高等学校化学研究 ›› 2022, Vol. 38 ›› Issue (2): 275-289.doi: 10.1007/s40242-022-1434-1
LI Jiali, ZHANG Zhenwei, JIA Ji, LIU Xiaoming
收稿日期:
2021-10-27
修回日期:
2021-12-21
出版日期:
2022-04-01
发布日期:
2022-05-18
通讯作者:
LIU Xiaoming
E-mail:xm_liu@jlu.edu.cn
基金资助:
LI Jiali, ZHANG Zhenwei, JIA Ji, LIU Xiaoming
Received:
2021-10-27
Revised:
2021-12-21
Online:
2022-04-01
Published:
2022-05-18
Contact:
LIU Xiaoming
E-mail:xm_liu@jlu.edu.cn
Supported by:
摘要: Photocatalytic organic transformation is an efficient, energysaving and environmentally friendly strategy for organic synthesis. The key to developing a green and economical route for photocatalytic organic synthesis lies in the construction of optimal photocatalysts. Covalent organic frameworks(COFs), a kind of porous crystalline materials with characteristics of high surface area, excellent porosity, and superior thermo-chemical stability, have driven people to explore their potential as photocatalysts in photocatalytic organic transformations by virtue of their structural versatility and designability. Furthermore, the insolubility of COFs makes it possible to recycle the catalysts by simple technical means. In recent years, researchers have made great efforts to develop both the design strategies of COFs as heterogeneous photocatalysts and the reaction types of photocatalytic organic transformations. In this review, we focus on the design of COF-based photocatalytic materials and analyze the influence factors of photocatalytic performance. Moreover, we summarize the application of COFbased photocatalysts in photocatalytic organic conversion. Finally, the perspectives on new opportunities and challenges in the field are discussed.
LI Jiali, ZHANG Zhenwei, JIA Ji, LIU Xiaoming. Covalent Organic Frameworks for Photocatalytic Organic Transformation[J]. 高等学校化学研究, 2022, 38(2): 275-289.
LI Jiali, ZHANG Zhenwei, JIA Ji, LIU Xiaoming. Covalent Organic Frameworks for Photocatalytic Organic Transformation[J]. Chemical Research in Chinese Universities, 2022, 38(2): 275-289.
[1] Pardo B., Taylor J., Caulkins J., Reuter P., Kilmer B., Addiction,2021, 116, 1317. [2] Chen S., Chang X., Sun G. D., Zhang T. T., Xu Y. Y., Wang Y., Pei C. L., Gong J. L., Chem. Soc. Rev.,2021, 50, 3315. [3] Zhang Y., Wang Z. Y., New D., Zagnoni M., Anal. Chem.,2021, 93, 2411. [4] Marek I., Isr. J. Chem., 2018, 58, 122. [5] Neira D. P., Agron. Sustain. Deve.,2016, 36, 3. [6] Fujishima A., Honda K., Nature, 1972, 238, 37. [7] Carey J. H., Oliver B. G., Nature, 1976, 259, 554. [8] Wang N. N., Shi J. L., Hao H. M., Yuan H., Lang X. J., Sustain. Energ. Fuels,2019, 3, 1701. [9] Sopha H., Krbal M., Ng S., Prikryl J., Zazpe R., Yam F. K., Macak J. M., Appl. Mater. Today,2017, 9, 104. [10] Smith J. D., Jamhawi A. M., Jasinski J. B., Gallou F., Ge J., Advincula R., Liu J. J., Handa S., Nat. Commun.,2019, 10, 1837. [11] Wang L., Fernandez-Teran R., Zhang L., Fernandes D. L. A., Tian L., Chen H., Tian H. N., Angew. Chem. Int. Ed.,2016, 55, 12306. [12] An W. K., Zheng S. J., Du Y. N., Ding S. Y., Li Z. J., Jiang S., Qin Y. C., Liu X. B., Wei P. F., Cao Z. Q. Song M. R., Pan Z. L.,Catal. Sci. Technol.,2020, 10, 5171. [13] Liang Z. Y., Huang R. K., Liang R. W., Chen F., Yu Y., Yan G. Y., Appl. Surf. Sci.,2019, 484, 424. [14] Long X. Z., Yan T. N., Hu T. J., Gong X. H., Li H. M., Chu Z. Y., Catal. Lett., 2017, 147, 1922. [15] Li Z. S., Chen Q. Y., Lin Q. C., Chen Y., Liao X. C., Yu H. Q., Yu C. L., J. Taiwan Inst. Chem. E,2020, 114, 249. [16] Yu X., Wang L., Cohen S. M., CrystEngComm,2017, 19, 4126. [17] Deng X. Y., Li Z. H., Garcia H., Chem. Eur. J.,2017, 23,11189. [18] Ding L. G., Yao B. J., Li F., Shi S. C., Huang N., Yin H. B., Guan Q., Dong Y. B., J. Mater. Chem. A, 2019, 7, 4689. [19] Fan H., Mundstock A., Feldhoff A., Knebel A., Gu J., Meng H., Caro J., J. Am. Chem. Soc., 2018, 140, 10094. [20] Yuan F., Yang Z., Zhang X., Tong C., Gahungu G., Li W., Zhang J., J. Comput. Chem., 2021, 42, 888. [21] Das P., Mandal S. K., Chem. Mater.,2019, 31, 1584. [22] Chen M. H., Zhang J. B., Liu C. X., Li H. R., Yang H. W., Feng Y. Q., Zhang B., Org. Lett.,2021, 23, 1748. [23] Zhao Z. F., Zheng Y. L., Wang C., Zhang S. N., Song J., Li Y. F., Ma S. Q., Cheng P., Zhang Z. J., Chen Y. Y., ACS Catal.,2021, 11, 2098. [24] Diercks C. S., Lin S., Komienko N., Kapustin E. A., Nichols E. M., Zhu C. H., Zhao Y. B., Chang C. J., Yaghi O. M., J. Am. Chem. Soc.,2018, 140, 1116. [25] Li D. H., Li C. Y., Zhang L. J., Li H., Zhu L. K., Yang D. J., Fang Q. R., Qu S. L., Yao X. D., J. Am. Chem. Soc.,2020, 142, 8104. [26] Li M., Liu J.J., Li Y.S., Xing G.L., Chen L., CCS Chem., 2020, 3, 696. [27] Lv J. Q., Tan Y. X., Xie J. F., Yang R., Yu M. X., Sun S. S., Li M. D., Yuan D. Q., Wang Y. B., Angew. Chem. Int. Ed.,2018, 57, 12716. [28] Li Y. J., Chen M. H., Han Y. N., Feng Y. Q., Zhang Z. J., Zhang B., Chem. Mater.,2020, 32, 2532. [29] Zuo H. Y., Li Y., Liao Y. Z., ACS Appl. Mater. Interfaces,2019, 11, 39201. [30] Ge L., Qiao C. Y., Tang Y. K., Zhang X. K., Jiang X. Q., Nano Lett.,2021, 21, 3218. [31] Wang B., Liu X. C., Gong P. W., Ge X. X., Liu Z., You J. M., Chem. Commun., 2020, 56, 519. [32] Koch E. C., Cudzilo S., Angew. Chem. Int. Ed.,2016, 55, 15439. [33] Cao L., Wu H., Cao Y., Fan C., Zhao R., He X., Yang P., Shi B., You X., Jiang Z., Adv. Mater., 2020, 32, 2005565. [34] Yang Y., Zhang P., Hao L., Cheng P., Chen Y., Zhang Z., Angew. Chem. Int. Ed., 2021, 60, 21838. [35] Guan Q., Zhou L. L., Li Y. A., Li W. Y., Wang S. M., Song C., Dong Y. B., ACS Nano., 2019, 13, 13304. [36] Zhang L., Wang S. B., Zhou Y., Wang C., Zhang X. Z., Deng H. X., Angew. Chem. Int. Ed.,2019, 58, 14213. [37] Hynek J., Zelenka J., Rathouský J., Kubát P., Ruml T., Demel J., Lang K., ACS Appl. Mater. Interfaces, 2018, 10, 8527. [38] Zhang Q., Wei H., Wang L., Wang J., Fan L., Ding H., Lei J., Yu X., Lu B.,ACS Appl. Mater. Interfaces, 2019, 11, 44352. [39] Cao Y., Liu C., Wang M. D., Yang H., Liu S., Wang H. L., Yang Z. X., Pan F. S., Jiang Z. Y., Sun J., Energy Stor. Mater.,2020, 29, 207. [40] Chen W. B., Wang L., Mo D. Z., He F., Wen Z. L., Wu X. J., Xu H. X., Chen L., Angew. Chem. Int. Ed.,2020, 59, 16902. [41] Wan Y. Y., Wang L., Xu H. X., Wu X. J., Yang J. L., J. Am. Chem. Soc.,2020, 142, 4508. [42] Wang X. Y., Fu Z. W., Zheng L. R., Zhao C., Wang X., Chong S. Y., McBride F., Raval R., Bilton M., Liu L. J., Wu X. F., Chen L. J., Sprick R. S., Cooper A. I., Chem. Mater.,2020, 32, 9107. [43] Wang X., Fu Z., Zheng L., Zhao C., Wang X., Chong S. Y., Samantha Y., McBride F., Raval R., Bilton M., Liu L. J., Wu X. F., Chen L. J., Sprick R. S., Cooper A. I., Chem. Mater., 2020, 32, 9107. [44] Fu Z. W., Wang X. Y., Gardner A., Wang X., Chong S. Y., Neri G., Cowan A. J., Liu L. J., Li X. B., Vogel A., Clowes R., Bilton M., Chen L. J., Sprick R. S., Cooper A. I., Chem. Sci.,2020, 11, 543. [45] Li Z. P., Han S. J., Li C. Z., Shao P. P., Xia H., Li H., Chen X., Feng X., Liu X. M., J. Mater. Chem. A, 2020,8, 8706. [46] Khaing K. K., Yin D., Ouyang Y., Xiao S., Liu B., Deng L., Li L., Guo X., Wang J., Liu J. L., Zhang Y.,Inorg. Chem., 2020, 59, 6942. [47] Ma S., Li Z. P., Jia J., Zhang Z. W., Xia, H., Li H., Chen X., Xu, Y. H., Liu X. M., Chin. J. Catal. 2021, 42, 2010. [48] Zhang J. L., Yang Y., Liang W. B., Yao L. Y., Yuan R., Xiao D. R., Anal. Chem.,2021, 93, 3258. [49] Tan F. L., Han S., Peng D. L., Wang H. L., Yang J., Zhao P., Ye X. J., Dong X., Zheng Y. Y., Zheng N., Gong L., Liang C. L., Frese N., Gölzhäuser A., Qi H. Y., Chen S. S., Liu W., Zheng Z. K., J. Am. Chem. Soc.,2021, 143, 3927. [50] Cote A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O. M., Science,2005, 310, 1166. [51] Rodriguez-San-Miguel D., Montoro C., Zamora F., Chem. Soc. Rev.,2020, 49, 2291. [52] Huang W., Ma B. C., Lu H., Li R., Wang L., Landfester K., Zhang K. A. I., ACS Catal.,2017, 7, 5438. [53] Zhi Y. F., Li Z. P., Feng X., Xia H., Zhang Y. M., Shi Z., Mu Y., Liu X. M., J. Mater. Chem. A,2017, 5, 22933. [54] Waller P. J., Lyle S. J., Popp T. M. O., Diercks C. S., Reimer J. A., Yaghi O. M., J. Am. Chem. Soc.,2016, 138, 15519. [55] López-Magano A., Platero-Prats A. E., Cabrera S., Mas-Ballesté R., Alemán J., Appl. Catal. B:Environ.,2020, 272, 119027. [56] Zhang M. Y., Li J. K., Wang R., Zhao S. N., Zang S. Q., Mak T. C. W., Adv. Sci., 2021, 9, 2101884. [57] Sun D., Jang S., Yim S.-J., Ye L., Kim D.-P., Adv. Funct. Mater.,2018, 28, 1707110. [58] Liu L. F., Zhang B. X., Tan X. N., Tan D. X., Cheng X. Y., Han B. X., Zhang J. L., Chem. Commun., 2020, 56, 4567. [59] Chu C. Y., Huang M. H. J. Mater. Chem. A,2017, 5, 15116. [60] Wang T., Ren G. X., Shadike Z., Yue J. L., Cao M. H., Zhang J. N., Chen M. W., Yang X. Q., Bak S. M., Northrup P., Liu P., Liu X. S., Fu Z. W., Nat. Commun., 2019, 10, 4458. [61] Kong L. N., Zhang X. T., Wang C. H., Wan F. X., Li L., Chinese J. Catal., 2017, 38, 2120. [62] Liu X. P., Qin H., Fan W. L., Sci. Bull., 2016, 61, 645. [63] Chen W. B., Yang Z. F., Xie Z., Li Y. S., Yu X., Lu F. L., Chen L., J. Mater. Chem. A, 2019, 7, 998. [64] Nulli S. A., Ukhtary M. S., Saito R., Appl. Phys. Lett.,2018, 112, 3101. [65] Bibi I., Naz T., Majid F., Kamal S., Ata S., Almoneef M. M., Iqbal S., Iqbal M., Int. J. Energ. Res.,2021, 45, 11193. [66] Hernley P. A., Chavez S. A., Quinn J. P., Linic S., ACS Photonics,2017, 4, 979. [67] Liu Q., Li, N., Qiao Z., Li W. J., Wang L. L., Zhu S., Jing Z. H., Yan T. J., Front. Chem.,2019, 7, 866. [68] Mi Z., Zhou T., Weng W., Unruangsri J., Hu K., Yang W., Wang C., Zhang K. A. I., Guo J., Angew. Chem. Int. Ed., 2021, 60, 9642. [69] Lu B., Wang X., Li L., Du Y. S., Chen W., Liu Y. L., Appl. Surf. Sci.,2019, 478, 62. [70] Li H., Zhang L. Z., Curr. Opin. Green Sustain. Chem.,2017, 6, 48. [71] Jiménez-Almarza A., López-Magano A., Marzo L., Cabrera S., Mas-Ballesté R., Alemán J., ChemCatChem ., 2019, 11, 4916. [72] Wang Y. C., Yang Q., Yi F. L., Lu R. W., Chen Y. X., Liu C., Li X. Y., Wang C. J., Yan H. J., ACS Appl. Mater. Inter.,2021, 13, 29916. [73] Jadhav T., Fang Y., Patterson W., Liu C. H., Hamzehpoor E., Perepichka D. F., Angew. Chem. Int. Ed.,2019, 58, 13753. [74] Cheng W. M., Shang R., ACS Catal., 2020, 10, 9170. [75] Zhao X. B., MacMillan D. W. C., J. Am. Chem. Soc., 2020, 142, 19480. [76] Gao Z. Z., Wang Z. K., Wei L., Yin G. Q., Tian J., Liu C. Z., Wang H., Zhang D. W., Zhang Y. B., Li X. P., Liu Y., Li Z.-T. ACS Appl. Mater. Inter., 2020, 12, 1404. [77] Matsumoto M., Dasari R. R., Ji W., Feriante C. H., Parker T. C., Marder S. R., Dichtel W. R., J. Am. Chem. Soc., 2017, 139, 4999. [78] Albacete P., Martinez J. I., X. Li A., Lopez-Moreno S. A., Mena-Hernando A.E., Platero-Prats C., Montoro K. P., Loh E. M., Perez F. Zamora, J. Am. Chem. Soc., 2018, 40, 12922. [79] Stegbauer L., Schwinghammer K., Lotsch B. V., Chem. Sci., 2014, 5, 2789. [80] Dilla M., Mateblowski A., Ristig S., Strunk J., ChemCatChem.,2017, 9, 4345. [81] Hussin F., Lintang H. O., Lee S. L., Yuliati L. J. Photochem. Photobiol. A,2017, 340, 128. [82] Yang J. H., Wang D. G., Han H. X., Li C., Acc. Chem. Res., 2013, 46, 1900. [83] Feng K. Y., Hao H. M., Huang F. W., Lang X. J., Wang C., Mater. Chem. Front., 2021, 5, 2255. [84] Xiao J., Liu X. L., Pan L., Shi C. X., Zhang X. W., Zou J. J., ACS Catal.,2020, 10, 12256. [85] Jiao Z. F., Zhai Z. Y., Guo X. N., Guo X. Y., J. Phys. Chem. C,2015, 119, 3238. [86] Wei P. F., Qi M. Z., Wang Z. P., Ding S. Y., Yu W., Liu Q., Wang L. K., Wang H. Z., An W. K., Wang W., J. Am. Chem. Soc.,2018, 140, 4623. [87] Li Z. P., Zhi Y. F., Shao P. P., Xia H., Li G. S., Feng X., Chen X., Shi Z., Liu X. M., Appl. Catal. B:Environ.,2019, 245, 334. [88] Pachfule P., Acharjya A., Roeser J., Ramesh P. Sivasankaran., Ye M. Y., Angelika B., Johannes S. J., Thomas A., Chem. Sci., 2019, 10, 8316. [89] Hao W. J., Chen D., Li Y. S., Yang Z. F., Xing G. L., Li J., Chen L., Chem. Mater.,2019, 31, 8100. [90] Bhadra M., Kandambeth S., Manoj K., Addicoat S. M., Balaraman E., Banerjee R.,J. Am. Chem. Soc., 2019, 141, 6152. [91] Kang X., Wu X. W., Han X., Yuan C., Liu Y., Cui Y., Chem. Sci.,2020, 11, 1494. [92] Li S., Li L., Li Y., Dai L., Liu C., Liu Y., Li J., Lv J., Li P., Wang B., ACS Catal., 2020, 10, 8717. [93] Yang Y. L., Niu H. Y., Xu L., Zhang H., Cai Y. Q., Appl. Catal. B:Environ.,2020, 269, 118799. [94] Yang Y. L., Niu H. Y., Zhao W. J., Xu L., Zhang H., Cai Y. Q., RSC Adv., 2020, 10, 29402. [95] Lu H. S., Han W. K., Yan X. D., Chen C. J., Niu T. F., Gu Z. G., Angew. Chem. Int. Ed.,2021, 60, 17881. [96] Nailwal Y., Wonanke A. D. D., Addicoat M. A., Pal S. K. Macromolecules, 2021, 54, 6595. [97] Chen H., Liu W., Laemont A., Krishnaraj C., Feng X., Rohman F., Meledina M., Zhang Q., Van Deun R., Leus K., Voort P. V. D., Angew. Chem. Int. Ed., 2021,60, 10820. [98] Luo B., Chen Y., Zhang Y., Huo J., J. Catal., 2021, 402, 52. [99] Wang K. X., Kang X., Yuan C., Han X., Liu Y., Cui Y., Angew. Chem. Int. Ed.,2021, 60, 19466 [100] Almansaf Z., Hu J. Y., Zanca F., Shahsavari H. R., Kampmeyer B., Tsuji M., Maity K., Lomonte V., Ha Y. M., Mastrorilli P., Todisco S., Benamara M., Oktavian R., Mirjafari A., Peyman Z., Moghadam P. Z., Khosropour A. R., Beyzavi H., ACS Appl. Mater. Inter.,2021, 13, 6349 [101] Liu H., Yan X. L., Chen W. B., Xie Z., Li S., Chen W. H., Zhang T., Xing G. L., Chen L., Sci. China Chem.,2021, 64, 827 [102] Chen R., Shi J.-L., Ma Y., Lin G., Lang X., Wang C., Angew. Chem. Int. Ed., 2019, 58, 6430 [103] Song Y. X., Xin F., Zhang L. X., Wang Y., ChemCatChem .,2017, 9, 4139 [104] Vogt L. I., Cotelesage J. J. H., Dolgova N. V., Titus C. J., Sharifi S., George S. J., Pickering I. J., George G. N., RSC Adv.,2020, 10, 26229 [105] Parvatkar P. T., Manetsch R., Banik B. K., Chem Asian J., 2019, 14, 6 [106] Liu H., Li C., Li H., Ren Y., Chen J., Tang J., Yang Q., ACS Appl. Mater. Interfaces, 2020, 12, 20354 [107] Chen Y., Zhang J. S., Zhang M. W., Wang X. C., Chem. Sci.,2013, 4, 3244 [108] Parmeggiani C., Cardona F., Green Chem.,2012, 14, 547 [109] Guo Z., Liu B., Zhang Q. H., Deng W. P., Wang Y., Yang Y. H., Chem. Soc. Rev.,2014, 43, 3480 [110] Hu Y. Z., Zhao G. X., Pan Q. S., Wang H. H., Shen Z. W., Peng B. X., Busser G. W., Wang X. K., Muhler M., ChemCatChem,2019, 11, 5139 [111] Liao L., Ditz D., Zeng F., Alves Favaro M., Iemhoff A., Gupta K., Hartmann H., Szczuka C., Jakes P., Hausoul P. J. C., Artz J., Palkovits R. ChemistrySelect., 2020, 45, 14438 [112] Jugder B. E., Ertan H., Bohl S., Lee M., Marquis C. P., Manefield M., Front. Microbiol.,2016, 7, 249 [113] Wang S. Q., Chen S. Y., Wang Y., Low A., Lu Q. H., Qiu R. L., Biotechnol. Adv.,2016, 34, 1384 [114] Zhang Y. C., Wang Z., Lang X. J., Catal. Sci. Technol., 2017, 7, 4955 [115] Hosseinian A., Ahmadi S., Nasab F. A. H., Mohammadi R., Vessally E., Top Curr. Chem., 2018, 376, 39 [116] Heravi M. M., Zadsirjan V., Hajiabbasi P., Hamidi H., Monatsh. Chem., 2019, 150, 535 [117] Dong W. B., Yang Y., Xiang Y. G., Wang S. Y., Hu J. X., Li R., Chen H., Green Chem.,2021, 23, 5797 [118] Liao W. F., Ni X. Y., Photochem. Photobiol. Sci., 2017, 16, 1211 [119] Yagci Y., Jockusch S., Turro N., J. Macromolecules,2010, 43, 6245 [120] Sanad Sherif M. H., Hawass Mahmoud A. E., Elwahy Ahmed H. M., Abdelhamid Ismail A., Synth Commun., 2020, 50, 1982 [121] Yuan L., Jiang S. M., Li Z. Z., Zhu Y., Yu J., Li L., Li M. Z., Tang S., Sheng R. R., Org. Biomol. Chem.,2018, 16, 2406. [72] Wang Y. C., Yang Q., Yi F. L., Lu R. W., Chen Y. X., Liu C., Li X. Y., Wang C. J., Yan H. J., ACS Appl. Mater. Inter., 2021, 13, 29916. [73] Jadhav T., Fang Y., Patterson W., Liu C. H., Hamzehpoor E., Perepichka D. F., Angew. Chem. Int. Ed., 2019, 58, 13753. [74] Cheng W. M., Shang R., ACS Catal., 2020, 10, 9170. [75] Zhao X. B., MacMillan D. W. C., J. Am. Chem. Soc., 2020, 142, 19480. [76] Gao Z. Z., Wang Z. K., Wei L., Yin G. Q., Tian J., Liu C. Z., Wang H., Zhang D. W., Zhang Y. B., Li X. P., Liu Y., Li Z.-T. ACS Appl. Mater. Inter., 2020, 12, 1404. [77] Matsumoto M., Dasari R. R., Ji W., Feriante C. H., Parker T. C., Marder S. R., Dichtel W. R., J. Am. Chem. Soc., 2017, 139, 4999. [78] Albacete P., Martinez J. I., X. Li A., Lopez-Moreno S. A., Mena-Hernando A.E., Platero-Prats C., Montoro K. P., Loh E. M., Perez F. Zamora, J. Am. Chem. Soc., 2018, 40, 12922. [79] Stegbauer L., Schwinghammer K., Lotsch B. V., Chem. Sci., 2014, 5, 2789. [80] Dilla M., Mateblowski A., Ristig S., Strunk J., ChemCatChem., 2017, 9, 4345. [81] Hussin F., Lintang H. O., Lee S. L., Yuliati L. J. Photochem. Photobiol. A, 2017, 340, 128. [82] Yang J. H., Wang D. G., Han H. X., Li C., Acc. Chem. Res., 2013, 46, 1900. [83] Feng K. Y., Hao H. M., Huang F. W., Lang X. J., Wang C., Mater. Chem. Front., 2021, 5, 2255. [84] Xiao J., Liu X. L., Pan L., Shi C. X., Zhang X. W., Zou J. J., ACS Catal., 2020, 10, 12256. [85] Jiao Z. F., Zhai Z. Y., Guo X. N., Guo X. Y., J. Phys. Chem. C, 2015, 119, 3238. [86] Wei P. F., Qi M. Z., Wang Z. P., Ding S. Y., Yu W., Liu Q., Wang L. K., Wang H. Z., An W. K., Wang W., J. Am. Chem. Soc., 2018, 140, 4623. [87] Li Z. P., Zhi Y. F., Shao P. P., Xia H., Li G. S., Feng X., Chen X., Shi Z., Liu X. M., Appl. Catal. B:Environ., 2019, 245, 334. [88] Pachfule P., Acharjya A., Roeser J., Ramesh P. Sivasankaran., Ye M. Y., Angelika B., Johannes S. J., Thomas A., Chem. Sci., 2019, 10, 8316. [89] Hao W. J., Chen D., Li Y. S., Yang Z. F., Xing G. L., Li J., Chen L., Chem. Mater., 2019, 31, 8100. [90] Bhadra M., Kandambeth S., Manoj K., Addicoat S. M., Balaraman E., Banerjee R.,J. Am. Chem. Soc., 2019, 141, 6152. [91] Kang X., Wu X. W., Han X., Yuan C., Liu Y., Cui Y., Chem. Sci., 2020, 11, 1494. [92] Li S., Li L., Li Y., Dai L., Liu C., Liu Y., Li J., Lv J., Li P., Wang B., ACS Catal., 2020, 10, 8717. [93] Yang Y. L., Niu H. Y., Xu L., Zhang H., Cai Y. Q., Appl. Catal. B:Environ., 2020, 269, 118799. [94] Yang Y. L., Niu H. Y., Zhao W. J., Xu L., Zhang H., Cai Y. Q., RSC Adv., 2020, 10, 29402. [95] Lu H. S., Han W. K., Yan X. D., Chen C. J., Niu T. F., Gu Z. G., Angew. Chem. Int. Ed., 2021, 60, 17881. [96] Nailwal Y., Wonanke A. D. D., Addicoat M. A., Pal S. K. Macromolecules, 2021, 54, 6595. [97] Chen H., Liu W., Laemont A., Krishnaraj C., Feng X., Rohman F., Meledina M., Zhang Q., Van Deun R., Leus K., Voort P. V. D., Angew. Chem. Int. Ed., 2021,60, 10820. [98] Luo B., Chen Y., Zhang Y., Huo J., J. Catal., 2021, 402, 52. [99] Wang K. X., Kang X., Yuan C., Han X., Liu Y., Cui Y., Angew. Chem. Int. Ed., 2021, 60, 19466. [100] Almansaf Z., Hu J. Y., Zanca F., Shahsavari H. R., Kampmeyer B., Tsuji M., Maity K., Lomonte V., Ha Y. M., Mastrorilli P., Todisco S., Benamara M., Oktavian R., Mirjafari A., Peyman Z., Moghadam P. Z., Khosropour A. R., Beyzavi H., ACS Appl. Mater. Inter., 2021, 13, 6349. [101] Liu H., Yan X. L., Chen W. B., Xie Z., Li S., Chen W. H., Zhang T., Xing G. L., Chen L., Sci. China Chem., 2021, 64, 827. [102] Chen R., Shi J.-L., Ma Y., Lin G., Lang X., Wang C., Angew. Chem. Int. Ed., 2019, 58, 6430. [103] Song Y. X., Xin F., Zhang L. X., Wang Y., ChemCatChem., 2017, 9, 4139. [104] Vogt L. I., Cotelesage J. J. H., Dolgova N. V., Titus C. J., Sharifi S., George S. J., Pickering I. J., George G. N., RSC Adv., 2020, 10, 26229. [105] Parvatkar P. T., Manetsch R., Banik B. K., Chem Asian J., 2019, 14, 6. [106] Liu H., Li C., Li H., Ren Y., Chen J., Tang J., Yang Q., ACS Appl. Mater. Interfaces, 2020, 12, 20354. [107] Chen Y., Zhang J. S., Zhang M. W., Wang X. C., Chem. Sci., 2013, 4, 3244. [108] Parmeggiani C., Cardona F., Green Chem., 2012, 14, 547. [109] Guo Z., Liu B., Zhang Q. H., Deng W. P., Wang Y., Yang Y. H., Chem. Soc. Rev., 2014, 43, 3480. [110] Hu Y. Z., Zhao G. X., Pan Q. S., Wang H. H., Shen Z. W., Peng B. X., Busser G. W., Wang X. K., Muhler M., ChemCatChem, 2019, 11, 5139. [111] Liao L., Ditz D., Zeng F., Alves Favaro M., Iemhoff A., Gupta K., Hartmann H., Szczuka C., Jakes P., Hausoul P. J. C., Artz J., Palkovits R. ChemistrySelect., 2020, 45, 14438. [112] Jugder B. E., Ertan H., Bohl S., Lee M., Marquis C. P., Manefield M., Front. Microbiol., 2016, 7, 249. [113] Wang S. Q., Chen S. Y., Wang Y., Low A., Lu Q. H., Qiu R. L., Biotechnol. Adv., 2016, 34, 1384. [114] Zhang Y. C., Wang Z., Lang X. J., Catal. Sci. Technol., 2017, 7, 4955. [115] Hosseinian A., Ahmadi S., Nasab F. A. H., Mohammadi R., Vessally E., Top Curr. Chem., 2018, 376, 39. [116] Heravi M. M., Zadsirjan V., Hajiabbasi P., Hamidi H., Monatsh. Chem., 2019, 150, 535. [117] Dong W. B., Yang Y., Xiang Y. G., Wang S. Y., Hu J. X., Li R., Chen H., Green Chem., 2021, 23, 5797. [118] Liao W. F., Ni X. Y., Photochem. Photobiol. Sci., 2017, 16, 1211. [119] Yagci Y., Jockusch S., Turro N., J. Macromolecules, 2010, 43, 6245. [120] Sanad Sherif M. H., Hawass Mahmoud A. E., Elwahy Ahmed H. M., Abdelhamid Ismail A., Synth Commun., 2020, 50, 1982. [121] Yuan L., Jiang S. M., Li Z. Z., Zhu Y., Yu J., Li L., Li M. Z., Tang S., Sheng R. R., Org. Biomol. Chem., 2018, 16, 2406. |
[1] | WANG Guangbo, XIE Kehui, ZHU Fucheng, KAN Jinglan, LI Sha, GENG Yan, DONG Yubin. Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture[J]. 高等学校化学研究, 2022, 38(2): 409-414. |
[2] | DI Zhengyi, MAO Yining, YUAN Heng, ZHOU Yan, JIN Jun, LI Cheng-Peng. Covalent Organic Frameworks(COFs) for Sequestration of99TcO4–[J]. 高等学校化学研究, 2022, 38(2): 290-295. |
[3] | XU Kai, HUANG Ning. Recent Advances of Covalent Organic Frameworks in Chemical Sensing[J]. 高等学校化学研究, 2022, 38(2): 339-349. |
[4] | BI Shuai, MENG Fancheng, ZHANG Zixing, WU Dongqing, ZHANG Fan. Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs[J]. 高等学校化学研究, 2022, 38(2): 382-395. |
[5] | CHANG Shunkai, LI Cuiyan, LI Hui, ZHU Liangkui, FANG Qianrong. Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR)[J]. 高等学校化学研究, 2022, 38(2): 396-401. |
[6] | ZHANG Yin, MA Shengqian. Laser-induced Synthesis of Ultrafine Gold Nanoparticles in Covalent Organic Frameworks[J]. 高等学校化学研究, 2022, 38(2): 468-471. |
[7] | CUI Yumeng, MIAO Zhuang, LIU Qi, JIN Fenchun, ZHAI Yufeng, ZHANG Lingyan, WANG Wenli, WANG Ke, LIU Guiyan, ZENG Yongfei. Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy[J]. 高等学校化学研究, 2022, 38(2): 402-408. |
[8] | YU Xiaoming, MA Yunchao, LI Cuiyan, GUAN Xinyu, FANG Qianrong, QIU Shilun. A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction[J]. 高等学校化学研究, 2022, 38(1): 167-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||