高等学校化学研究 ›› 2021, Vol. 37 ›› Issue (3): 337-354.doi: 10.1007/s40242-021-0010-4
HOU Lanlan1,2, LIU Jingchong2, LI Dianming2, GAO Yuan2, WANG Yaqiong2, HU Rongjun2, REN Wen1, XIE Shuixiang1, CUI Zhimin2, WANG Nü2
收稿日期:
2021-01-06
修回日期:
2021-01-19
出版日期:
2021-06-01
发布日期:
2021-05-31
通讯作者:
WANG Nü
E-mail:wangn@buaa.edu.cn
基金资助:
HOU Lanlan1,2, LIU Jingchong2, LI Dianming2, GAO Yuan2, WANG Yaqiong2, HU Rongjun2, REN Wen1, XIE Shuixiang1, CUI Zhimin2, WANG Nü2
Received:
2021-01-06
Revised:
2021-01-19
Online:
2021-06-01
Published:
2021-05-31
Contact:
WANG Nü
E-mail:wangn@buaa.edu.cn
Supported by:
摘要: Janus membrane with opposite wettability on its two sides has witnessed an explosion of interest in the field of liquid spontaneous and directional transport for their promising prospect. The advances in fabrication technology and natural bionics have brought remarkable progress for the development of Janus mate-rials. Among the exciting progress, the micro/nanofabrication technique of electrospinning shows advantages in constructing thin porous fibrous membrane materials with controllable surface wettabi-lity and hierarchical structures. Here, a brief review of bioinspired Janus membrane for unidirectional liquid penetration fabricated by electrospinning is presented, and the underlying scientific mechanism is discussed with an emphasis on the materials design involving asymmetric surface wettability and micro-topology structure. An overview of recent emerging applications is also reviewed, with special attentions to liquid separation, water collection, distillation, and smart textile, etc. As researchers keep to develop more efficient strategies on designing new Janus membrane with higher performances, it has become increasingly important to understand the mechanism of liquid moving dynamics at the asymmetric interface in order to better recognize the scientific limitations currently hindering the field development. At last, the challenges currently faced and possible strategies on developing new Janus membranes for optimization and engineering in the future are proposed.
HOU Lanlan, LIU Jingchong, LI Dianming, GAO Yuan, WANG Yaqiong, HU Rongjun, REN Wen, XIE Shuixiang, CUI Zhimin, WANG Nü. Electrospinning Janus Nanofibrous Membrane for Unidirectional Liquid Penetration and Its Applications[J]. 高等学校化学研究, 2021, 37(3): 337-354.
HOU Lanlan, LIU Jingchong, LI Dianming, GAO Yuan, WANG Yaqiong, HU Rongjun, REN Wen, XIE Shuixiang, CUI Zhimin, WANG Nü. Electrospinning Janus Nanofibrous Membrane for Unidirectional Liquid Penetration and Its Applications[J]. Chemical Research in Chinese Universities, 2021, 37(3): 337-354.
[1] | Zheng Y., Bai H., Huang Z., Tian X., Nie F., Zhao Y., Zhai J., Jiang L., Nature, 2010, 463, 640 |
[2] | Ju J., Bai H., Zheng Y., Zhao T., Fang R., Jiang L., Nat. Commun., 2012, 3, 1247 |
[3] | Parker A. R., Lawrence C. R., Nature, 2001, 414, 33 |
[4] | Chen H., Zhang P., Zhang L., Liu H., Jiang Y., Zhang D., Han Z., Jiang L., Nature, 2016, 532, 85 |
[5] | Lee S., Laibinis P. E., J. Am. Chem. Soc., 2000, 122, 5395 |
[6] | Choi S., Zhang Newby B., Langmuir, 2003, 19, 7427 |
[7] | Liu C., Sun J., Li J., Xiang C., Che L., Wang Z., Zhou X., Sci. Rep., 2017, 7, 7552 |
[8] | Greenspan H. P., J. Fluid Mech., 1978, 84, 125 |
[9] | Chen Y., Li K., Zhang S., Qin L., Deng S., Ge L., Xu L., Ma L., Wang S., Zhang X., ACS Nano, 2020, 14, 4654 |
[10] | Chai H., Tian Y., Yu S., Cao B., Peng X., Zhang Z., Liu A., Wu H., Adv. Mater. Interfaces, 2020, 7, 1901980 |
[11] | Liu C., Sun J., Zhuang Y., Wei J., Li J., Dong L., Yan D., Hu A., Zhou X., Wang Z., Nanoscale, 2018, 10, 23164 |
[12] | Chu K., Xiao R., Wang E. N., Nat. Mater., 2010, 9, 413 |
[13] | Malvadkar N. A., Hancock M. J., Sekeroglu K., Dressick W. J., Demirel M. C., Nat. Mater., 2010, 9, 1023 |
[14] | Yang J., Yang Z., Chen C., Yao D., Langmuir, 2008, 24, 9889 |
[15] | Si Y., Wang T., Li C., Yu C., Li N., Gao C., Dong Z., Jiang L., ACS Nano, 2018, 12, 9214 |
[16] | Li P., Cao M., Bai H., Zhao T., Ning Y., Wang X., Liu K., Jiang L., Adv. Funct. Mater., 2019, 29, 1904446 |
[17] | Tenjimbayashi M., Kawamura K., Shiratori S., Adv. Mater. Interfaces, 2020, 7, 2000984 |
[18] | Wang J., Huang Y., You K., Yang X., Song Y., Zhu H., Xia F., Jiang L., ACS Appl. Mater. Interfaces, 2019, 11, 7591 |
[19] | Cao M., Jin X., Peng Y., Yu C., Li K., Liu K., Jiang L., Adv. Mater., 2017, 29, 1606869 |
[20] | Guo T., Che P., Heng L., Fan L., Jiang L., Adv. Mater., 2016, 28, 6999 |
[21] | Gao W., Wang J., Zhang X., Sun L., Chen Y., Zhao Y., Chem. Eng. J., 2020, 381, 122612 |
[22] | Zhang Y., Wang T., Adv. Mater., 2013, 25, 2903 |
[23] | Ben S., Zhou T., Ma H., Yao J., Ning Y., Tian D., Liu K., Jiang L., Advanced Science, 2019, 6, 1900834 |
[24] | Tian D., Zhang N., Zheng X., Hou G., Tian Y., Du Y., Jiang L., Dou S. X., ACS Nano, 2016, 10, 6220 |
[25] | Lei W., Hou G., Liu M., Rong Q., Xu Y., Tian Y., Jiang L., Sci. Adv., 2018, 4, eaau8767 |
[26] | Li J., Ha N. S., Liu T., van Dam R. M., Kim C., Nature, 2019, 572, 507 |
[27] | Mugele F. J. N., Nature, 2019, 572, 445 |
[28] | Gallardo B. S., Gupta V. K., Eagerton F. D., Jong L. I., Craig V. S., Shah R. R., Abbott N. L., Science, 1999, 283, 57 |
[29] | Wang J., Sun L., Zou M., Gao W., Liu C., Shang L., Gu Z., Zhao Y., Sci. Adv., 2017, 3, e1700004 |
[30] | Sun Q., Wang D., Li Y., Zhang J., Ye S., Cui J., Chen L., Wang Z., Butt H., Vollmer D., Deng X., Nat. Mater., 2019, 18, 936 |
[31] | Mannetje D., Ghosh S., Lagraauw R., Otten S., Pit A., Berendsen C., Zeegers J., van den Ende D., Mugele F., Nat. Commun., 2014, 5, 3559 |
[32] | Tabassian R., Oh J., Kim S., Kim D., Ryu S., Cho S., Koratkar N., Oh I., Nat. Commun., 2016, 7, 13345 |
[33] | Li N., Wu L., Yu C., Dai H., Wang T., Dong Z., Jiang L., Adv. Mater., 2018, 30, 1703838 |
[34] | Kong T., Stone H. A., Wang L., Shum H. C., Proc. Natl. Acad. Sci., 2018, 115, 6159 |
[35] | Kwon G., Panchanathan D., Mahmoudi S. R., Gondal M. A., McKinley G. H., Varanasi K. K., Nat. Commun., 2017, 8, 14968 |
[36] | Yilmaz M., Kuloglu H. B., Erdogan H., Cetin S. S., Yavuz M. S., Ince G. O., Demirel G., Adv. Mater. Interfaces, 2015, 2, 1500226 |
[37] | Xiao Y., Zarghami S., Wagner K., Wagner P., Gordon K. C., Florea L., Diamond D., Officer D. L., Adv. Mater., 2018, 30, 1801821 |
[38] | Ichimura K., Oh S., Nakagawa M., Science, 2000, 288, 1624 |
[39] | Wang J., Gao W., Zhang H., Zou M., Chen Y., Zhao Y., Sci. Adv., 2018, 4, eaat7392 |
[40] | Lv J., Liu Y., Wei J., Chen E., Qin L., Yu Y., Nature, 2016, 537, 179 |
[41] | Brochard F., Langmuir, 1989, 5, 432 |
[42] | Yakhshi-Tafti E., Cho H. J., Kumar R., Appl. Phys. Lett., 2010, 96, 264101 |
[43] | Mettu S., Chaudhury M. K., Langmuir, 2008, 24, 10833 |
[44] | Yang C., Li G., Sci. Rep., 2017, 7, 15705 |
[45] | Chen J., Liu Y., Guo D., Cao M., Jiang L., Chem. Commun., 2015, 51, 11872 |
[46] | Gu J., Xiao P., Chen J., Zhang J., Huang Y., Chen T., ACS Appl. Mater. Interfaces, 2014, 6, 16204 |
[47] | Tian X., Jin H., Sainio J., Ras R. H. A., Ikkala O., Adv. Funct. Mater., 2014, 24, 6023 |
[48] | Tian X., Li J., Wang X., Soft Matter, 2012, 8, 2633 |
[49] | Wang H., Ding J., Dai L., Wang X., Lin T., J. Mater. Chem., 2010, 20, 7938 |
[50] | Yang H., Xie Y., Hou J., Cheetham A. K., Chen V., Darling S. B., Adv. Mater., 2018, 30, 1801495 |
[51] | Zhou H., Wang H., Niu H., Lin T., Sci. Rep., 2013, 3, 2964 |
[52] | Fu S., Zhou H., Wang H., Niu H., Yang W., Shao H., Lin T., Materials Horizons, 2019, 6, 122 |
[53] | Cao M., Xiao J., Yu C., Li K., Jiang L., Small, 2015, 11, 4379 |
[54] | Hou X., Adv. Mater., 2016, 28, 7049 |
[55] | Hou X., Hu Y., Grinthal A., Khan M., Aizenberg J., Nature, 2015, 519, 70 |
[56] | Shou D., Fan J., Adv. Funct. Mater., 2018, 28, 1800269 |
[57] | Dai B., Li K., Shi L., Wan X., Liu X., Zhang F., Jiang L., Wang S., Adv. Mater., 2019, 31, 1904113 |
[58] | Gilbert W., De Magnete, Dover Publications Inc., Mineola, New York, 1958 |
[59] | Guan B., Cole R. B.; Eds.:Gross M. L., Caprioli R. M., The Encyclopedia of Mass Spectrometry, Elsevier, Boston, 2016, 132 |
[60] | Nollet J. A., Philos. Trans. R. Soc. London, 1748, 45, 187 |
[61] | Rayleigh L., Proc. Lond. Math. Soc., 1878, 10, 4 |
[62] | Rayleigh L., Philosophical Magazine Journal of Science, 1882, 14, 184 |
[63] | Cooley J. F., Apparatus for Electrically Dispersing Fluids, US Patent No. 692,631, 1902 |
[64] | Morton W. J., Method of Dispersing Fluids, US Patent No.705,691, 1902 |
[65] | Zeleny J., Physical Review, 1914, 3, 69 |
[66] | Zeleny J., Physical Review, 1917, 10, 1 |
[67] | Kiyohiko H., Process for Manufacturing Artificial Silk and Other Filaments by Applying Electric Current, US Patent No.1, 699, 615, 1929 |
[68] | Formhals A., Process and Apparatus for Preparing Artificial Threads, US Patent No. 1,975,504, 1934 |
[69] | Taylor G. I., Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964, 280, 383 |
[70] | Taylor G., Proceedings of the Royal Society of London, 1969, 313, 453 |
[71] | Yarin A. L., Koombhongse S., Reneker D. H., 2001, 90, 4836 |
[72] | Simons H. L., Process and Apparatus for Producing Patterned Non-Woven Fabrics, US Patent No.3,280,229, 1966 |
[73] | Baumgarten P. K., J. Colloid. Interf. Sci., 1971, 36, 71 |
[74] | Martin G. E., Cockshott I. D., Fibrillar Product of Electrostatically Spun Organic Material, US Patent No. 4,043,331, 1977 |
[75] | Martin G. E., Cockshott I. D., Fildes F. J. T., Fibrillar Lining for Prosthetic Device, US Patent No. 4044404, 1977 |
[76] | Bornat A., Electrostatic Spinning of Tubular Products, US Patent No. 4,323,525, 1982 |
[77] | Doshi J., Reneker D. H., J. Electrostatics, 1995, 35, 151 |
[78] | Reneker D., Chun I., Nanotechnology, 1996, 7, 216 |
[79] | Fong H., Chun I., Reneker D. H., Polymer, 1999, 40, 4585 |
[80] | Yarin A. L., Koombhongse S., Reneker D. H., J. Appl. Phys., 2001, 89, 3018 |
[81] | Reneker D. H., Yarin A. L., Polymer, 2008, 49, 2387 |
[82] | Reneker D. H., Yarin A. L., Fong H., Koombhongse S., J. Appl. Phys., 2000, 87, 4531 |
[83] | Duft D., Achtzehn T., Muller R., Huber B. A., Leisner T., Nature, 2003, 421, 128 |
[84] | Lauricella M., Succi S., Zussman E., Pisignano D., Yarin A. L., Rev. Mod. Phys., 2020, 92, 035004 |
[85] | Lei T. P., Lu X. Z., Yang F., AIP Advances, 2015, 5, 041301 |
[86] | Yarin A. L., Kataphinan W., Reneker D. H., J. Appl. Phys., 2005, 98, 064501 |
[87] | Zong X., Kim K., Fang D., Ran S., Hsiao B. S., Chu B., Polymer, 2002, 43, 4403 |
[88] | Dong H., Wang N., Wang L., Bai H., Wu J., Zheng Y., Zhao Y., Jiang L., Chemphyschem, 2012, 13, 1153 |
[89] | Zhan N., Li Y., Zhang C., Song Y., Wang H., Sun L., Yang Q., Hong X., J. Colloid. Interf. Sci., 2010, 345, 491 |
[90] | Zuo W. W., Zhu M. F., Yang W., Yu H., Chen Y. M., Zhang Y., Polym. Eng. Sci., 2005, 45, 704 |
[91] | Wang Z., Zhao C., Pan Z., J. Colloid. Interf. Sci., 2015, 441, 121 |
[92] | Guenthner A. J., Khombhongse S., Liu W., Dayal P., Reneker D. H., Kyu T., Macromol. Theory Simul., 2006, 15, 87 |
[93] | Koombhongse S., Liu W. X., Reneker D. H., J. Polym. Sci. Pol. Phys., 2001, 39, 2598 |
[94] | Koski A., Yim K., Shivkumar S., Mater. Lett., 2004, 58, 493 |
[95] | Casper C. L., Stephens J. S., Tassi N. G., Chase D. B., Rabolt J. F., Macromolecules, 2004, 37, 573 |
[96] | Bognitzki M., Czado W., Frese T., Schaper A., Hellwig M., Steinhart M., Greiner A., Wendorff J. H., Adv. Mater., 2001, 13, 70 |
[97] | Dayal P., Liu J., Kumar S., Kyu T., Macromolecules, 2007, 40, 7689 |
[98] | Megelski S., Stephens J. S., Chase D. B., Rabolt J. F., Macromolecules, 2002, 35, 8456 |
[99] | McCann J. T., Marquez M., Xia Y., J. Am. Chem. Soc., 2006, 128, 1436 |
[100] | Lin J., Ding B., Yu J., Hsieh Y., ACS Appl. Mater. Interfaces, 2010, 2, 521 |
[101] | Wu J., Wang N., Wang L., Dong H., Zhao Y., Jiang L., ACS Appl. Mater. Interfaces, 2012, 4, 3207 |
[102] | Huang C., Thomas N. L., Polym. Rev., 2020, 60, 595 |
[103] | Jin Y., Yang D., Kang D., Jiang X., Langmuir, 2010, 26, 1186 |
[104] | Niu C., Meng J., Wang X., Han C., Yan M., Zhao K., Xu X., Ren W., Zhao Y., Xu L., Zhang Q., Zhao D., Mai L., Nat. Commun., 2015, 6, 7402 |
[105] | Kessick R., Tepper G., Appl. Phys. Lett., 2004, 84, 4807 |
[106] | Xin Y., Huang Z. H., Yan E. Y., Zhang W., Zhao Q., Appl. Phys. Lett., 2006, 89, 053101 |
[107] | Han T., Reneker D. H., Yarin A. L., Polymer, 2007, 48, 6064 |
[108] | Ding B., Li C., Miyauchi Y., Kuwaki O., Shiratori S., Nanotechnology, 2006, 17, 3685 |
[109] | Wang X., Ding B., Yu J., Wang M., Pan F., Nanotechnology, 2010, 21, 055502 |
[110] | Ding B., Wang M., Wang X., Yu J., Sun G., Mater. Today, 2010, 13, 16 |
[111] | Yang S., Wang X., Ding B., Yu J., Qian J., Sun G., Nanoscale, 2011, 3, 564 |
[112] | Zhang S., Liu H., Tang N., Zhou S., Yu J., Ding B., Adv. Mater., 2020, 32, 2002361 |
[113] | Chen H., Di J., Wang N., Dong H., Wu J., Zhao Y., Yu J., Jiang L., Small, 2011, 7, 1779 |
[114] | Sun Z. C., Zussman E., Yarin A. L., Wendorff J. H., Greiner A., Adv. Mater., 2003, 15, 1929 |
[115] | Bazilevsky A. V., Yarin A. L., Megaridis C. M., Langmuir, 2007, 23, 2311 |
[116] | Li X., Su Y., Chen R., He C., Wang H., Mo X., J. Appl. Polym. Sci., 2009, 111, 1564 |
[117] | Pakravan M., Heuzey M., Ajji A., Biomacromolecules, 2012, 13, 412 |
[118] | Reznik S. N., Yarin A. L., Zussman E., Bercovici L., Phys Fluids, 2006, 18, 062101 |
[119] | Loscertales I. G., Barrero A., Guerrero I., Cortijo R., Marquez M., Ganan-Calvo A. M., Science, 2002, 295, 1695 |
[120] | Loscertales I. G., Barrero A., Márquez M., Spretz R., Velarde-Ortiz R., Larsen G., J. Am. Chem. Soc., 2004, 126, 5376 |
[121] | Yu L., Hu H., Wu H. B., Lou X. W., Adv. Mater., 2017, 29, 1604563 |
[122] | McCann J. T., Li D., Xia Y., J. Mater. Chem., 2005, 15, 735 |
[123] | Li D., Xia Y. N., Nano Lett., 2004, 4, 933 |
[124] | Liu Z., Sun D. D., Guo P., Leckie J. O., Nano Lett., 2007, 7, 1081 |
[125] | Zhao Y., Cao X., Jiang L., J. Am. Chem. Soc., 2007, 129, 764 |
[126] | Chen H., Zhao Y., Song Y., Jiang L., J. Am. Chem. Soc., 2008, 130, 7800 |
[127] | Chen H., Wang N., Di J., Zhao Y., Song Y., Jiang L., Langmuir, 2010, 26, 11291 |
[128] | Lee B., Yang H., Yu W., Nanotechnology, 2014, 25, 465602 |
[129] | Jin R., Yang Y., Xing Y., Chen L., Song S., Jin R., ACS Nano, 2014, 8, 3664 |
[130] | Mou F., Guan J., Shi W., Sun Z., Wang S., Langmuir, 2010, 26, 15580 |
[131] | Gao S., Wang N., Li S., Li D., Cui Z., Yue G., Liu J., Zhao X., Jiang L., Zhao Y., Angew. Chem. Int. Ed., 2020, 59, 2465 |
[132] | Barthlott W., Neinhuis C., Planta, 1997, 202, 1 |
[133] | Barthlott W., Neinhuis C., Ann. Bot., 1997, 79, 667 |
[134] | Bhushan B., Jung Y. C., Koch K., Philos. T. R. Soc. A, 2009, 367, 1631 |
[135] | Bhushan B., Jung Y. C., Prog. Mater. Sci., 2011, 56, 1 |
[136] | Feng L., Li S., Li Y., Li H., Zhang L., Zhai J., Song Y., Liu B., Jiang L., Zhu D., Adv. Mater., 2002, 14, 1857 |
[137] | Lee S. G., Lim H. S., Lee D. Y., Kwak D., Cho K., Adv. Funct. Mater., 2013, 23, 547 |
[138] | Feng L., Zhang Y., Xi J., Zhu Y., Wang N., Xia F., Jiang L., Langmuir, 2008, 24, 4114 |
[139] | Bhushan B., Her E. K., Langmuir, 2010, 26, 8207 |
[140] | Miyauchi Y., Ding B., Shiratori S., Nanotechnology, 2006, 17, 5151 |
[141] | Lin J., Cai Y., Wang X., Ding B., Yu J., Wang M., Nanoscale, 2011, 3, 1258 |
[142] | Li X., Ding B., Lin J., Yu J., Sun G., J. Phys. Chem. C, 2009, 113, 20452 |
[143] | Barthlott W., Schimmel T., Wiersch S., Koch K., Brede M., Barczewski M., Walheim S., Weis A., Kaltenmaier A., Leder A., Bohn H. F., Adv. Mater., 2010, 22, 2325 |
[144] | Xiang Y., Huang S., Huang T. Y., Dong A., Cao D., Li H., Xue Y., Lv P., Duan H., P. Natl. Acad. Sci. USA, 2020, 117, 2282 |
[145] | Liu C., Ju J., Zheng Y., Jiang L., ACS Nano, 2014, 8, 1321 |
[146] | Zheng Y., Gao X., Jiang L., Soft Matter, 2007, 3, 178 |
[147] | Gao X., Yan X., Yao X., Xu L., Zhang K., Zhang J., Yang B., Jiang L., Adv. Mater., 2007, 19, 2213 |
[148] | Gao X., Jiang L., Nature, 2004, 432, 36 |
[149] | Feng X., Gao X., Wu Z., Jiang L., Zheng Q., Langmuir, 2007, 23, 4892 |
[150] | Watson G. S., Watson J. A., Appl. Surf. Sci., 2004, 235, 139 |
[151] | Sun T., Feng L., Gao X., Jiang L., Accounts. Chem. Res., 2005, 38, 644 |
[152] | Autumn K., Liang Y. A., Hsieh S. T., Zesch W., Chan W. P., Kenny T. W., Fearing R., Full R. J., Nature, 2000, 405, 681 |
[153] | Schmüser L., Zhang W., Marx M. T., Encinas N., Vollmer D., Gorb S., Baio J. E., Räder H. J., Weidner T., ACS Appl. Mater. Interfaces, 2020, 12, 12294 |
[154] | Kennedy R. J., Nature, 1970, 227, 736 |
[155] | Hou L., Wang N., Wu J., Cui Z., Jiang L., Zhao Y., Adv. Funct. Mater., 2018, 28, 1801114 |
[156] | Liu M., Zheng Y., Zhai J., Jiang L., Accounts. Chem. Res., 2010, 43, 368 |
[157] | Shull K. R., Karis T. E., Langmuir, 1994, 10, 334 |
[158] | Lenz P., Adv. Mater., 1999, 11, 1531 |
[159] | Lafuma A., Quere D., Nat. Mater., 2003, 2, 457 |
[160] | Tian Y., Su B., Jiang L., Adv. Mater., 2014, 26, 6872 |
[161] | Jiang L., Feng L. Bioinspired Intelligent Nanostructured Interfacial Materials, Chemical Industry Press, Beijing and World Scientific, Publishing Co. Pte. Ltd., Singapore/Hackensack, London, 2010 |
[162] | Patankar N. A., Langmuir, 2004, 20, 8209 |
[163] | Liu J., Wang N., Yu L., Karton A., Li W., Zhang W., Guo F., Hou L., Cheng Q., Jiang L., Weitz D. A., Zhao Y., Nat. Commun., 2017, 8, 2011 |
[164] | Liu J., Yu L., Yue G., Wang N., Cui Z., Hou L., Li J., Li Q., Karton A., Cheng Q., Jiang L., Zhao Y., Adv. Funct. Mater., 2019, 29, 1808501 |
[165] | Liu J., Zhang F., Hou L., Li S., Gao Y., Xin Z., Li Q., Xie S., Wang N., Zhao Y., Sustain. Mater. Techno., 2020, 26, e00214 |
[166] | Zhao R., Li X., Sun B., Li Y., Yanzi L., Wang C., Chem. Res. Chinese Universities, 2017, 33(6), 986 |
[167] | Young T., Philos. Trans. R. Soc. London, 1805, 95, 65 |
[168] | Wenzel R. N., Ind. Eng. Chem., 1936, 28, 988 |
[169] | Cassie A. B. D., Baxter S., Trans. Faraday Soc., 1944, 40, 546 |
[170] | Darmanin T., de Givenchy E. T., Amigoni S., Guittard F., Adv. Mater., 2013, 25, 1378 |
[171] | Bellanger H., Darmanin T., Taffin de Givenchy E., Guittard F., Chem. Rev., 2014, 114, 2694 |
[172] | Darmanin T., Guittard F., J. Mater. Chem. A, 2014, 2, 16319 |
[173] | Jiang T., Guo Z. G., Liu W. M., J. Mater. Chem. A, 2015, 3, 1811 |
[174] | Kong T., Luo G., Zhao Y., Liu Z., Adv. Funct. Mater., 2019, 29, 1808012 |
[175] | Wen L., Tian Y., Jiang L., Angew. Chem. Int. Ed., 2015, 54, 3387 |
[176] | Su B., Tian Y., Jiang L., J. Am. Chem. Soc., 2016, 138, 1727 |
[177] | Liu K., Yao X., Jiang L., Chem. Soc. Rev., 2010, 39, 3240 |
[178] | Chu Z., Feng Y., Seeger S., Angew. Chem. Int. Ed., 2015, 54, 2328 |
[179] | Cui Z., Wang Y., Liu M., Zhang H., Jiang Z., Chem. Res. Chinese Universities, 2020, 36(6), 1320 |
[180] | Jiang L., Zhao Y., Zhai J., Angew. Chem. Int. Ed., 2004, 43, 4338 |
[181] | Zheng J., He A., Li J., Xu J., Han C. C., Polymer, 2006, 47, 7095 |
[182] | Han D., Steckl A. J., Langmuir, 2009, 25, 9454 |
[183] | Choi G., Park J., Ha J., Kim W., Lim H., Macromol. Mater. Eng., 2010, 295, 995 |
[184] | Ogawa T., Ding B., Sone Y., Shiratori S., Nanotechnology, 2007, 18, 165607 |
[185] | Lim J., Yi G., Moon J. H., Heo C., Yang S., Langmuir, 2007, 23, 7981 |
[186] | Ding B., Ogawa T., Kim J., Fujimoto K., Shiratori S., Thin Solid Films, 2008, 516, 2495 |
[187] | Ma M., Mao Y., Gupta M., Gleason K. K., Rutledge G. C., Macromolecules, 2005, 38, 9742 |
[188] | Yue G., Wang Y., Li D., Hou L., Cui Z., Li Q., Wang N., Zhao Y., Sustain. Mater. Techno., 2020, 25, e00175 |
[189] | Tuteja A., Choi W., Ma M., Mabry J. M., Mazzella S. A., Rutledge G. C., McKinley G. H., Cohen R. E., Science, 2007, 318, 1618 |
[190] | Tuteja A., Choi W., Mabry J. M., McKinley G. H., Cohen R. E., Proc. Natl. Acad. Sci., 2008, 105, 18200 |
[191] | Hou L., Wang L., Wang N., Guo F., Liu J., Chen Y., Liu J., Zhao Y., Jiang L., NPG Asia Mater., 2016, 8, e334 |
[192] | Hou B., Ma L., Zang X., Shang N., Song J., Zhao X., Wang C., Qi J., Wang J., Yu R., Chem. Res. Chinese Universities, 2021, 37(2), 265 |
[193] | Guo M., Ding B., Li X., Wang X., Yu J., Wang M., J. Phys. Chem. C, 2010, 114, 916 |
[194] | Li Y., Yang F., Yu J., Ding B., Adv. Mater. Interfaces, 2016, 3, 1600516 |
[195] | Ragesh P., Anand Ganesh V., Nair S. V., Nair A. S., J. Mater. Chem. A, 2014, 2, 14773 |
[196] | Zhu Y., Zhang J., Zhai J., Zheng Y., Feng L., Jiang L., Chemphyschem, 2006, 7, 336 |
[197] | Che H., Huo M., Peng L., Fang T., Liu N., Feng L., Wei Y., Yuan J., Angew. Chem. Int. Ed., 2015, 54, 8934 |
[198] | Lee M. W., An S., Joshi B., Latthe S. S., Yoon S. S., ACS Appl. Mater. Interfaces, 2013, 5, 1232 |
[199] | Wang Y., Lai C., Wang X., Liu Y., Hu H., Guo Y., Ma K., Fei B., Xin J. H., ACS Appl. Mater. Interfaces, 2016, 8, 25612 |
[200] | Chen M., Besenbacher F., ACS Nano, 2011, 5, 1549 |
[201] | Li J., Zhu L., Luo Z., Chem. Eng. J., 2016, 287, 474 |
[202] | Yu X., Wang Z. Q., Jiang Y. G., Shi F., Zhang X., Adv. Mater., 2005, 17, 1289 |
[203] | Gao J., Yao X., Zhao Y., Jiang L., Small, 2013, 9, 2515 |
[204] | Lin J., Ding B., Yang J., Yu J., Sun G., Nanoscale, 2012, 4, 176 |
[205] | Shang Y., Si Y., Raza A., Yang L., Mao X., Ding B., Yu J., Nanoscale, 2012, 4, 7847 |
[206] | Wu J., Wang N., Zhao Y., Jiang L., Nanoscale, 2015, 7, 2625 |
[207] | Wang L. F., Yang S. Y., Wang J., Wang C. F., Chen L., Mater. Lett., 2011, 65, 869 |
[208] | Lee M. W., An S., Latthe S. S., Lee C., Hong S., Yoon S. S., ACS Appl. Mater. Interfaces, 2013, 5, 10597 |
[209] | Tai M. H., Gao P., Tan B. Y. L., Sun D. D., Leckie J. O., ACS Appl. Mater. Interfaces, 2014, 6, 9393 |
[210] | Jin M., Wang J., Yao X., Liao M., Zhao Y., Jiang L., Adv. Mater., 2011, 23, 2861 |
[211] | Ahmed F. E., Lalia B. S., Hilal N., Hashaikeh R., Desalination, 2014, 344, 48 |
[212] | Huang M., Si Y., Tang X., Zhu Z., Ding B., Liu L., Zheng G., Luo W., Yu J., J. Mater. Chem. A, 2013, 1, 14071 |
[213] | Solomon B. R., Hyder M. N., Varanasi K. K., Sci. Rep., 2014, 4, 5504 |
[214] | Yang S., Si Y., Fu Q., Hong F., Yu J., Al-Deyab S. S., El-Newehy M., Ding B., Nanoscale, 2014, 6, 12445 |
[215] | Choong L. T., Lin Y., Rutledge G. C., J. Membr. Sci., 2015, 486, 229 |
[216] | Ge J., Zong D., Jin Q., Yu J., Ding B., Adv. Funct. Mater., 2018, 28, 1705051 |
[217] | Chen F., Lu Y., Liu X., Song J., He G., Tiwari M. K., Carmalt C. J., Parkin I. P., Adv. Funct. Mater., 2017, 27, 1702926 |
[218] | Wang L., Zhao Y., Tian Y., Jiang L., Angew. Chem. Int. Ed., 2015, 54, 14732 |
[219] | Wang Y., Di J., Wang L., Li X., Wang N., Wang B., Tian Y., Jiang L., Yu J., Nat. Commun., 2017, 8, 575 |
[220] | Liu J., Wang L., Wang N., Guo F., Hou L., Chen Y., Liu J., Zhao Y., Jiang L., Small, 2017, 13, 1600499 |
[221] | Tian X., Bai H., Zheng Y., Jiang L., Adv. Funct. Mater., 2011, 21, 1398 |
[222] | Du M., Zhao Y., Tian Y., Li K., Jiang L., Small, 2016, 12, 1000 |
[223] | Song C., Zhao L., Zhou W., Zhang M., Zheng Y., J. Mater. Chem. A, 2014, 2, 9465 |
[224] | Zhao L., Song C., Zhang M., Zheng Y., Chem. Commun., 2014, 50, 10651 |
[225] | Nandakumar A., Truckenmüller R., Ahmed M., Damanik F., Santos D. R., Auffermann N., de Boer J., Habibovic P., van Blitterswijk C., Moroni L., Small, 2013, 9, 3405 |
[226] | Wang N., Zhao Y., Jiang L., Macromol. Rapid. Comm., 2008, 29, 485 |
[227] | Wu H., Zhang R., Sun Y., Lin D., Sun Z., Pan W., Downs P., Soft Matter, 2008, 4, 2429 |
[228] | Chen Y., Wang N., Guo F., Hou L., Liu J., Liu J., Xu Y., Zhao Y., Jiang L., J. Mater. Chem. A, 2016, 4, 12014 |
[229] | Zhang Y., Chen Y., Hou L., Guo F., Liu J., Qiu S., Xu Y., Wang N., Zhao Y., J. Mater. Chem. A, 2017, 5, 16134 |
[230] | Si Y., Yu J., Tang X., Ge J., Ding B., Nat. Commun., 2014, 5, 5802 |
[231] | Si Y., Fu Q., Wang X., Zhu J., Yu J., Sun G., Ding B., ACS Nano, 2015, 9, 3791 |
[232] | Wu Y. C., Feng J. G., Gao H. F., Feng X. J., Jiang L., Adv. Mater., 2019, 31, 1800718 |
[233] | Luo C., Langmuir, 2015, 31, 11809 |
[234] | Chen H., Ran T., Gan Y., Zhou J., Zhang Y., Zhang L., Zhang D., Jiang L., Nat. Mater., 2018, 17, 935 |
[235] | Casagrande C., Fabre P., Raphaël E., Veyssié M., Europhysics Letters(EPL), 1989, 9, 251 |
[236] | Yang H., Hou J., Chen V., Xu Z., Angew. Chem. Int. Ed., 2016, 55, 13398 |
[237] | Li H., Yang J., Xu Z., Adv. Mater. Interfaces, 2020, 7, 1902064 |
[238] | Si Y., Dong Z., Langmuir, 2020, 36, 667 |
[239] | Xia D., Johnson L. M., López G. P., Adv. Mater., 2012, 24, 1287 |
[240] | Dai H., Dong Z., Jiang L., Sci. Adv., 2020, 6, eabb5528 |
[241] | Liu Z., Wang W., Xie R., Ju X., Chu L., Chem. Soc. Rev., 2016, 45, 460 |
[242] | Zhou S., Jiang L., Dong Z., Adv. Mater. Interfaces, 2020, 2000824 |
[243] | Li J., Song Y., Zheng H., Feng S., Xu W., Wang Z., Soft Matter, 2019, 15, 1902 |
[244] | Zhao Y., Wang H., Zhou H., Lin T., Small, 2017, 13, 1601070 |
[245] | Kong Y., Liu Y., Xin J. H., J. Mater. Chem., 2011, 21, 17978 |
[246] | Fu S., Zhou H., Wang H., Niu H., Yang W., Shao H., Wang J., Lin T., ACS Appl. Mater. Interfaces, 2019, 11, 27402 |
[247] | Wang Z., Liu G., Huang S., Angew. Chem. Int. Ed., 2016, 55, 14610 |
[248] | Yang H., Hou J., Wan L., Chen V., Xu Z., Adv. Mater. Interfaces, 2016, 3, 1500774 |
[249] | Lao L., Shou D., Wu Y. S., Fan J. T., Sci. Adv., 2020, 6, eaaz0013 |
[250] | Hu L., Gao S., Zhu Y., Zhang F., Jiang L., Jin J., J. Mater. Chem. A, 2015, 3, 23477 |
[251] | Lim H. S., Park S. H., Koo S. H., Kwark Y., Thomas E. L., Jeong Y., Cho J. H., Langmuir, 2010, 26, 19159 |
[252] | Wu J., Wang N., Wang L., Dong H., Zhao Y., Jiang L., Soft Matter, 2012, 8, 5996 |
[253] | Li H., Cao M., Ma X., Zhang Y., Jin X., Liu K., Jiang L., Adv. Mater. Interfaces, 2016, 3, 1600276 |
[254] | Hou L., Wang N., Man X., Cui Z., Wu J., Liu J., Li S., Gao Y., Li D., Jiang L., Zhao Y., ACS Nano, 2019, 13, 4124 |
[255] | Wang H., Zhou H., Niu H., Zhang J., Du Y., Lin T., Adv. Mater. Interfaces, 2015, 2, 1400506 |
[256] | Huang Y., Wang Z., Jin J., Lin S., Environ. Sci. Technol., 2017, 51, 13304 |
[257] | Hu R., Wang N., Hou L., Cui Z., Liu J., Li D., Li Q., Zhang H., Zhao Y., J. Mater. Chem. A, 2019, 7, 124 |
[258] | Miao D., Huang Z., Wang X., Yu J., Ding B., Small, 2018, 14, 1801527 |
[259] | Shi L., Liu X., Wang W., Jiang L., Wang S., Adv. Mater., 2019, 31, 1804187 |
[260] | Wang H., Niu H., Zhou H., Wei X., Yang W., Lin T., ACS Appl. Mater. Interfaces, 2019, 11, 22878 |
[1] | SUN Bolun, CHAO Danming, WANG Ce. Piezoelectric Nanogenerator Based on Electrospun Cellulose Acetate/Nanocellulose Crystal Composite Membranes for Energy Harvesting Application[J]. 高等学校化学研究, 2022, 38(4): 1005-1011. |
[2] | YANG Siran, AI Feixue, LI Ziping, ZHAO Guiyan, BI Yanfeng. N-Doped Carbon Nanofibers Encapsulating CoO@Co9S8 Nanoparticles: Preparation from S-Rich Co32 Coordination Cluster Precursors by Electrospinning and Application for Superior Li-ion Storage[J]. 高等学校化学研究, 2022, 38(2): 603-608. |
[3] | WANG Jun, FU Wanlin, XU Wanlin, WU Min, SUN Yueming, DAI Yunqian. Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection[J]. 高等学校化学研究, 2021, 37(3): 366-378. |
[4] | HUANG Hedong, GUO Zeyu, YANG Pengyan, CHEN Peng, Wu Jie. Electrical Conductivity, Oil Absorption and Electric Heating of Carbon Black-modified Carbon Nanofibers[J]. 高等学校化学研究, 2021, 37(3): 541-548. |
[5] | BAI Shan, ZHANG Xiangyu, ZANG Leilei, YANG Songze, CHEN Xiaoqi, YUAN Xiaoyan. Electrospinning of Biomaterials for Vascular Regeneration[J]. 高等学校化学研究, 2021, 37(3): 394-403. |
[6] | QIN Mei, LIU Daqing, DAI Zhang, MENG Xin, LIU Guosai, LIU Hao, HUANG Xiaowei, YAN Xu, CHEN Shaojuan. One Step Fabrication and Application of Antibacterial Electrospun Zein/Cinnamon Oil Membrane Wound Dressing via In situ Electrospinning Process[J]. 高等学校化学研究, 2021, 37(3): 464-469. |
[7] | XIANG Huilin, ZHONG Lingling, REN Yongqing, LIU Dongmei, ZHU Zhigao, XU Ying, WANG Yu, WANG Wei. Superhydrophobized Polyacrylonitrile/Hierarchicall-FeOOH Nanofibrous Membrane for High-salinity Water Treatment in Membrane Distillation[J]. 高等学校化学研究, 2021, 37(3): 470-479. |
[8] | CAO Wenhao, WANG Caifeng, WANG Shuai, ZHANG Yang, ZHAO Ruisheng. Preparation of Photoresponsive PAN-NH2@EPESP Fiber Films with Mechanical Stability for Regulating Wettability and Micro-environment Humidity[J]. 高等学校化学研究, 2021, 37(3): 512-521. |
[9] | FENG Zhendong, ZHANG Xiaopei, LIU Na, WANG Yue, ZHOU Ziyi, GLEBOV O. Oleg, WU Tong. Promotion of Neurite Outgrowth and Extension Using Injectable Welded Nanofibers[J]. 高等学校化学研究, 2021, 37(3): 522-527. |
[10] | Winges FATIMA, Muhammad TARIQUE, LI Min, CHEN Mingyi, Muzamil KHATRI, Muhammad Nauman SARWAR, Icksoo KIM, Farooq AHMED, Zeeshan KHATRI, CHEN Rouxi, WEI Kai. Reactive Dyeing of Electrospun Cellulose Nanofibers by Pad-steam Method[J]. 高等学校化学研究, 2021, 37(3): 535-540. |
[11] | LUO Yu, GONG Xiaoyan Shawn, XU Zhiwei, MENG Kai, ZHANG Ke-Qin, ZHAO Huijing. PTFE Electrospun Stent Graft——Preparation, Properties and Its Industrialization Prospect[J]. 高等学校化学研究, 2021, 37(3): 589-597. |
[12] | MA Yuying, HE Dayong, LIU Jiadi, WANG Yuannan, YANG Mei, WANG Hao, QIU Ju, LI Wenyan, LI Yongxin, WANG Ce. Adsorption and Visible Light Photocatalytic Degradation of Electrospun PAN@W18O49 Nanofibers[J]. 高等学校化学研究, 2021, 37(3): 428-435. |
[13] | LI Wenyan, LI Yanzi, LIU Jiadi, CHAO Shen, YANG Tianyi, LI Lijuan, WANG Ce, LI Xiang. A Novel Hollow Carbon@MnO2 Electrospun Nanofiber Adsorbent for Efficient Removal of Pb2+ in Wastewater[J]. 高等学校化学研究, 2021, 37(3): 496-504. |
[14] | JIAN Shaoju, TIAN Zhiwei, ZHANG Kaiyin, DUAN Gaigai, YANG Weisen, JIANG Shaohua. Hydrothermal Synthesis of Ce-doped ZnO Heterojunction Supported on Carbon Nanofibers with High Visible Light Photocatalytic Activity[J]. 高等学校化学研究, 2021, 37(3): 565-570. |
[15] | WANG Ruifang, YU Xi, LI Zhenyu, CHEN Jingyu, JIANG Tingting. Partial P-Type Metal Ions Doping Induced Variation of Both Crystal Structure and Oxygen Vacancy Within Cu/SnO2 Metastable Solid Solution Nanofibers for Highly Sensitive C2H2 Sensor[J]. 高等学校化学研究, 2021, 37(3): 584-588. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||