等学校化学研究, 2021, 37(3): 528-534. |
[9] | GUO Ruihua, QIAN Fei, AN Shengli, ZHANG Jieyu, CHOU Kuo-Chih, YE Jinyu, ZHOU Zhiyou. Effect of Acid Treatment on Electrocatalytic Performance of PtNi Catalyst[J]. 高等学校化学研究, 2021, 37(3): 686-695. |
[10] | MENG Zeshuo, ZHOU Bo, XU Jian, LI Yaxin, HU Xiaoying, TIAN Hongwei. Heterostructured Nitrogen and Sulfur co-Doped Black TiO2/g-C3N4 Photocatalyst with Enhanced Photocatalytic Activity[J]. 高等学校化学研究, 2020, 36(6): 1045-1052. |
[11] | YIN Yage, WEI Shuting, ZHANG Lei, GUO Ziwang, HUANG Haihua, SAI Shiran, WU Jiandong, XU Yanchao, LIU Ying, ZHENG Lirong, FAN Xiaofeng, CUI Xiaoqiang. Copper-linked 1T MoS2/Cu2O Heterostructure for Efficient Photocatalytic Hydrogen Evolution[J]. 高等学校化学研究, 2020, 36(6): 1122-1127. |
[12] | CUI Min, REN Jujie, WEN Xiaofang, LI Na, XING Yifei, ZHANG Cong, HAN Yuanyuan, JI Xueping. Electrochemical Detection of Superoxide Anion Released by Living Cells by Manganese(III) Tetraphenyl Porphine as Superoxide Dismutase Mimic[J]. 高等学校化学研究, 2020, 36(5): 774-780. |
[13] | XIONG Jin'en, LI Shuang, LI Yi, CHEN Yingli, LIU Yu, GAN Junlan, JU Jiahui, XIAN Yaoling, XIONG Xiaohui. Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food[J]. 高等学校化学研究, 2020, 36(5): 787-794. |
[14] | MA Aijing, CHEN Yaxi, LIU Yang, GUI Jianzhou, YU Yifu. Reduced Graphene Oxide/Carbon Fiber Composite Membrane for Self-floating Solar-thermal Steam Production[J]. 高等学校化学研究, 2020, 36(4): 699-702. |
[15] | LI Chang, XIE Liu, HE Tao, ZHANG Yan, DONG Zhuo, YANG Zeyuan, ZHANG Xiaodong, WANG Zhongchang, ZHANG Kai. Electrically Stimulated Band Alignment Transit in Black Phosphorus/ β-Ga2O3 Heterostructure Dual-band Photodetector[J]. 高等学校化学研究, 2020, 36(4): 703-708. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||