高等学校化学研究 ›› 2021, Vol. 37 ›› Issue (5): 989-1007.doi: 10.1007/s40242-021-1263-7
FENG Enduo, TIAN Yang
收稿日期:
2021-07-12
修回日期:
2021-08-05
出版日期:
2021-10-01
发布日期:
2021-09-30
通讯作者:
TIAN Yang
E-mail:ytian@chem.ecnu.edu.cn
基金资助:
FENG Enduo, TIAN Yang
Received:
2021-07-12
Revised:
2021-08-05
Online:
2021-10-01
Published:
2021-09-30
Contact:
TIAN Yang
E-mail:ytian@chem.ecnu.edu.cn
Supported by:
摘要: Surface-enhanced Raman scattering(SERS) is a molecular specific spectroscopic technique that amplifies the Raman signal of absorbed molecules for up to 1010times. Over the past decades, SERS substrates experienced rapid growth, resulting in excellent development for SERS analysis. Because the surface plasmonic resonance coupling between individual materials can form a "hotspot" region to maximize the Raman signal, among many substrate construction strategies, self-assembly attracts more attention in constructing superstructures with strong, uniform and stable SERS activity. In addition, a number of plasmon-free nanomaterials with appropriate superstructures samely show enhanced SERS activity, which is primarily attributed to the formation of the optical resonator. This review aims to provide a scientific synopsis on the progress of self-assembled superstructures for SERS and ignite new dis˗ coveries in the SERS platform, as well as SERS applications in various fields.
FENG Enduo, TIAN Yang. Surface-enhanced Raman Scattering of Self-assembled Superstructures[J]. 高等学校化学研究, 2021, 37(5): 989-1007.
FENG Enduo, TIAN Yang. Surface-enhanced Raman Scattering of Self-assembled Superstructures[J]. Chemical Research in Chinese Universities, 2021, 37(5): 989-1007.
[1] Boles M. A., Engel M., Talapin D. V., Chem. Rev., 2016, 116, 11220 [2] Grzelczak M., Vermant J., Furst E. N., Liz-Marzán l. M., ACS Nano, 2010, 4, 3591 [3] Pinheiro A. V., Han D., Shih W. M., Yan H., Nat. Nanotechnol., 2011, 6, 763 [4] Dill K. A., MacCallum J. L., Science, 2012, 338, 1042 [5] Chen I. A., Walde P., Cold Spring Harbor Perspect. Biol., 2010, 2, a002170 [6] Bates F. S., Hillmyer M. A., Lodge T. P., Bates C. M., Delaney K. T., Fredrickson G. H., Science, 2012, 336, 434 [7] Kim S.-H., Lee S. Y., Yang S.-M., Yi G.-R. NPG Asia Mater., 2011, 3, 25 [8] Vogel N., Retsch M., Fustin C.-A., del Campo A., Jonas U., Chem. Rev., 2015, 115, 6265 [9] Sun S., Murray C. B., Weller D., Folks L., Moser A., Science, 2000, 287, 1989 [10] Wang J.-L., Hassan M., Liu J.-W., Yu S.-H., Adv. Mater., 2018, 30, 1803430 [11] Neal R. D., Hughes R. A., Preston A. S., Golze S. D., Demille T. B., Neretina S., J. Mater. Chem. C, 2021, DOI:10.1039/d1tc01494c [12] Phan-Quang G. C., Han X., Koh C. S. L., Sim H. Y. F., Lay C. L., Leong S. X., Lee Y. H., Pazos-Perez N., Alvarez-Puebla R. A., Ling X. Y., Acc. Chem. Res., 2019, 52, 1844 [13] Raman C. V., Krishnan K. S., Nature, 1928, 121, 501 [14] Raman C. V., Indian J. Phys., 1928, 2, 387 [15] Diem M., Romeo M., Boydston-White S., Miljković M., Matthäus C., Analyst, 2004, 129, 880 [16] Fleischmann M., Hendra P. J., McQuillan A. J., Chem. Phys. Lett., 1974, 26, 163 [17] Panneerselvam R., Liu G.-K., Wang Y.-H., Liu J.-Y., Ding S.-Y., Li J.-F., Wu D.-Y., Tian Z.-Y., Chem. Commun., 2018, 54, 10 [18] Wang Y., Yan B., Chen L., Chem. Rev., 2013, 113, 1391 [19] Kuku G., Althunbek M., Culha M., Anal. Chem., 2017, 89, 11160 [20] Feng E., Zheng T., Tian Y., ACS Sens., 2019, 4, 211 [21] Wang W., Zhao F., Li M., Zhang C., Shao Y., Tian Y., Angew. Chem. Int. Ed., 2019, 58, 5256 [22] Liu J., Liu Z., Wang W., Tian Y., Angew. Chem. Int. Ed., 2021, DOI:10.1002/anie.202106193 [23] Ding S-Y., Yi J., Li J-F., Ren B., Wu D-Y., Panneerselvam R., Tian Z-Q., Nat. Rev. Mater., 2016, 1, 16021 [24] Balčytis A., Nishijima Y., Krishnamoorthy S., Kuchmizhak A., Stoddart P. R., Petruškevičius R., Juodkazis S., Adv. Optical Mater., 2018, 6, 1800292 [25] Bell S. E. J., Charron G., Cortés E., Kneipp J., de la Chapelle M. L., Langer J., Procházka M., Tran V., Schlücker S., Angew. Chem. Int. Ed., 2020, 59, 5454 [26] Zhou Y., Liu J., Zheng T., Tian Y., Anal. Chem., 2020, 92, 5910 [27] Liu J., Qu Y., Zheng T., Tian Y., Chem. Commun., 2019, 55, 9673 [28] Li J-F., Zhang Y-J., Ding S-Y., Panneerselvam R., Tian Z-Q., Chem. Rev., 2017, 117, 5002 [29] Kannan P. K., Shankar P., Blackman C., Chung C.-H., Adv. Mater., 2019, 31, 1803432 [30] Yang B., Jin S., Guo S., Park Y., Chen L., Zhao B., Jung Y.-M., ACS Omega, 2019, 4, 20101 [31] Feng E., Zheng T., He X., Chen J., Tian Y., Sci. Adv., 2018, 4, eaau3494 [32] Liu J., Zheng T., Tian Y., Angew. Chem. Int. Ed., 2019, 58, 7757 [33] Liu X., Zhou Y., Zheng T., Tian Y., Chem. Res. Chinese Universities, 2021, 37(4), 900 [34] Taylor A. B., Zijlstra P., ACS Sens., 2017, 2, 1103 [35] Yang K., Yao X., Liu B., Ren B., Adv. Mater., 2021, DOI:10.1002/adma.202007988 [36] Blanco-Formoso M., Pazos-Perez N., Alvarez-Puebla R. A., ACS Omega, 2020, 5, 25485 [37] Li J.-F., Zhang Y.-J., Ding S.-Y, Panneerselvam R., Tian Z.-Q, Chem. Rev., 2017, 117, 5002 [38] Alessandri I., Lombardi J. R., Chem. Rev., 2016, 116, 14921 [39] Zhu Z., Meng H., Liu W., Liu X., Gong J., Qiu X., Jiang L., Wang D., Tang Z., Angew. Chem. Int. Ed., 2011, 123, 1631 [40] Whitesides G. M., Grzybowski B., Science, 2002, 295, 2418 [41] Grzelczak M., Vermant J., Furst E. M., Liz-Marzán L. M., ACS Nano, 2010, 4, 3591 [42] Ofir Y., Samanta B., Rotello V. M., Chem. Soc. Rev., 2009, 37, 1814 [43] Jishkariani D., Diroll B. T., Cargnello M., Klein D. R., Hough L. A., Murray C. B., Donnio B., J. Am. Chem. Soc., 2015, 105, 3353 [44] Akcora P., Liu H., Kumar S. K., Moll J., Li Y., Benicewicz B. C., Schadler L. S., Acehan D., Panagiotopoulos A. Z., Pryamitsyn V., Nat. Mater., 2009, 8, 354 [45] Sharma N., Top A., Kiick K. L., Pochan D. J., Angew. Chem. Int. Ed., 2009, 48, 7078 [46] Barrow S. J., Funston A. M., Wei X., Mulvaney P., Nano Today, 2013, 8, 138 [47] Tan S J., Campolongo M. J., Luo D., Cheng W., Nat. Nanotech., 2011, 6, 268 [48] Li Y., Liu Z., Yu G., Jiang W., Mao C., J. Am. Chem. Soc., 2015, 137, 4320 [49] Grubbs R. B., Nat. Mater., 2007, 6, 553 [50] Hu L., Chen M., Fang X., Wu L., Chem. Soc. Rev., 2012, 41, 1350 [51] Si S., Liang W., Sun Y., Huang J., Ma W., Liang Z., Bao Q., Jiang L., Adv. Func. Mater., 2016, 26, 8137 [52] Akin C., Yi J., Feldman L. C., Durand C., Hus S. M., Li A. P., Filler M. A., Shan J. W., ACS Nano, 2015, 9, 5405 [53] Shan A. A., Ganesan M., Jocz. J., Solomon M. J., ACS Nano, 2014, 8, 8095 [54] Zhang S. Y., Regulacio M. D., Han M. Y., Chem. Soc. Rev., 2014, 43, 2301 [55] Jones M. R., Osberg J. D., MacFarlane R. J., Langille M. R., Mirkin C. A., Chem. Rev., 2011, 111, 3736 [56] Yang Y., Wang W., Chen T., Chen Z.-R., ACS Appl. Mater. Interfaces, 2014, 6, 21468 [57] Gwo S., Wang C.-Y., Chen H.-Y., Lin M.-H., Sun L., Li X., Chen W.-L., Chang Y.-M., Ahn H., ACS Photonics, 2016, 3, 1371 [58] Chen J., Gong Y., Shang J., Li J., Wang Y., Wu K., J. Phys. Chem. C, 2014, 118, 22702 [59] Tian C., Deng Y., Zhao D., Fang J., Adv. Optical. Mater., 2015, 3, 404 [60] Wu X., Fan X., Yin Z., Liu Y., Zhao J., Quan Z., Chem. Commun., 2019, 55, 7982 [61] Zhong L.-B., Yin J., Zheng Y.-M., Liu Q., Cheng X.-X., Luo F.-H., Anal. Chem., 2014, 86, 6262 [62] Guo Q., Xu M., Yuan Y., Gu R., Yao J., Langmuir, 2016, 32, 4530 [63] García-Lojo D., Gómez-Graña S., Martín V. F., Solís D. M., Taboada J. M., Pérez-Juste J., Pastoriza-Santos I., ACS Appl. Mater. Interfaces, 2020, 12, 46557 [64] Mueller N. S., Pfitzner E., Okamura Y., Gordeev G., Kusch P., Lange H., Heberle J., Schulz F., Reich S., ACS Nano, 2021, 15, 5523 [65] Qiao X., Su B., Liu C., Sonng Q., Luo D., Mo G., Wang T., Adv. Mater., 2018, 30, 1702275 [66] Zeng Y., Ren J.-Q., Shen A.-G., Hu J.-M., J. Am. Chem. Soc., 2018, 140, 10649 [67] Tian L., Wang C., ZHoa H., Sun F., Dong H., Feng K., Wang P., He G., Li G., J. Am. Chem. Soc., 2021, 143, 8631 [68] Steinigeweg D., Schütz M., Schlücker S., Nanoscale, 2013, 5, 110 [69] Zhang L., Dai L., Rong Y., Liu Z., Tong D., Huang Y., Chen T., Langmuir, 2015, 31, 1164 [70] Huang L., Wan X., Rong H., Yao Y., Xu M., Liu J., Ji M., Liu J., Jiang L., Zhang J., Small, 2018, 14, 1703501 [71] Matricardi C., Hanske C., Garcia-Pomar J. L., Langer J., Mihi A., Liz-Marzán L. M., ACS Nano, 2018, 12, 8531 [72] Lee J. B., Waler H., Li Y., Nam T. W., Rakovich A., Sapienza R., Jung Y. S., Nam Y. S., Maier S. A., Cortés E., ACS Nano, 2020, 14, 17693 [73] Yao X., Jiang S., LuoS., Liu B.-W., Huang T.-X., HuS., Zhu J., Wang X., Ren B., ACS Appl. Mater. Interfaces, 2020, 12, 36505 [74] Lin J., Shang Y., Li X., Yu J., Wang X., Guo L., Adv. Mater., 2017, 29, 1604797 [75] Ji W., Li L., Song W., Wang X., Zhao B., Ozaki Y., Angew. Chem. Int. Ed., 2019, 58, 14452 [76] Garnett E., Mai L., Yang P., Chem. Rev., 2019, 119, 8955 [77] Huo D., Kim M. J., Lyu Z., Shi Y., Wiley B. J., Xia Y., Chem. Rev., 2019, 119, 8972 [78] Quan L. N., Kang J., Ning C-Z., Yang P., Chem. Rev., 2019, 119, 9153 [79] Tian B., Lieber, C. M., Chem. Rev., 2019, 119, 9136 [80] Deng J., Su Y., Liu D., Yang P., Liu B., Liu C., Chem. Rev., 2019, 119, 9221 [81] Liu J.-W., Wang J.-L., Wang Z.-H., Huang W., Yu S.-H., Angew. Chem. Int. Ed., 2014, 53, 13477 [82] Tao A., Kim F., Hess C., Goldberger J., He R., Sun Y., Xia Y., Yang P., Nano. Lett., 2003, 3, 1229 [83] Guo S., Dong S., Wang E., Cryst. Growth Des., 2009, 9, 1, 372 [84] Chen C., Hao J., Zhu L., Yao Y., Meng X., Weimer W., Wang Q. K., J. Mater. Chem. A, 2013, 1, 13496 [85] Liu J.-W., Wang J.-L., Huang W.-R., Yu L., Ren X.-F., Wen W.-C., Yu S. -H., Sci. Rep., 2012, 2, 987 [86] Driskell J. D., Shanmukh S., Liu Y., Chaney S. B., Tang X.-J., Zhao Y.-P., Dluhy R. A., J. Phys. Chem. C, 2008, 112, 4, 895 [87] Shi H.-Y., Hu B., Yu X.-C., Zhao R.-L., Ren X.-F., Liu S.-L., Liu J.-W., Feng M., Xu A.-W., Yu S.-H., Adv. Func. Mater., 2010, 20, 958 [88] Chen M., Phang I. Y., Lee M. R., Yang J. K. W., Ling X. Y., Langmuir, 2013, 29, 7061 [89] Liu S.-Y., Tian X.-D., Zhang Y., Li J.-F., Anal. Chem., 2018, 90, 12, 7275 [90] Jeong D. H., Zhang Y. X., Moskovits M., J. Phys. Chem. B, 2004, 108, 12724 [91] Lee S. J., Morrill A. R., Moskovits, M., J. Am. Chem. Soc., 2006, 128, 2200 [92] Wu Y., Livneh T., Zhang Y. X., Cheng G., Wang J., Tang J., Moskovits M., Stucky G. D., Nano Lett., 2004, 4, 2337 [93] Tian C., Li J., Ma C., Wang P., Sun X., Fang J., Nanoscale, 2015, 7, 12318 [94] Chen S., Ding C., Lin Y., Wu X., Yuan W., Meng X., Su W., Zhang K.-Q., RSC Adv., 2020, 10, 21845 [95] Tian C., Ding X., Liu S., Yang S., Song X., Ding B., Li Z., Fang J., ACS Nano, 2011, 5, 9442 [96] Goh M. S., Lee Y. H., Pedireddy S., Phang I. P., Tjiu, W. W., Tan J. M. R., Ling X. Y., Langmuir, 2012, 28, 14441 [97] Netzer N. L., Tanaka Z., Chen B., Jiang C., J. Phys. Chem. C, 2013, 117, 16187 [98] Tian C., Ding C., Liu S., Yang S., Song X., Ding B., Li Z., Fang J., ACS Nano, 2011, 5, 9442 [99] Chen M., Zhang H., Ge Y., Yang S., Wang P., Fang Y., Langmuir, 2018, 34, 15160 [100] Duan B., Hou S., Wang P., Chen Y., Xiong Q., Das P., Duan H., J. Raman. Spectrosc., 2021, 52, 532 [101] Li X., Lee H. K., Phang I. Y., Lee C. Y., Ling X. Y., Anal. Chem., 2014, 86, 10437 [102] Gahlaut S. K., Savagaonkar D., Sharan C., Yadav S., Mishra P., Singh J. P., Anal. Chem., 2020, 92, 2527 [103] Zhang Z., Fu Y., Yu W., Qin X., Xue Z., Liu Y., Luo D., Yan C., Sun X., Wang T., Adv. Mater., 2016, 28, 9589 [104] Qiao X., Chen X., Huang C., Li A., Li X., Lu Z., Wang T., Angew. Chem. Int. Ed., 2019, 58, 16523 [105] Feng H., Yang Y., You Y., Li G., Guo J., Yu Y., Shen Z., Wu T., Xing B., Chem. Commun., 2009, 15, 1984 [106] Kanno Y., Suzuki T., Yamauchi Y., Kuroda K., J. Phys. Chem. C, 2012, 116, 24672 [107] Lee K-L., Hung C.-Y., Pan M.-Y., Wu Y.-Y., Yang S.-Y., Wei P.-K., Adv. Mater. Interface., 2018, 5, 1801064 [108] Jeong J. W., Arnob M. M., Baek K.-M., Lee S. Y., Shih W.-C., Jung Y. S., Adv. Mater., 2016, 28, 8695 [109] Cho S. H., Baek K. M., Han H. J., Kim M., Park H., Jung Y. S., Adv. Func. Mater., 2020, 30, 2000612 [110] Park H. J., Cho S., Kim M., Jung Y. S., Nano Lett., 2020, 20, 2576 [111] Li Y. H., Liu P. F., Pan L. F., Wang H. F., Yang Z. Z., Zheng L. R., Hu P., Zhao H. J., Gu L., Yang H. G., Nat. Commun., 2015, 6, 8064 [112] Zheng X., Ren F., Zhang S., Zhang X., Wu H., Zhang X., Xing Z., Qin W., Liu Y., Jiang C., ACS Appl. Mater. Interfaces, 2017, 9, 14534 [113] Wang X., Li J., Shen Y., Xie A., Appl. Surf. Sci., 2020, 504, 144073 [114] Hou X., Luo X., Fan X., Peng Z., Qiu T., Phys. Chem. Chem. Phys., 2019, 21, 2611 [115] Gu L.-J., Ma C.-L., Zhang X.-H., Zhang W., Cong S., Zhao Z.-G., Chem. Commun., 2018, 54, 6332 [116] Liu W., Bai H., Li X., Li W., Zhai J., Li J., Xi G., J. Phys. Chem. Lett., 2018, 9, 4096 [117] Ye Y., Bai H., Li M., Tian Z., Du R., Fan W., Xi G., Adv. Mater. Technol., 2019, 4, 1900282 [118] Ye Y., Chen C., Li W., Guo X., Yang H., Guan H., Bai H., Liu W., Xi G., Anal. Chem., 2021, 93, 3138 [119] Lijima S., Nature, 1991, 354, 5658 [120] Cheng H., Zhao Y., Fan Y., Xie X., Qu L., Shi G., ACS Nano, 2012, 6, 2237 [121] Chen N., Xiao T.-H., Luo Z., Kitahama Y., Hiramatsu K., Kishimoto N., Itoc T., Cheng Z., Goda K., Nat Commun., 2020, 11, 4772 [122] Wu J., Zhang S., Lin D., Ma B., Yang l., Zhang S., Kang L., Mao N., Zhang N., Tong L., Zhang J., Adv. Mater. Interfaces, 2018, 5, 1700941 [123] Cao L., Nabet B., Spanier J. E., Phys. Rev. Lett., 2006, 96, 157402 [124] Khorasaninejad M., Dhindsa N., Walia J., Patchett S., Saini S. S., Appl. Phys. Lett., 2012, 101, 173114 [125] Khorasaninejad M., Walia J., Saini S. S., Nanotechnology, 2012, 23, 275706 [126] Wells S. M., Merkulov, I A., Kravchenko I. I., Lavrik N V., Sepaniak M. J., ACS Nano, 2012, 6, 2948 [127] Wang X., Shi W., She G., Mu L., J. Am. Chem. Soc., 2011, 133, 16518 [128] Bontempi N., Salmistraro M., Ferroni M., Depero L. E., Alessandri I., Nanotechnology, 2014, 25, 465705 [129] Bai J., Qin Y., Jiang C., Qi L., Chem. Mater., 2007, 19, 3367 [130] Zhang X.-Y., Hu A., Zhang T., Lei W., Xue X.-J., Zhou Y., Duley W. W., ACS Nano, 2011, 5, 9082 [131] Sun M., Qian H., Liu J., Li Y., Pang S., Xu M., Zhang J., RSC Adv., 2017, 7, 7073 [132] Gao T., Wang Y., Zhang X., Dui J., Li G., Lou S., Zhou S., ACS Appl. Mater. Interfaces, 2013, 5, 7308 [133] Wu Y., Huang T., Yu Z., Gu J., Li M., Adv. Mater. Interfaces, 2015, 2, 1500359 [134] Jia P., Chang J., Wang J., Zhang P., Cao B., Geng Y., Wang X., Pan K., Chem. Asian J., 2016, 11,86 [135] Jia P., Qiu J., Cao B., Liu Y., Luo C., An J., Pan K., Analyst, 2015, 140, 5190 [136] Tong J., Xu Z., Bian Y., Niu Y., Zhang Y., Wang Z., J. Raman. Spectrosc., 2019, 50, 1468 [137] Liu G., Cai W., Kong L., Duan G., Lv F., J. Mater. Chem., 2010, 20, 767 [138] Li Z., Meng G., Huang Q., Zhu C., Zhang Z., Li X., Chem. Eur. J., 2012, 18, 14948 [139] Zhu C., Meng G., Huang Q., Zhang Y., Tang H., Qian Y., Chen B., Wang X., Chem. Eur. J., 2013, 19, 9211 [140] Li Z., Du Z., Sun K., He X., Chen B., RSC Adv., 2017, 7, 53157 [141] Yang S., Slotcavage D., Mai J. D., Guo F., Li S., Zhao Y., Lei Y., Careron C. E., Huang T. J., J. Mater. Chem. C, 2014, 2, 8350 [142] Xu B.-B., Wang L., Ma Z.-C., Zhang R., Chen Q.-D., Lv C., Han B., Xiao X.-Z., Zhang X.-L., Zhang Y.-L., Ueno K., Misawa H., Sun H.-B., ACS Nano, 2014, 8, 6682 [143] Ran P., Jiang L., Li X., Li B., Zuo P., Lu Y., Small, 2019, 15, 1804899 [144] Walker D. A., Browne K. P., Kowalczyk B., Grzybowski B. A., Angew. Chem. Int. Ed. 2010, 49, 6760 [145] Lee Y. H., Lee C. K., Tan B., Tan J. M. R., Phang Y., Ling X. Y., Nanoscale, 2013, 5, 6404 [146] Zhou Y., Zhou X., Park D. J., Torabi K., Brown K. A., Jones M. R., Zhang C., Schatz G. C., Mirkin C. A., Nano Lett., 2014, 14, 2157 [147] Scarabelli L., Coronado-Puchau M., Giner-Casares J. J., Langer J., Liz-Marzán L. M., ACS Nano, 2014, 8, 5833 [148] Liebig F., Sarhan R. M., Sander M., Koopman W., Schuetz R., Bargheer M., Koetz J., ACS Appl. Mater. Interfaces, 2017, 9, 20247 [149] Kim J., Song H., Ji F., Luo B., Ice N. F., Liu Q., Zhang Q., Chen Q., Nano. Lett., 2017, 17, 3270 [150] Ye S., Connell S. D., Mclaughlan J. R., Roach L., Aslam Z., Chankhunthod N., Brown A. P., Brydson R., Bushby R. J., Critchley K., Coletta P. L., Markhan A. F., Evans S. D., Adv. Func. Mater., 2020, 30, 2003512 [151] Wang J., Duan G., Li Y., Liu G., Dai Z., Zhang H., Cai W., Langmuir, 2013, 29, 3512 [152] Ma Y., Yung L.-Y. L., Langmuir, 2016, 32, 7854 [153] Ma Y., Yung L.-Y. L., ACS Applied Materials & Interfaces, 2016, 8, 15567 [154] Dube T., Kumar N., Kour A., Nishra J., Singh M., Prakash B., Panda J. J., ACS Appl. Nano Mater., 2019, 2, 2663 [155] Shi Y., Li Q., Zhang Y., Wang G., Matsuo Y., Liang X., Takarada T., Ijiro K., Maeda M., J. Mater. Chem. C, 2020, 8, 16073 [156] Golze S. D., Hughes R. A., Rouvimov S., Neal R. D., Demille T. B., Neretina S., Nano Lett., 2019, 19, 5653 [157] Golze, S. D., Porcu S., Zhu C., Sutter E., Ricci P. C., Kinzel E. C., Hughes R. A., Neretina S., Nano Lett., 2021, 21, 2919 [158] Cheng H., Kamegawa T., Mori K., Yamashita H., Angew. Chem. Int. Ed., 2014, 53, 2910 [159] Li Y., Bai H., Zhai J., Yi W., Li J., Yang H., Xi G., Anal. Chem., 2019, 91, 4496 [160] Li W., Xiong L., Li N., Pang S., Xu G., Yi C., Wang Z., GuG., Li K., Li W., Wei L., Li G., Yang C., Chen M., J. Mater. Chem. C, 2019, 7, 10179 [161] Yilmaz M., Ozdemir M., Erdogan H., Tamer U., Sen U., Facchetti A., Usta H., Demirel G., Adv. Func. Mater., 2015, 25, 5669 [162] Yilmaz M., Babur E., Ozdemir M., Gieseking R. L., Dede Y., Tamer U., Schatz G. C., Facchetti A., Usta H., Demirel G., Nature Mater., 2017, 16, 918 [163] Xu W., Mao N., Zhang J., Small, 2013, 9, 1206 [164] Ling X., Xie L., Fang Y., Xu H., Zhang H., Kong J., Dresselhaus M. D., Zhang J., Liu Z., Nano Lett., 2010, 10, 553 [165] Ling X., Zhang J., Small, 2010, 6, 2020 [166] Ling X., WU J., Xie L., Zhang J., J. Phys. Chem. C, 2013, 117, 2369 [167] Ling X., Fang W., Lee Y.-H., Araujo P. T., Zhang X., Rodriguez-Nieva J. F., Lin Y., Zhang J., Kong J., Dresselhaus M. S., Nano Lett., 2014, 14, 3033 [168] Muehlethaler C., Considine C. R., Menon V., Lin W.-C., Lee Y.-H., Lombardi J. R., ACS Photonics, 2016, 3, 1164 [169] Zheng Z., Cong S., Gong W., Xuan J., Li G., Lu W., Geng F., Zhao Z., Nat. Commun., 2017, 8, 1993 [170] Yin Y., Miao P., Zhang Y., Han J., Zhang X., Gong Y., Gu L., Xu C., Yao T., Wang Y., Song B., Jin S., Adv. Func. Mater., 2017, 27, 1606694 [171] Er E., Hou H.-L., Criado A., Langer J., Möller M., Erk N., Liz-Marzán L. M., Prato M., Chem. Mater., 2019, 31, 5725 [172] Majee B. P., Mishra S., Pandey R. K., Prakash R., Mishara A. K., J. Phys. Chem. C, 2019, 123, 18071 [173] Amsterdam S. H., Stanev T. K., Zhou Q., Lou A. J.-T., Bergeron H., Darancet P., Hersam M. C., Stern N. P., Marks T. J., ACS Nano, 2019, 13, 4183 [174] Quan L., Song Y., Lin Y., Zhang G., Dia Y., Wu Y., Jin K., Ding H., Pan N., Luo Y., Wang X., J. Mater. Chem. C, 2015, 3, 11129 [175] Sarycheva A., Makaryan T., Maleski K., Satheehkumar E., Melikyan A., Minassian H., Yoshimura M., Gogotsi Y., J. Phys. Chem. C, 2017, 121, 19983 [176] Soundiraraju B., George B. K., ACS Nano, 2017, 11, 8892 [177] Tao L., Chen K., Chen Z., Cong C., QIu C., Chen J., Wang X., Chen H., Yu T., Xie W., Deng S., Xu J.-B., J. Am. Chem. Soc., 2018, 140, 8696 [178] Mahmoud M. A., Tabor C. E., EI-Sayed M. A., J. Phys. Chem. C, 2009, 113, 5493 [179] Lee H. K., Lee Y. H., Zhang Q., Phang I. Y., Tan J. M. R., Cui Y., Ling X. Y., ACS Appl. Mater. Interfaces, 2013, 5, 11409 [180] Li L., Chin W. S., ACS Appl. Mater. Interfaces, 2020, 12, 37538 [181] Huang Z., Lei X., Liu Y., Wan Z., Wang X., Wang Z., Mao Q., Meng G., ACS Appl. Mater. Interfaces, 2015, 7, 17247 [182] Klinkova A., Thérien-Aubin H., Ahmed A., Nykypanchuk D., Choueiri R. M., Gagnon B., Muntyanu A., Gang O., Waker G. C., Kmacheva E., Nano Lett., 2014, 14, 6314 [183] Yang Y., Lee Y. H., Phang I. Y., Jiang R., Sim H. Y. F., Wang J., Ling X. Y., Nano Lett., 2016, 16, 3872 [184] Zhang Q., Lee Y. H., Phang I Y., Lee C. K., Ling X. Y., Small, 2014, 10, 2703 [185] Yun S., Oh M. K., Kun S. K., Park S., J. Phys. Chem. C, 2009, 113, 13551 [186] Lee A., Ahmed A., dos Santos D. P., Coombs N., Park J. I., Gordon R., Brolo A. G., Kumacheva E., J. Phys. Chem. C, 2012, 116, 5538 [187] Tebbe M., Maennel M., Fery A., Pazos-Perez N., Alvarez-Puebla R. A., J. Phys. Chem. C, 2014, 118, 28095 [188] Martín A., Pescaglini A., Schopf C., Scardaci V., Coull R., Byrne L., Iaco-pino D., J. Phys. Chem. C, 2014, 118, 13260 [189] Zhang C.-L., Lv K.-P., Cong H.-P., Yu S.-H., Small, 2012, 8, 648 [190] Tong Q., Malachosky E. W., Raybin J., Guyot-sionnest P., Sibener S. J., J. Phys. Chem. C, 2014, 118, 19259 [191] Hamon C., Sanz-Ortiz M. N., Modin E., Hill E. H., Scarabelli L., Chuvilin A., Liz-Marzán L M., Nanoscale, 2016, 8, 7914 [192] Ma W., Fu P., Sun M., Xu L., Kuang H., Xu C., J. Am. Chem. Soc., 2017, 139, 11752 [193] Qiu L., Wang Q., Zhang N. N., Jia H. W., Wang J., Ge H. H., Chem. Asian. J., 2016, 11, 256 [194] Alvarez-Puebla R. A., Agarwal A., Manna P., Khanal B. P., Aldeanueva-Potel P., Carbó-Argibay E., Pazos-Pérez N., Vigderman L., Zubarev E. R., Kotov N. A., Liz-Marzán L M., Proc. Natl. Acad. Sci. U.S.A., 2011, 108, 8157 [195] Martín A., Schopf C., Pescaglini A., Wang J. J., Iacopino D., Langmuir, 2014, 30, 10206 [196] Hamon C., Novikov S. M., Scarabelli L., Solís D. M., Altantzis T., Bals S., Taboada J. M., Obelleiro F., Liz-Marzán L M., ACS Photonics, 2015, 2, 1482 [197] Rong Y., Song L., Si P., Zhang L., Lu X., Zhang J., Nie Z., Huang Y., Chen T., Langmuir, 2017, 33, 13867 [198] Sreeprasad T. S., Pradeep T., Langmuir, 2011, 27, 3381 [199] Alsammarraie F. K., Lin M., J. Agric. Food Chem., 2017, 65, 666 [200] Bi L., Wang Y., Yang Y., Li Y., Mo S., Zheng Q., Chen L., ACS Appl. Mater. Interfaces, 2018, 10, 15381 [201] Li F., Wang K., Deng N., Xu J., Yi M., Xiong B., Zhu J., ACS Appl. Mater. Interfaces, 2021, 13, 6566 [202] Lee A., Andrade G. F. S., Ahned A., Souza M. L., Coombs N., Tumarkin E., Liu K., Gordon R., Brolo A. G., Kumacheva E., J. Am. Chem. Soc., 2011, 133, 7563 [203] Abtahi S. M. H., Burrows N. D., Idesis F. A., Murphy C. J., Saleh N. B., Vikesland P. J., Langmuir, 2017, 33, 1486 [204] Osberg K. D., Rycenga M., Harris N., Schmucker A. L., Langille M. R., Schatz G. C., Mirkin C. A., Nano Lett., 2012, 12, 3828 [205] Stewart A. F., Lee A., Ahmed A., Ip S., Kumacheva E., Walker G. C., ACS Nano, 2014, 8, 5462 [206] Shi Q., Si K. J., Sikadar D., Yap L. W., Premaratne M., Cheng W., ACS Nano, 2016, 10, 967 [207] Zhu K., Wang Z., Zong S., Liu Y., Yang K., Li N., Wang Z., Li L., Tang H., Cui Y., ACS Appl. Mater. Interfaces, 2020, 12, 29917 [208] Zhu Z., Meng H., Liu W., Liu X., Gong J., Qiu X., Jiang L., Wang D., Tang Z., Angew. Chem. Int. Ed., 2011, 50, 1593 [209] Park J.-E., Lee Y., Nam J.-M., Nano Lett., 2018, 18, 6475 [210] Kim M., Ko S. M., Lee C., Son J., Kin J., Kim J.-M., Nam J.-M., Anal. Chem., 2019, 91, 10467 [211] Matteini P., de Angelis M., Ulivi L., Centi S., Pini R., Nanoscale, 2015, 7, 3474 [212] Gómez-Graña S., Fernández-López C., Polavarapu L., Salmon J.-B., Leng J., Pastoriza-Santos I., Pérez-Juste J., Chem. Mater., 2015, 27, 8310 [213] Han Y., Wu S.-R., Tian X.-D., Zhang Y., ACS Appl. Mater. Interfaces, 2020, 12, 28965 [214] Lee D., Yoon S., J. Phys. Chem. C, 2015, 119, 7873 [215] Lin Q.-Y., Mason J. A., Li Z., Zhou W., O'Brien M., Brown K. A., Jones M. R., Butun S., Lee B., Dravid V. P., Aydin K., Mirkin C. A., Science, 2018, 359, 669 [216] Kuttner C., Höller R. P. M., Quintanilla M., Schnepf M. J., Dulle M., Fery A., Liz-Marzán L. M., Nanoscale, 2019,11, 17655 [217] Liu C., Chen C., Li S., Dong H., Dai W., Xu T., Liu Y., Yang F., Zhang X., Anal. Chem., 2018, 90, 10591 [218] Xing C., Liu D., Chen J., Fan Y., Zhou F., Kaur K., Cai W., Li Y., Chem. Mater., 2021, 33, 310 [219] Qiao X., Xue Z., Liu L., Liu K., Wang T., Adv. Mater., 2019, 31, 1804275 [220] Dai B., Zhao Q., Gui J., Zhang J., Zhu H., CrystEngComm, 2014, 16, 9441 [221] Li W., Zamani R., Gil P. R., Pelaz B., Ibáñez M., Cadavid D., Shavel A., Alvarrz-Puebla R. A., Parak W. J., Arbiol J., Cabot A., J. Am. Chem. Soc., 2013, 135, 7098 [222] Qi D., Lu L., Wang L., Zhang J., J. Am. Chem. Soc., 2014, 136, 9886 [223] Liu L., Pan F., Liu C., Huang L., Li W., Lu X., ACS Appl. Nano Mater., 2018, 1, 6563 |
[1] | GAO Huimin, SHI Rui, ZHU Youliang, QIAN Hujun and LU Zhongyuan. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties[J]. 高等学校化学研究, 2022, 38(3): 653-670. |
[2] | YANG Miao, WANG Wenjing, SU Kongzhao, YUAN Daqiang. Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation[J]. 高等学校化学研究, 2022, 38(2): 428-432. |
[3] | QIAO Junyi, LIU Xinyao, ZHANG Lirong, LIU Yunling. Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective[J]. 高等学校化学研究, 2022, 38(1): 31-44. |
[4] | Andy Shun-Hoi CHEUNG, Sammual Yu-Lut LEUNG, Franky Ka-Wah HAU, Vivian Wing-Wah YAM. Supramolecular Self-assembly of Amphiphilic Alkynyl-platinum(II) 2,6-Bis(N-alkylbenzimidazol-2'-yl) pyridine Complexes[J]. 高等学校化学研究, 2021, 37(5): 1079-1084. |
[5] | HAN Lin, WANG Yuang, TANG Wantao, LIU Jianbing, DING Baoquan. Bioimaging Based on Nucleic Acid Nanostructures[J]. 高等学校化学研究, 2021, 37(4): 823-828. |
[6] | REN Yiqing, LIU Xinlong, GE Huan, GUO Yuanyuan, ZHANG Qiushuang, XIE Miao, WANG Ping, ZHU Xinyuan, ZHANG Chuan. A Combinatorial Approach Based on Nucleic Acid Assembly and Electrostatic Compression for siRNA Delivery[J]. 高等学校化学研究, 2021, 37(4): 906-913. |
[7] | YANG Jia, ZHENG Rui, AN Hongwei, WANG Hao. In vivo Self-assembled Peptide Nanoprobes for Disease Diagnosis[J]. 高等学校化学研究, 2021, 37(4): 855-869. |
[8] | LIU Xiaoyan, ZHOU Yan, ZHENG Tingting, TIAN Yang. Surface-enhanced Raman Scattering Technology Based on WO3 Film for Detection of VEGF[J]. 高等学校化学研究, 2021, 37(4): 900-905. |
[9] | LIU Zhiyu, LIANG Gaolin, ZHAN Wenjun. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging[J]. 高等学校化学研究, 2021, 37(4): 889-899. |
[10] | YU Xinyue, ZHONG Yao, SUN Yu, CHEN Yanwei. Controllable Preparation of Plasmonic Gold Nanostars for Enhanced Photothermal and SERS Effects[J]. 高等学校化学研究, 2020, 36(6): 1284-1291. |
[11] | LI Lun, XUE Xiaoxia, SUN Yimeng, ZHAO Wuduo, LI Tiesheng, LIU Minghua, WU Yangjie. Self-assembly Palladacycle Thiophene Imine Monolayer—Investigating on Catalytic Activity and Mechanism for Coupling Reaction[J]. 高等学校化学研究, 2020, 36(5): 821-828. |
[12] | ZHANG Junjie, WANG Can, DUAN Ruomeng, PENG Chencheng, YANG Biao, CAO Nan, ZHANG Haiming, CHI Lifeng. Two-dimensional Molecular Phase Transition of Alkylated-TDPB on Au(111) and Cu(111) Surfaces[J]. 高等学校化学研究, 2020, 36(4): 685-689. |
[13] | LIU Shengtang, YANG Miao, LIU Cheng, TIAN Bailin, DING Mengning. Superlattice Structure from Re-stacked NiFe Layer Double Hydroxides for Oxygen Evolution Reaction[J]. 高等学校化学研究, 2020, 36(4): 680-684. |
[14] | PAN Gaifang, MA Yuan, ZHANG Jiao, GUO Yuanyuan, DING Fei, GE Huan, LI Qifeng, ZHU Xinyuan, ZHANG Chuan. Engineering a Floxuridine-integrated RNA Prism as Precise Nanomedicine for Drug Delivery[J]. 高等学校化学研究, 2020, 36(2): 274-280. |
[15] | LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei. Programmable Assembly of DNA-protein Hybrid Structures[J]. 高等学校化学研究, 2020, 36(2): 211-218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||