[an error occurred while processing this directive]

高等学校化学研究 ›› 2015, Vol. 31 ›› Issue (4): 508-513.doi: 10.1007/s40242-015-4487-6

• Articles • 上一篇    下一篇

One-pot Hydrothermal Synthesis of rGO-Fe3O4 Hybrid Nanocomposite for Removal of Pb(II) via Magnetic Separation

CAO Wei, MA Yiran, ZHOU Wei, GUO Lin   

  1. School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
  • 收稿日期:2014-12-15 修回日期:2015-04-08 出版日期:2015-08-01 发布日期:2015-07-22
  • 通讯作者: ZHOU Wei E-mail:zhouwei@buaa.edu.cn
  • 基金资助:

    Supported by the National Natural Science Foundation of China(Nos.51438011, 51102005), the Foundation for the Author of National Excellent Doctoral Dissertation of China(No.201331) and the Program for New Century Excellent Talents in University, China(No.NCET-13-0032).

One-pot Hydrothermal Synthesis of rGO-Fe3O4 Hybrid Nanocomposite for Removal of Pb(II) via Magnetic Separation

CAO Wei, MA Yiran, ZHOU Wei, GUO Lin   

  1. School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
  • Received:2014-12-15 Revised:2015-04-08 Online:2015-08-01 Published:2015-07-22
  • Contact: ZHOU Wei E-mail:zhouwei@buaa.edu.cn
  • Supported by:

    Supported by the National Natural Science Foundation of China(Nos.51438011, 51102005), the Foundation for the Author of National Excellent Doctoral Dissertation of China(No.201331) and the Program for New Century Excellent Talents in University, China(No.NCET-13-0032).

摘要:

The reduced graphene oxide-Fe3O4(rGO-Fe3O4) hybrid nanocomposite was prepared via a one-pot facile hydrothermal method for adsorption of heavy metal ions. The results of compositional and morphological characterizations show that the Fe3O4 NPs with an average diameter of 20 nm have been uniformly dispersed in rGO sheets. Due to the higher specific surface area of rGO and the magnetic properties of Fe3O4 nanoparticles, the prepared rGO-Fe3O4 hybrid nanosheets showed good adsorption capacity for the removal of Pb(II) from wastewater by simple magnetic separation. The result of control tests show that the adsorption capacity of rGO-Fe3O4 can be influenced by the ratio of ferric chloride(FeCl3) to graphene oxide(GO) during the process of sample preparation and the initial concentration of Pb(II). A better adsorption capacity was 30.68 mg/g at n(FeCl3)/m(GO) ratio of 1:5(mmol:mg) at pH=7.0 with the initial concentration of Pb(II) ions of 80 mg/L, and the experimental data were well fitted with the Langmuir adsorption model. The composite with absorbed Pb(II) can be easily collected by magnetic separation from wastewater because of the excellent magnetism of Fe3O4 NPs. The rGO-Fe3O4 hybrid nanocomposite provides an effective and environment-friendly absorbent with great application potential in water purification.

关键词: Graphene, Nanocomposite, Adsorption, Magnetic separation

Abstract:

The reduced graphene oxide-Fe3O4(rGO-Fe3O4) hybrid nanocomposite was prepared via a one-pot facile hydrothermal method for adsorption of heavy metal ions. The results of compositional and morphological characterizations show that the Fe3O4 NPs with an average diameter of 20 nm have been uniformly dispersed in rGO sheets. Due to the higher specific surface area of rGO and the magnetic properties of Fe3O4 nanoparticles, the prepared rGO-Fe3O4 hybrid nanosheets showed good adsorption capacity for the removal of Pb(II) from wastewater by simple magnetic separation. The result of control tests show that the adsorption capacity of rGO-Fe3O4 can be influenced by the ratio of ferric chloride(FeCl3) to graphene oxide(GO) during the process of sample preparation and the initial concentration of Pb(II). A better adsorption capacity was 30.68 mg/g at n(FeCl3)/m(GO) ratio of 1:5(mmol:mg) at pH=7.0 with the initial concentration of Pb(II) ions of 80 mg/L, and the experimental data were well fitted with the Langmuir adsorption model. The composite with absorbed Pb(II) can be easily collected by magnetic separation from wastewater because of the excellent magnetism of Fe3O4 NPs. The rGO-Fe3O4 hybrid nanocomposite provides an effective and environment-friendly absorbent with great application potential in water purification.

Key words: Graphene, Nanocomposite, Adsorption, Magnetic separation