高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (5): 733-747.doi: 10.1007/s40242-020-0150-y
ZHANG Baochang, LI Yulei, SHI Weiwei, WANG Tongyue, ZHANG Feng, LIU Lei
收稿日期:
2020-05-12
修回日期:
2020-06-02
出版日期:
2020-10-01
发布日期:
2020-10-01
通讯作者:
LIU Lei
E-mail:lliu@mail.tsinghua.edu.cn
基金资助:
ZHANG Baochang, LI Yulei, SHI Weiwei, WANG Tongyue, ZHANG Feng, LIU Lei
Received:
2020-05-12
Revised:
2020-06-02
Online:
2020-10-01
Published:
2020-10-01
Contact:
LIU Lei
E-mail:lliu@mail.tsinghua.edu.cn
Supported by:
摘要: Chemical synthesis of proteins containing up to 300 amino acids may cover 30%-50% of all the proteins encountered in biomedical studies and may provide an alternate approach to the usually used recombinant expression technology, vastly expanding the chemical space of the latter. In the present review article, we tried to survey the recent progresses made for more rapid synthesis of increasingly long peptides and more efficient ligation of multiple peptide segments. The developments of seminal methods by many research groups have greatly contributed to the recent breakthroughs in the successful total synthesis of a number of functionally important proteins, such as oligoubiquitins, bacterial GroEL/ES chaperones, and mirror-image DNA polymerases. Through these studies, a potential bottleneck has also been recognized for the chemical synthesis of large proteins, namely, how to ensure that each peptide segment from a large protein avoids unfavorable aggregation when dissolved in aqueous solution. Many new methods, such as removable backbone modification(RBM) strategy have been developed to overcome this bottleneck, while more studies need to be carried out to develop more effective and less costly methods that ultimately, may lead to fully automatable chemical synthesis of customized proteins of 300 amino acids bearing any artificial designs.
ZHANG Baochang, LI Yulei, SHI Weiwei, WANG Tongyue, ZHANG Feng, LIU Lei. Chemical Synthesis of Proteins Containing 300 Amino Acids[J]. 高等学校化学研究, 2020, 36(5): 733-747.
ZHANG Baochang, LI Yulei, SHI Weiwei, WANG Tongyue, ZHANG Feng, LIU Lei. Chemical Synthesis of Proteins Containing 300 Amino Acids[J]. Chemical Research in Chinese Universities, 2020, 36(5): 733-747.
[1] | Kulkarni S. S., Sayers J., Premdjee B., Payne R. J., Nat. Rev. Chem., 2018, 2, 0122 |
[2] | Conibear A. C., Watson E. E., Payne R. J., Becker C. F. W., Chem. Soc. Rev., 2018, 47, 9046 |
[3] | Sun H., Brik A., Acc. Chem. Res., 2019, 52, 3361 |
[4] | Bondalapati S., Jbara M., Brik A., Nat. Chem., 2016, 8, 407 |
[5] | Kent S. B. H., Bioorg. Med. Chem., 2017, 25, 4926 |
[6] | Yang J., Zhao J., Sci. China Chem, 2018, 61, 97 |
[7] | Kent S. B. H., Chem. Soc. Rev., 2009, 38, 338 |
[8] | Kumar K. S. A., Bavikar S. N., Spasser L., Moyal T., Ohayon S., Brik A., Angew. Chem. Int. Ed., 2011, 50, 6137 |
[9] | Weinstock M. T., Jacobsen M. T., Kay M. S., Proc. Natl. Acad. Sci. USA, 2014, 111, 11679 |
[10] | Pech A., Achenbach J., Jahnz M., Schülzchen S., Jarosch F., Bordusa F., Klussmann S., Nucleic Acids Res., 2017, 45, 3997 |
[11] | Xu W., Jiang W., Wang J., Yu L., Chen J., Liu X., Liu L., Zhu T. F., Cell Discovery, 2017, 3, 17008 |
[12] | Jiang W., Zhang B., Fan C., Wang M., Wang J., Deng Q., Liu X., Chen J., Zheng J., Liu L., Zhu T. F., Cell Discovery, 2017, 3, 17037 |
[13] | Hojo H., Org. Biomol. Chem., 2016, 14, 6368 |
[14] | Bode J. W., Acc. Chem. Res., 2017, 50, 2104 |
[15] | Liu H., Li X., Acc. Chem. Res., 2018, 51, 1643 |
[16] | Xu S., Zhao Z., Zhao J., Chin. Chem. Lett., 2018, 29, 1009 |
[17] | Agouridas V., El Mahdi O., Diemer V., Cargoët M., Monbaliu J. C. M., Melnyk O., Chem. Rev., 2019, 119, 7328 |
[18] | Olschewski D., Becker C. F. W., Mol. Biosyst., 2008, 4, 733 |
[19] | Li J. B., Tang S., Zheng J. S., Tian C. L., Liu L., Acc. Chem. Res., 2017, 50, 1143 |
[20] | Yoshiya T., Tsuda S., Masuda S., ChemBioChem, 2019, 20, 1906 |
[21] | Wang S., Thopate Y. A., Zhou Q., Wang P. Chin. J. Chem., 2019, 37, 1181 |
[22] | Pedersen S. L., Tofteng A. P., Malik L., Jensen K. J., Chem. Soc. Rev., 2012, 41, 1826 |
[23] | Coantic S., Subra G., Martinez J., Int. J. Pept. Res. Ther., 2008, 14, 143 |
[24] | Palasek S. A., Cox Z. J., Collins J. M., J. Pept. Sci., 2007, 13, 143 |
[25] | Rodríguez H., Suarez M., Albericio F., J. Pept. Sci., 2010, 16, 136 |
[26] | Ben Haj Salah K., Inguimbert N., Org. Lett., 2014, 16, 1783 |
[27] | Malik L., Tofteng A. P., Pedersen S. L., Sørensen K. K., Jensen K. J., J. Pept. Sci., 2010, 16, 506 |
[28] | Singer D., Zauner T., Genz M., Hoffmann R., Zuchner T., J. Pept. Sci., 2010, 16, 358 |
[29] | Qu Q., Pan M., Gao S., Zheng Q. Y., Yu Y. Y., Su J. C., Li X., Hu H. G., Adv. Sci., 2018, 5, 1800234 |
[30] | Lu L., Guo Y., Wang T., Liang L., Zhao S., Wang F., Liu L., Sci. China Chem., 2020, 63, 237 |
[31] | Huang Y. C., Fang G. M., Liu L., Natl. Sci. Rev., 2016, 3, 107 |
[32] | Gordon C. P., Org. Biomol. Chem., 2018, 16, 180 |
[33] | Lücke D., Dalton T., Ley S. V., Wilson Z. E., Chem. Eur. J., 2016, 22, 4206 |
[34] | Mijalis A. J., Thomas D. A., Simon M. D., Adamo A., Beaumont R., Jensen K. F., Pentelute B. L., Nat. Chem. Biol., 2017, 13, 464 |
[35] | Mándity I. M., Olasz B., Ötvös S. B., Fülöp F., ChemSusChem, 2014, 7, 3172 |
[36] | Dawson P. E., Muir T. W., Clark-Lewis I., Kent S. B., Science, 1994, 266, 776 |
[37] | Yan L. Z., Dawson P. E., J. Am. Chem. Soc., 2001, 123, 526 |
[38] | Wan Q., Danishefsky S. J., Angew. Chem. Int. Ed., 2007, 46, 9248 |
[39] | Jin K., Li T., Chow H. Y., Liu H., Li X., Angew. Chem. Int. Ed., 2017, 56, 14607 |
[40] | Huang Y., Liu L., Sci. China Chem., 2015, 58, 1779 |
[41] | Botti P., Villain M., Manganiello S., Gaertner H., Org. Lett., 2004, 6, 4861 |
[42] | Warren J. D., Miller J. S., Keding S. J., Danishefsky S. J., J. Am. Chem. Soc., 2004, 126, 6576 |
[43] | Zheng J. S., Chang H. N., Shi J., Liu L., Sci. China Chem., 2012, 55, 64 |
[44] | Zheng J. S., Cui H. K., Fang G. M., Xi W. X., Liu L., ChemBioChem, 2010, 11, 511 |
[45] | Tsuda S., Shigenaga A., Bando K., Otaka A., Org. Lett., 2009, 11, 823 |
[46] | Ollivier N., Dheur J., Mhidia R., Blanpain A., Melnyk O., Org. Lett., 2010, 12, 5238 |
[47] | Dheur J., Ollivier N., Vallin A., Melnyk O., J. Org. Chem., 2011, 76, 3194 |
[48] | Zheng J. S., Chang H. N., Wang F. L., Liu L., J. Am. Chem. Soc., 2011, 133, 11080 |
[49] | Ingenito R., Bianchi E., Fattori D., Pessi A., J. Am. Chem. Soc., 1999, 121, 11369 |
[50] | Shin Y., Winans K. A., Backes B. J., Kent S. B. H., Ellman J. A., Bertozzi C. R., J. Am. Chem. Soc., 1999, 121, 11684 |
[51] | Blanco-Canosa J. B., Dawson P. E., Angew. Chem. Int. Ed., 2008, 47, 6851 |
[52] | Siman P., Karthikeyan S. V., Nikolov M., Fischle W., Brik A., Angew. Chem. Int. Ed., 2013, 52, 8059 |
[53] | Ansaloni A., Wang Z. M., Jeong J. S., Ruggeri F. S., Dietler G., Lashuel H. A., Angew. Chem. Int. Ed., 2014, 53, 1928 |
[54] | Wang J. X., Fang G. M., He Y., Qu D. L., Yu M., Hong Z. Y., Liu L., Angew. Chem. Int. Ed., 2015, 54, 2194 |
[55] | Tofteng A. P., Sørensen K. K., Conde-Frieboes K. W., Hoeg-Jensen T., Jensen K. J., Angew. Chem. Int. Ed., 2009, 48, 7411 |
[56] | Nilsson B. L., Kiessling L. L., Raines R. T., Org. Lett., 2000, 2, 1939 |
[57] | Zhang Y., Xu C., Lam H. Y., Lee C. L., Li X., Proc. Natl. Acad. Sci. USA, 2013, 110, 6657 |
[58] | Li T., Liu H., Li X., Org. Lett., 2016, 18, 5944 |
[59] | Xu C., Xu J., Liu H., Li X., Chin. Chem. Lett., 2018, 29, 1119 |
[60] | Huang D. L., Montigny C., Zheng Y., Beswick V., Li Y., Cao X. X., Barbot T., Jaxel C., Liang J., Xue M., Tian C. L., Jamin N., Zheng J. S., Angew. Chem. Int. Ed., 2020, 59, 5178 |
[61] | Pusterla I., Bode J. W., Nat. Chem., 2015, 7, 668 |
[62] | Pattabiraman V. R., Ogunkoya A. O., Bode J. W., Angew. Chem. Int. Ed., 2012, 51, 5114 |
[63] | Baldauf S., Schauenburg D., Bode J. W., Angew. Chem. Int. Ed., 2019, 58, 12599 |
[64] | Wucherpfennig T. G., Pattabiraman V. R., Limberg F. R. P., Ruiz-Rodríguez J., Bode J. W., Angew. Chem. Int. Ed., 2014, 53, 12248 |
[65] | Mitchell N. J., Malins L. R., Liu X., Thompson R. E., Chan B., Radom L., Payne R. J., J. Am. Chem. Soc., 2015, 137, 14011 |
[66] | Mitchell N. J., Sayers J., Kulkarni S. S., Clayton D., Goldys A. M., Ripoll-Rozada J., Pereira P. J. B., Chan B., Radom L., Payne R. J., Chem., 2017, 2, 703 |
[67] | Sayers J., Karpati P. M. T., Mitchell N. J., Goldys A. M., Kwong S. M., Firth N., Chan B., Payne R. J., J. Am. Chem. Soc., 2018, 140, 13327 |
[68] | Kulkarni S. S., Watson E. E., Premdjee B., Conde-Frieboes K. W., Payne R. J., Nat. Protoc., 2019, 14, 2229 |
[69] | Chisholm T. S., Kulkarni S. S., Hossain K. R., Cornelius F., Clarke R. J., Payne R. J., J. Am. Chem. Soc., 2020, 142, 1090 |
[70] | Fang G. M., Li Y. M., Shen F., Huang Y. C., Li J. B., Lin Y., Cui H. K., Liu L., Angew. Chem. Int. Ed., 2011, 50, 7645 |
[71] | Flood D. T., Hintzen J. C. J., Bird M. J., Cistrone P. A., Chen J. S., Dawson P. E., Angew. Chem. Int. Ed., 2018, 57, 11634 |
[72] | Zheng J. S., Tang S., Qi Y. K., Wang Z. P., Liu L., Nat. Protoc., 2013, 8, 2483 |
[73] | Fang G. M., Wang J. X., Liu L., Angew. Chem. Int. Ed., 2012, 51, 10347 |
[74] | Chu G. C., Pan M., Li J., Liu S., Zuo C., Tong Z. B., Bai J. S., Gong Q., Ai H., Fan J., Meng X., Huang Y. C., Shi J., Deng H., Tian C., Li Y. M., Liu L., J. Am. Chem. Soc., 2019, 141, 3654 |
[75] | Zhang B., Deng Q., Zuo C., Yan B., Zuo C., Cao X. X., Zhu T. F., Zheng J. S., Liu L., Angew. Chem. Int. Ed., 2019, 58, 12231 |
[76] | Li Y. M., Yang M. Y., Huang Y. C., Li Y. T., Chen P. R., Liu L., ACS Chem. Biol., 2012, 7, 1015 |
[77] | Adams A. L., Cowper B., Morgan R. E., Premdjee B., Caddick S., Macmillan D., Angew. Chem. Int. Ed., 2013, 52, 13062 |
[78] | Liang J., Fang G., Huang X., Mei Z., Li J., Tian C., Liu L., Sci. China Chem., 2013, 56, 1301 |
[79] | Casadio F., Lu X., Pollock S. B., LeRoy G., Garcia B. A., Muir T. W., Roeder R. G., Allis C. D., Proc. Natl. Acad. Sci. USA, 2013, 110, 14894 |
[80] | Li J., Li Y., He Q., Li Y., Li H., Liu L., Org. Biomol. Chem., 2014, 12, 5435 |
[81] | Li Y. M., Li Y. T., Pan M., Kong X. Q., Huang Y. C., Hong Z. Y., Liu L., Angew. Chem. Int. Ed., 2014, 53, 2198 |
[82] | Mong S. K., Vinogradov A. A., Simon M. D., Pentelute B. L., ChemBioChem, 2014, 15, 721 |
[83] | Pan M., He Y., Wen M., Wu F., Sun D., Li S., Zhang L., Li Y., Tian C., Chem. Commun., 2014, 50, 5837 |
[84] | Reif A., Siebenhaar S., Tröster A., Schmälzlein M., Lechner C., Velisetty P., Gottwald K., Pöhner C., Boos I., Schubert V., Rose-John S., Unverzagt C., Angew. Chem. Int. Ed., 2014, 53, 12125 |
[85] | Simon M. D., Heider P. L., Adamo A., Vinogradov A. A., Mong S. K., Li X., Berger T., Policarpo R. L., Zhang C., Zou Y., Liao X., Spokoyny A. M., Jensen K. F., Pentelute B. L., ChemBioChem, 2014, 15, 713 |
[86] | Murakami M., Kiuchi T., Nishihara M., Tezuka K., Okamoto R., Izumi M., Kajihara Y., Sci. Adv., 2016, 2, e1500678 |
[87] | Pan M., Gao S., Zheng Y., Tan X., Lan H., Tan X., Sun D., Lu L., Wang T., Zheng Q., Huang Y., Wang J., Liu L., J. Am. Chem. Soc., 2016, 138, 7429 |
[88] | Pedersen S. W., Moran G. E., Sereikaitė V., Haugaard-Kedström L. M., Strømgaard K., ChemBioChem, 2016, 17, 1936 |
[89] | Petersen M. E., Jacobsen M. T., Kay M. S., Org. Biomol. Chem., 2016, 14, 5298 |
[90] | Qi Y. K., Tang S., Huang Y. C., Pan M., Zheng J. S., Liu L., Org. Biomol. Chem., 2016, 14, 4194 |
[91] | Tailhades J., Sethi A., Petrie E. J., Gooley P. R., Bathgate R. A., Wade J. D., Hossain M. A., Chem. Eur. J., 2016, 22, 1146 |
[92] | Tang S., Wan Z., Gao Y., Zheng J. S., Wang J., Si Y. Y., Chen X., Qi H., Liu L., Liu W., Chem. Sci., 2016, 7, 1891 |
[93] | Gao S., Pan M., Zheng Y., Huang Y., Zheng Q., Sun D., Lu L., Tan X., Tan X., Lan H., Wang J., Wang T., Wang J., Liu L., J. Am. Chem. Soc., 2016, 138, 14497 |
[94] | Fang G. M., Chen X. X., Yang Q. Q., Zhu L. J., Li N. N., Yu H. Z., Meng X. M., Chin. Chem. Lett., 2018, 29, 1033 |
[95] | Wang Y. J., Szantai-Kis D. M., Petersson E. J., Org. Biomol. Chem., 2016, 14, 6262 |
[96] | Wang Z., Xu W., Liu L., Zhu T. F., Nat. Chem., 2016, 8, 698 |
[97] | Weller C. E., Dhall A., Ding F., Linares E., Whedon S. D., Senger N. A., Tyson E. L., Bagert J. D., Li X., Augusto O., Chatterjee C., Nat. Commun., 2016, 7, 12979 |
[98] | Xie R. L., Xu L., Li J. B., Chu G. C., Wang T., Huang Y. C., Li Y. M., Eur. J. Org. Chem., 2016, 2016, 2665 |
[99] | Xu L., Xu Y., Qu Q., Guan C. J., Chu G. C., Shi J., Li Y. M., RSC Adv., 2016, 6, 47926 |
[100] | Zheng J. S., He Y., Zuo C., Cai X. Y., Tang S., Wang Z. A., Zhang L. H., Tian C. L., Liu L., J. Am. Chem. Soc., 2016, 138, 3553 |
[101] | Zhou L., Holt M. T., Ohashi N., Zhao A., Müller M. M., Wang B., Muir T. W., Nat. Commun., 2016, 7, 10589 |
[102] | Tornøe C. W., Johansson E., Wahlund P. O., Synlett, 2017, 28, 1901 |
[103] | Tang S., Zuo C., Huang D. L., Cai X. Y., Zhang L. H., Tian C. L., Zheng J. S., Liu L., Nat. Protoc., 2017, 12, 2554 |
[104] | Tang S., Liang L. J., Si Y. Y., Gao S., Wang J. X., Liang J., Mei Z., Zheng J. S., Liu L., Angew. Chem. Int. Ed., 2017, 56, 13333 |
[105] | Tan X. L., Pan M., Zheng Y., Gao S., Liang L. J., Li Y. M., Chem. Sci., 2017, 8, 6881 |
[106] | Tan X. D., Pan M., Gao S., Zheng Y., Shi J., Li Y. M., Chem. Commun., 2017, 53, 10208 |
[107] | Shi L., Chen H., Zhang S. Y., Chu T. T., Zhao Y. F., Chen Y. X., Li Y. M., J. Pept. Sci., 2017, 23, 438 |
[108] | Schmidtgall B., Chaloin O., Bauer V., Sumyk M., Birck C., Torbeev V., Chem. Commun., 2017, 53, 7369 |
[109] | Qu Q., Gao S., Li Y. M., J. Pept. Sci., 2018, 24, 3112 |
[110] | Sato K., Tanaka S., Yamamoto K., Tashiro Y., Narumi T., Mase N., Chem. Commun., 2018, 54, 9127 |
[111] | Si Y. Y., Liang L. J., Tang S., Qi Y. K., Huang Y., Zheng J. S., Tetrahedron Lett., 2018, 59, 268 |
[112] | Sun D., Yu Y., Xue X., Pan M., Wen M., Li S., Qu Q., Li X., Zhang L., Li X., Liu L., Yang M., Tian C., Cell Discovery, 2018, 4, 27 |
[113] | Sun H., Meledin R., Mali S. M., Brik A., Chem. Sci., 2018, 9, 1661 |
[114] | Zuo C., Zhang B., Wu M., Bierer D., Shi J., Fang G. M., Chin. Chem. Lett., 2020, 31, 693 |
[115] | Zuo C., Shi W. W., Chen X. X., Glatz M., Riedl B., Flamme I., Pook E., Wang J., Fang G. M., Bierer D., Liu L., Sci. China Chem., 2019, 62, 1371 |
[116] | Zoukimian C., Meudal H., De Waard S., Ouares K. A., Nicolas S., Canepari M., Beroud R., Landon C., De Waard M., Boturyn D., Bioorg. Med. Chem., 2019, 27, 247 |
[117] | Zheng Y., Wu F., Ling S., Li J. B., Tian C., Chin. Chem. Lett., 2020, 31, 1267 |
[118] | Zhao Z., Metanis N., Angew. Chem. Int. Ed., 2019, 58, 14610 |
[119] | Zhang Y., Hirota T., Kuwata K., Oishi S., Gramani S. G., Bode J. W., J. Am. Chem. Soc., 2019, 141, 14742 |
[120] | Zhang L., Shen H., Gong Y., Pang X., Yi M., Guo L., Li J., Arroyo S., Lu X., Ovchinnikov S., Cheng G., Liu X., Jiang X., Feng S., Deng H., Chem. Sci., 2019, 10, 3271 |
[121] | Xu L., Fan J., Wang Y., Zhang Z., Fu Y., Li Y. M., Shi J., Chem. Commun., 2019, 55, 7109 |
[122] | Shu K., Iwamoto N., Honda K., Kondoh Y., Hirano H., Osada H., Ohno H., Fujii N., Oishi S., Bioconjug. Chem., 2019, 30, 1395 |
[123] | Pan M., Zheng Q., Ding S., Zhang L., Qu Q., Wang T., Hong D., Ren Y., Liang L., Chen C., Mei Z., Liu L., Angew. Chem. Int. Ed., 2019, 58, 2627 |
[124] | Mannuthodikayil J., Singh S., Biswas A., Kar A., Tabassum W., Vydyam P., Bhattacharyya M. K., Mandal K., Org. Lett., 2019, 21, 9040 |
[125] | Lu D., Yin H., Wang S., Tang F., Huang W., Wang P., J. Org. Chem., 2020, 85, 1652 |
[126] | Hemantha H. P., Bavikar S. N., Herman-Bachinsky Y., Haj-Yahya N., Bondalapati S., Ciechanover A., Brik A., J. Am. Chem. Soc., 2014, 136, 2665 |
[127] | Wang M., Jiang W., Liu X., Wang J., Zhang B., Fan C., Liu L., Pena-Alcantara G., Ling J. J., Chen J., Zhu T. F., Chem, 2019, 5, 848 |
[128] | Zheng J. S., Yu M., Qi Y. K., Tang S., Shen F., Wang Z. P., Xiao L., Zhang L., Tian C. L., Liu L., J. Am. Chem. Soc., 2014, 136, 3695 |
[129] | Vinogradov A. A., Evans E. D., Pentelute B. L., Chem. Sci., 2015, 6, 2997 |
[130] | Tsuda Y., Shigenaga A., Tsuji K., Denda M., Sato K., Kitakaze K., Nakamura T., Inokuma T., Itoh K., Otaka A., ChemistryOpen, 2015, 4, 448 |
[131] | Sun H., Mali S. M., Singh S. K., Meledin R., Brik A., Kwon Y. T., Kravtsova-Ivantsiv Y., Bercovich B., Ciechanover A., Proc. Natl. Acad. Sci. USA, 2019, 116, 7805 |
[132] | Seenaiah M., Jbara M., Mali S. M., Brik A., Angew. Chem. Int. Ed., 2015, 54, 12374 |
[133] | Qi Y. K., Chang H. N., Pan K. M., Tian C. L., Zheng J. S., Chem. Commun., 2015, 51, 14632 |
[134] | Liu L., Isr. J. Chem., 2019, 59, 64 |
[135] | Chen X., Tang S., Zheng J. S., Zhao R., Wang Z. P., Shao W., Chang H. N., Cheng J. Y., Zhao H., Liu L., Qi H., Nat. Commun., 2015, 6, 7220 |
[136] | Jacobsen M. T., Petersen M. E., Ye X., Galibert M., Lorimer G. H., Aucagne V., Kay M. S., J. Am. Chem. Soc., 2016, 138, 11775 |
[137] | Lan H., Wu K., Zheng Y., Pan M., Huang Y. C., Gao S., Zheng Q. Y., Zheng J. S., Li Y. M., Xiao B., Liu L., J. Pept. Sci., 2016, 22, 320 |
[138] | Li Y. T., Huang Y. C., Xu Y., Pan M., Li Y. M., Tetrahedron, 2016, 72, 4085 |
[139] | Lühmann T., Mong S. K., Simon M. D., Meinel L., Pentelute B. L., Org. Biomol. Chem., 2016, 14, 3345 |
[140] | Maity S. K., Jbara M., Brik A., J. Pept. Sci., 2016, 22, 252 |
[141] | Qi Y. K., He Q. Q., Ai H. S., Li J. B., Zheng J. S., Synlett, 2017, 28, 1907 |
[142] | Noguchi T., Ishiba H., Honda K., Kondoh Y., Osada H., Ohno H., Fujii N., Oishi S., Bioconjug. Chem., 2017, 28, 609 |
[143] | Qi Y. K., He Q. Q., Ai H. S., Guo J., Li J. B., Chem. Commun., 2017, 53, 4148 |
[144] | Liang J., Zhang L., Tan X. L., Qi Y. K., Feng S., Deng H., Yan Y., Zheng J. S., Liu L., Tian C. L., Angew. Chem. Int. Ed., 2017, 56, 2744 |
[145] | He Q., Li J., Qi Y., Wang Z., Huang Y., Liu L., Sci. China Chem., 2017, 60, 621 |
[146] | Li J., He Q., Liu Y., Liu S., Tang S., Li C., Sun D., Li X., Zhou M., Zhu P., Bi G., Zhou Z., Zheng J. S., Tian C., ChemBioChem, 2017, 18, 176 |
[147] | Jbara M., Guttmann-Raviv N., Maity S. K., Ayoub N., Brik A., Bioorg. Med. Chem., 2017, 25, 4966 |
[148] | Buhler S., Akkerdaas J. H., Pertinhez T. A., Van Ree R., Dossena A., Sforza S., Tedeschi T., J. Pept. Sci., 2017, 23, 282 |
[149] | Chu G. C., Bai J. S., Kong Y. F., Fan J., Sun S. S., Xu H. J., Shi J., Li Y. M., Tetrahedron, 2018, 74, 3931 |
[150] | Dhall A., Weller C. E., Chu A., Shelton P. M. M., Chatterjee C., ACS Chem. Biol., 2017, 12, 2275 |
[151] | de Araujo A. D., Wu C., Wu K. C., Reid R. C., Durek T., Lim J., Fairlie D. P., Bioconjug. Chem., 2017, 28, 1669 |
[152] | Hayashi G., Kamo N., Okamoto A., Chem. Commun., 2017, 53, 5918 |
[153] | Kamo N., Hayashi G., Okamoto A., Chem. Commun., 2018, 54, 4337 |
[154] | Chen C. C., Gao S., Ai H. S., Qu Q., Tian C. L., Li Y. M., Sci. China Chem., 2018, 61, 702 |
[155] | Dhayalan B., Mandal K., Rege N., Weiss M. A., Eitel S. H., Meier T., Schoenleber R. O., Kent S. B. H., Chem. Eur. J., 2017, 23, 1709 |
[156] | Haj-Yahya M., Lashuel H. A., J. Am. Chem. Soc., 2018, 140, 6611 |
[157] | Guo X. Q., Liang J., Li Y., Zhang Y., Huang D., Tian C., Chin. Chem. Lett., 2018, 29, 1139 |
[158] | He W., Yan J., Sui F., Wang S., Su X., Qu Y., Yang Q., Guo H., Ji M., Lu W., Shao Y., Hou P., ACS Nano, 2018, 12, 11664 |
[159] | Kilic S., Boichenko I., Lechner C. C., Fierz B., Chem. Sci., 2018, 9, 3704 |
[160] | Liang L. J., Si Y., Tang S., Huang D., Wang Z. A., Tian C., Zheng J. S., Chin. Chem. Lett., 2018, 29, 1155 |
[161] | Li J. B., Qi Y. K., He Q. Q., Ai H. S., Liu S. l., Wang J. X., Zheng J. S., Liu L., Tian C., Cell Res., 2018, 28, 257 |
[162] | Liu J., Dong S., Chin. Chem. Lett., 2018, 29, 1131 |
[163] | Hua X., Bai J. S., Kong Y. F., Chu G. C., Shi J., Li Y. M., Tetrahedron Lett., 2019, 60, 151123 |
[164] | Liang J., Gong Q., Li Y., Zheng Y., Zheng J. S., Tian C., Li J. B., Chem. Commun., 2019, 55, 12639 |
[165] | Guidotti N., Lechner C. C., Bachmann A. L., Fierz B., ChemBioChem, 2019, 20, 1124 |
[166] | Hartmann L., Botzanowski T., Galibert M., Jullian M., Chabrol E., Zeder-Lutz G., Kugler V., Stojko J., Strub J. M., Ferry G., Frankiewicz L., Puget K., Wagner R., Cianferani S., Boutin J. A., Protein Sci., 2019, 28, 1865 |
[167] | Guo Q. Y., Zhang L. H., Zuo C., Huang D. L., Wang Z. A., Zheng J. S., Tian C. L., Protein & Cell, 2019, 10, 211 |
[168] | Fulcher J. M., Petersen M. E., Giesler R. J., Cruz Z. S., Eckert D. M., Francis J. N., Kawamoto E. M., Jacobsen M. T., Kay M. S., Org. Biomol. Chem., 2019, 17, 10237 |
[169] | Dao Y., Han L., Wang H., Dong S., Org. Lett., 2019, 21, 3265 |
[170] | De Rosa L., Di Stasi R., D'Andrea L. D., Tetrahedron, 2019, 75, 894 |
[171] | Chu G. C., Hua X., Zuo C., Chen C. C., Meng X. B., Zhang Z., Fu Y., Shi J., Li Y. M., Chem. Eur. J., 2019, 25, 16668 |
[172] | Ai H., Guo Y., Sun D., Liu S., Qi Y., Guo J., Qu Q., Gong Q., Zhao S., Li J., Liu L., ChemBioChem, 2019, 20, 221 |
[173] | Baral A., Asokan A., Bauer V., Kieffer B., Torbeev V., Tetrahedron, 2019, 75, 703 |
[174] | Cai Z., Wei Q., Li X., Luan Y., Dong S., J. Org. Chem., 2020, 85, 1740 |
[175] | Brown Z. Z., Mapelli C., Farasat I., Shoultz A. V., Johnson S. A., Orvieto F., Santoprete A., Bianchi E., McCracken A. B., Chen K., Zhu X., Demma M. J., Lacey B. M., Canada K. A., Garbaccio R. M., O'Neil J., Walji A., J. Org. Chem., 2020, 85, 1466 |
[176] | Lin Q., Hopper D., Zhang H., Qoon J. S., Shen Z., Karas J. A., Hughes R. A., Northfield S. E., ACS Omega, 2020, 5, 1840 |
[177] | Ling J. J., Fan C., Qin H., Wang M., Chen J., Wittung-Stafshede P., Zhu T. F., Angew. Chem. Int. Ed., 2020, 59, 3724 |
[178] | Mivelaz M., Fierz B., Methods, 2020, https://doi.org/10.1016/j.ymeth.2020.01.018 |
[179] | Wu Y., Li Y., Cong W., Zou Y., Li X., Hu H., Chin. Chem. Lett., 2020, 31, 107 |
[180] | Tang S., Si Y. Y., Wang Z. P., Mei K. R., Chen X., Cheng J. Y., Zheng J. S., Liu L., Angew. Chem. Int. Ed., 2015, 54, 5713 |
[181] | Pan M., Zheng Q., Gao S., Qu Q., Yu Y., Wu M., Lan H., Li Y., Liu S., Li J., Sun D., Lu L., Wang T., Zhang W., Wang J., Li Y., Hu H. G., Tian C., Liu L., CCS Chemistry, 2019, 1, 476 |
[182] | Bang D., Pentelute B. L., Kent S. B. H., Angew. Chem. Int. Ed., 2006, 45, 3985 |
[183] | Hojo H., Onuma Y., Akimoto Y., Nakahara Y., Nakahara Y., Tetrahedron Lett., 2007, 48, 25 |
[184] | Erlich L. A., Kumar K. S. A., Haj-Yahya M., Dawson P. E., Brik A., Org. Biomol. Chem., 2010, 8, 2392 |
[185] | Bang D., Kent S. B. H., Angew. Chem. Int. Ed., 2004, 43, 2534 |
[186] | Huang Y. C., Chen C. C., Gao S., Wang Y. H., Xiao H., Wang F., Tian C. L., Li Y. M., Chem. Eur. J., 2016, 22, 7623 |
[187] | Veber D., Milkowski J., Varga S., Denkewalter R., Hirschmann R., J. Am. Chem. Soc., 1972, 94, 5456 |
[188] | Jbara M., Maity S. K., Seenaiah M., Brik A., J. Am. Chem. Soc., 2016, 138, 5069 |
[189] | Sakamoto I., Tezuka K., Fukae K., Ishii K., Taduru K., Maeda M., Ouchi M., Yoshida K., Nambu Y., Igarashi J., Hayashi N., Tsuji T., Kajihara Y., J. Am. Chem. Soc., 2012, 134, 5428 |
[190] | Liu S., Pentelute B. L., Kent S. B. H., Angew. Chem. Int. Ed., 2012, 51, 993 |
[191] | Zuo C., Zhang B., Yan B., Zheng J. S., Org. Biomol. Chem., 2019, 17, 727 |
[192] | Raibaut L., Cargoët M., Ollivier N., Chang Y. M., Drobecq H., Boll E., Desmet R., Monbaliu J. C. M., Melnyk O., Chem. Sci., 2016, 7, 2657 |
[193] | Aihara K., Yamaoka K., Naruse N., Inokuma T., Shigenaga A., Otaka A., Org. Lett., 2016, 18, 596 |
[194] | GL Biochem(Shanghai) Ltd. Peptides & Reagents for Peptides Synthesis and Combichem, 2020, http://www.glbiochem.com/image/product/catalogue%202020.pdf |
[195] | Thompson R. E., Muir T. W., Chem. Rev., 2020, 120, 3051 |
[196] | Masuda S., Tsuda S., Yoshiya T., Org. Biomol. Chem., 2019, 17, 10228 |
[197] | Jacobsen M. T., Erickson P. W., Kay M. S., Bioorg. Med. Chem., 2017, 25, 4946 |
[198] | Disotuar M. M., Petersen M. E., Nogueira J. M., Kay M. S., Chou D. H. C., Org. Biomol. Chem., 2019, 17, 1703 |
[199] | Zuo C., Tang S., Zheng J. S., J. Pept. Sci., 2015, 21, 540 |
[200] | Paradís-Bas M., Tulla-Puche J., Albericio F., Chem. Soc. Rev., 2016, 45, 631 |
[201] | Kochendoerfer G. G., Salom D., Lear J. D., Wilk-Orescan R., Kent S. B. H., DeGrado W. F., Biochemistry, 1999, 38, 11905 |
[202] | Rohrbacher F., Zwicky A., Bode J. W., Chem. Sci., 2017, 8, 4051 |
[203] | Valiyaveetil F. I., MacKinnon R., Muir T. W., J. Am. Chem. Soc., 2002, 124, 9113 |
[204] | Bianchi E., Ingenito R., Simon R. J., Pessi A., J. Am. Chem. Soc., 1999, 121, 7698 |
[205] | Harmand T. J., Pattabiraman V. R., Bode J. W., Angew. Chem. Int. Ed., 2017, 56, 12639 |
[206] | Sato T., Saito Y., Aimoto S., J. Pept. Sci. 2005, 11, 410 |
[207] | Maity S. K., Mann G., Jbara M., Laps S., Kamnesky G., Brik A., Org. Lett., 2016, 18, 3026 |
[208] | Tsuda S., Mochizuki M., Ishiba H., Yoshizawa-Kumagaye K., Nishio H., Oishi S., Yoshiya T., Angew. Chem. Int. Ed., 2018, 57, 2105 |
[209] | Tan Z., Shang S., Danishefsky S. J., Proc. Natl. Acad. Sci. USA, 2011, 108, 4297 |
[210] | Asahina Y., Komiya S., Ohagi A., Fujimoto R., Tamagaki H., Nakagawa K., Sato T., Akira S., Takao T., Ishii A., Nakahara Y., Hojo H., Angew. Chem. Int. Ed., 2015, 54, 8226 |
[211] | Huang Y. C., Li Y. M., Chen Y., Pan M., Li Y. T., Yu L., Guo Q. X., Liu L., Angew. Chem. Int. Ed., 2013, 52, 4858 |
[212] | Tailhades J., Patil N. A., Hossain M. A., Wade J. D., J. Pept. Sci., 2015, 21, 139 |
[213] | Sohma Y., Sasaki M., Hayashi Y., Kimura T., Kiso Y., Chem. Commun., 2004, 124 |
[214] | Sohma Y., Chiyomori Y., Kimura M., Fukao F., Taniguchi A., Hayashi Y., Kimura T., Kiso Y., Bioorg. Med. Chem., 2005, 13, 6167 |
[215] | Liu F., Luo E. Y., Flora D. B., Mezo A. R., Angew. Chem. Int. Ed., 2014, 53, 3983 |
[216] | Johnson E. C. B., Kent S. B. H., J. Am. Chem. Soc., 2006, 128, 7140 |
[217] | Hartrampf N., Saebi A., Poskus M., Gates Z. P., Callahan A. J., Cowfer A. E., Hanna S., Antilla S., Schissel C. K., Quartararo A. J., Ye X., Mijalis A. J., Simon M. D., Loas A., Liu S., Jessen C., Nielsen T. E., Pentelute B. L., Science, 2020, 368, 980 |
[218] | Kent S. B. H., Curr. Opin. Chem. Biol., 2018, 46, 1 |
[219] | Chang H. N., Liu B. Y., Qi Y. K., Zhou Y., Chen Y. P., Pan K. M., Li W. W., Zhou X. M., Ma W. W., Fu C. Y., Qi Y. M., Liu L., Gao Y. F. Angew. Chem. Int. Ed. 2015, 54, 11760 |
[220] | Schumacher T. N. M., Mayr L. M., Minor D. L., Milhollen M. A., Burgess M. W., Kim P. S., Science, 1996, 271, 1854 |
[221] | Uppalapati M., Lee D. J., Mandal K., Li H., Miranda L. P., Lowitz J., Kenney J., Adams J. J., Ault-Riché D., Kent S. B. H., Sidhu S. S., ACS Chem. Biol., 2016, 11, 1058 |
[222] | Dang B. B., Chhabra S., Pennington M. W., Norton R. S., Kent S. B. H., J. Biol. Chem., 2017, 292, 12599 |
[223] | Li Z., Zhang B., Zuo C., Liu L., Chin. J. Org. Chem., 2018, 38, 2412 |
[224] | Mulder M. P. C., Witting K. F., Ovaa H., Curr. Issues Mol. Biol., 2020, 37, 1 |
[225] | Baumann A. L., Hackenberger C. P. R., Chimia 2018, 72, 802 |
[226] | Hu J., Zhu P., Li Y., Chen Y. Chin. Chem. Lett., 2018, 29, 1043 |
[227] | Lin J., Li X. D., Chin. Chem. Lett., 2018, 29, 1051 |
[228] | Bi X., Pasunooti K. K., Liu C. F., Sci. China Chem., 2018, 61, 251 |
[229] | Tam J. P., Chan N. Y., Liew H. T., Tan S. J., Chen Y., Sci. China Chem., 2020, 63, 296 |
[230] | Si Y., Liang L., Tang S., Qi Y., Huang Y., Liu L., Sci. China Chem., 2018, 61, 412 |
[231] | Qi Y. K., Si Y. Y., Du S. S., Liang J., Wang K. W., Zheng J. S., Sci. China Chem., 2019, 62, 299 |
[232] | Wu Y., Ye X. S., Acta Chim. Sinica, 2019, 77, 581 |
[233] | Zhang Y. F., Hirota T., Kuwata K., Oishi S., Gramani S. G., Bode J. W., J. Am. Chem. Soc., 2019, 141, 14742 |
[234] | Xin B. T., Gan J., Fernandez D. J., Knobeloch K. P., Geurink P. P., Ovaa, H. Org. Biomol. Chem., 2019, 17, 10148 |
[235] | Unverzagt C., Kajihara Y., Curr. Opin. Chem. Biol., 2018, 46, 130 |
[236] | Jbara M., Sun H., Kamnesky G., Brik A. Curr. Opin. Chem. Biol., 2018, 46, 18 |
[1] | XU Min, ZHOU Baomei, DING Yan, DU Shanshan, SU Mengke, LIU Honglin. Programmable Oligonucleotide-Peptide Complexes:Synthesis and Applications[J]. 高等学校化学研究, 2022, 38(4): 856-865. |
[2] | ZHANG Mengqian, HE Peiyang, LI Yanmei. Contemporary Approaches to α,β-Dehydroamino Acid Chemical Modifications[J]. 高等学校化学研究, 2021, 37(5): 1044-1054. |
[3] | YANG Jia, ZHENG Rui, AN Hongwei, WANG Hao. In vivo Self-assembled Peptide Nanoprobes for Disease Diagnosis[J]. 高等学校化学研究, 2021, 37(4): 855-869. |
[4] | LIU Zhiyu, LIANG Gaolin, ZHAN Wenjun. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging[J]. 高等学校化学研究, 2021, 37(4): 889-899. |
[5] | MENG Feihong, WANG Yajie, LU Tong, WANG Chunyu, LI Fei. Effect of a Short Peptide with Alternating L- and D-Amino Acid on the Aggregation and Membrane Damage of hIAPP[J]. 高等学校化学研究, 2021, 37(3): 787-794. |
[6] | YU Wenting, XUE Bin, ZHU Zhenshu, SHEN Ziqin, QIN Meng, WANG Wei, CAO Yi. Strong and Injectable Hydrogels Based on Multivalent Metal Ion-Peptide Cross-linking[J]. 高等学校化学研究, 2020, 36(5): 962-969. |
[7] | WANG Ruijue, SHENG Kai, HOU Yingqin, SUN Jialing, LU Hua. Tailoring Cationic Helical Polypeptides for Efficient Cytosolic Protein Delivery[J]. 高等学校化学研究, 2020, 36(1): 134-138. |
[8] | CAI Qing, QIAO Chunyan, NING Jun, DING Xinxin, WANG Haoyang, ZHOU Yanmin. A Polysaccharide-based Hydrogel and PLGA Microspheres for Sustained P24 Peptide Delivery: An In vitro and In vivo Study Based on Osteogenic Capability[J]. 高等学校化学研究, 2019, 35(5): 908-915. |
[9] | XU Jia, YU Xiaoxuan, ZHANG Yue, LIU Naizhang, GUAN Shuwen, WANG Liping. Extending Lifespan of Alzheimer's Mode Nematode CL4176 Using a Novel Bifunctional Peptide with Inhibition of β-Amyloid Aggregation and Anti-oxidation[J]. 高等学校化学研究, 2019, 35(2): 245-250. |
[10] | LIU Guifeng, CHEN Hongda, YU Shaonan, LI Xiaodong, WANG Zhenxin. CXCR4 Peptide Conjugated Au-Fe2O3Nanoparticles for Tumor-targeting Magnetic Resonance Imaging[J]. 高等学校化学研究, 2018, 34(4): 584-589. |
[11] | FENG Huiyun, GAO Lei, YE Xinhui, WANG Lei, XUE Zechun, KONG Jinming, LI Lianzhi. Synthesis of a Heptapeptide and Its Application in the Detection of Mercury(II) Ion[J]. 高等学校化学研究, 2017, 33(2): 155-159. |
[12] | ZONG Qianying, GENG Huimin, YE Lin, ZHANG Aiying, SHAO Ziqiang, FENG Zengguo. Synthesis and Gelation Capability of Fmoc and Boc Mono-substituted Cyclo(L-Lys-L-Lys)s[J]. 高等学校化学研究, 2016, 32(3): 484-492. |
[13] | ZHANG Yonghong, LI Liangchun, YUAN Weicheng, ZHANG Xiaomei. Synthesis and Secondary Conformations of Homochiral β-Oligopeptides Containing Aryl Side Chains[J]. 高等学校化学研究, 2015, 31(3): 381-387. |
[14] | ZHAO Yanyan, WANG Liheng, GUO Zhimou, CHI Xiaofei, MA Xiaochi, QI Yan, FANG Shinong, LI Xiuling, LIANG Xinmiao. Enhanced Multi-phosphopeptide Enrichment and Nano LC-ESI-qTOF-MS Detection Strategy Using Click OEG-CD Matrix[J]. 高等学校化学研究, 2015, 31(1): 44-52. |
[15] | XU Baofeng, YANG Sen, ZHU Jinming, MA Yudan, ZHAO Gang, GUO Yi, XU Li. Novel Chemical Strategy for the Synthesis of RGDCySS Tetrapeptide[J]. 高等学校化学研究, 2014, 30(1): 103-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||