高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (2): 194-202.doi: 10.1007/s40242-019-0031-4
LI Tao, DUAN Ruilin, DUAN Zhijuan, HUANG Fujian, XIA Fan
收稿日期:
2019-10-30
修回日期:
2019-11-27
出版日期:
2020-04-01
发布日期:
2020-03-18
通讯作者:
HUANG Fujian
E-mail:huangfj@cug.edu.cn
基金资助:
LI Tao, DUAN Ruilin, DUAN Zhijuan, HUANG Fujian, XIA Fan
Received:
2019-10-30
Revised:
2019-11-27
Online:
2020-04-01
Published:
2020-03-18
Contact:
HUANG Fujian
E-mail:huangfj@cug.edu.cn
Supported by:
摘要: In this review, the most recent progresses in the field of fluorescence signal amplification strategies based on DNA nanotechnology for miRNA are summarized. The types of signal amplification are given and the principles of amplification strategies are explained, including rolling circle amplification(RCA), catalytic hairpin assembly (CHA), hybridization chain reaction(HCR) and DNA walker. Subsequently, the application of these signal amplification methods in biosensing and bioimaging are covered and described. Finally, the challenges and the outlook of fluorescence signal amplification methods for miRNA detection are briefly commented.
LI Tao, DUAN Ruilin, DUAN Zhijuan, HUANG Fujian, XIA Fan. Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection[J]. 高等学校化学研究, 2020, 36(2): 194-202.
LI Tao, DUAN Ruilin, DUAN Zhijuan, HUANG Fujian, XIA Fan. Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection[J]. Chemical Research in Chinese Universities, 2020, 36(2): 194-202.
[1] | Zhao Y. X., Chen F., Li Q., Wang L. H., Fan C. H., Chem. Rev., 2015, 115, 12491 |
[2] | Newman A. M., Bratman S. V., To J., Wynne J. F., Eclov N. C. W., Modlin L. A., Liu C. L., Neal J. W., Wakelee H. A., Merritt R. E., Shrager J. B., Loo Jr. W. L., Alizadeh A. A., Diehn M., Nat. Med., 2014, 20, 548 |
[3] | Dai Y., Huang. S., Tang M., Lv T. Y., Hu C. X., Tan Y. H., Xu Z. M., Yin Y. B., Lupus, 2007, 16, 936 |
[4] | Thum T., Condorelli G., Circ. Res., 2015, 116, 751 |
[5] | Rodriguez M. M., Linnes J. C., Fan A., Ellenson C. K., Pollock N. R., Klapperich C. M., Anal. Chem., 2015, 87, 7872 |
[6] | Sullenger B. A., Gilboa E., Nature, 2002, 418, 252 |
[7] | Shi C., Shen X. T., Niu S. Y., Ma C. P., J. Am. Chem. Soc., 2015, 137, 13804 |
[8] | Friedman R. C., Farh K. K. H., Burge C. B., Bartel D. P., Genome Res., 2009, 19, 92 |
[9] | Yeung M. L., Bennasser Y., Jeang K. T., Curr. Med. Chem., 2007, 14, 191 |
[10] | Sawyers C. L., Nature, 2008, 452, 548 |
[11] | Iorio M. V., Croce C. M., Mol. Med., 2012, 4, 143 |
[12] | Liu C. Y., Wen J., Meng Y. B., Zhang K. L., Zhu J. L., Ren Y., Qian X. M., Yuan X. B., Lu Y. F., Kang C. S., Adv. Mater., 2015, 27, 292 |
[13] | Huang F. J., Xia F., Sci. Bull., 2017, 62, 312 |
[14] | Silahtaroglu A. N., Nolting D., Dyrskjøt L., Berezikov E., Møller M., Tommerup N., Kauppinen S., Nat. Protoc., 2007, 2, 2520 |
[15] | Jin Z. W., Geißler D., Qiu X., Wegner KD., Hildebrandt N., Angew. Chem. Int. Ed., 2015, 54, 10024 |
[16] | Causa F., Aliberti A., Cusano A. M., Battista E., Netti P. A., J. Am. Chem. Soc., 2015, 137, 1758 |
[17] | Oishi M., Sugiyama S., Small, 2016, 12, 5153 |
[18] | Dong J., Chen G. Y., Wang W., Huang X., Peng H. P., Pu Q. L., Du F., Cui X., Deng Y., Tang Z., Anal. Chem., 2018, 90, 7107 |
[19] | Wu H., Liu Y. L., Wang H. Y., Wu J., Zhu F. F., Zou P., Biosens. Bioelectron., 2016, 81, 303 |
[20] | Yu Y. Y., Chen Z. G., Shi L. J., Yang F., Pan J. B., Zhang B. B., Sun D. P., Anal. Chem., 2014, 86, 8200 |
[21] | Koo K. M., Carrascosa L. G., Shiddiky M. J. A., Trau M., Anal. Chem., 2016, 88, 2000 |
[22] | Huang F. J., Lin M. H., Duan R. L., Lou X. D., Xia F., Willner I., Nano Lett., 2018, 18, 5116 |
[23] | Miao P., Zhang T., Xu J. H., Tang Y. G., Anal. Chem., 2018, 90, 11154 |
[24] | Bi S., Zhang J. L., Hao S. Y., Ding C. F., Zhang S. S., Anal. Chem., 2011, 83, 3696 |
[25] | Wang Q., Yin B, C., Ye B. C., Biosens. Bioelectron., 2016, 80, 366 |
[26] | Pavlov V., Xiao Y., Gill R., Dishon A., Kotler M., Willner I., Anal. Chem., 2004, 76, 2152 |
[27] | Šípová H., Zhang S. L., Dudley A. M., Galas D., Wang K., Homola J., Anal. Chem., 2010, 82, 10110 |
[28] | Liu R. J., Wang Q., Li Q., Yang X. H., Wang K., Nie W. Y., Biosens. Bioelectron., 2017, 87, 433 |
[29] | Wang Q., Li Q., Yang X. H., Wang K. M., Du S. S., Zhang H., Nie Y. J., Biosens. Bioelectron., 2016, 77, 1001 |
[30] | Zhao H. Y., Wang L., Zhu J., Wei H. P., Jiang W., Talanta, 2015, 138, 163 |
[31] | Yin B. C., Liu Y. Q., Ye B. C., J. Am. Chem. Soc., 2012, 134, 5064 |
[32] | Qiu X., Hildebrandt N., ACS Nano, 2015, 9, 8449 |
[33] | Degliangeli F., Kshirsagar P., Brunetti V., Pompa P. P., Fiammengo R., J. Am. Chem. Soc., 2014, 136, 2264 |
[34] | Dong H. F., Jin S., Ju H. X., Hao K. H., Xu L. P., Lu H. T., Zhang X. J., Anal. Chem., 2012, 84, 8670 |
[35] | Yang L., Liu C. H., Ren W., Li Z. P., ACS Appl. Mater. Interfaces., 2012, 4, 6450 |
[36] | Ou X. W., Zhan S. S., Sun C. L., Cheng Y., Wang X. D., Liu B. F., Zhai T. Y., Lou X. D., Xia F., Biosens. Bioelectron., 2019, 124, 199 |
[37] | Min X. H., Zhang M. S., Huang F. J., Lou X. D., Xia F., ACS Appl. Mater. Interfaces., 2016, 8, 8998 |
[38] | Min X. H., Zhuang Y., Zhang Z. Y., Jia Y. M., Hakeem A., Zheng F. X., Cheng Y., Tang B. Z., Lou X. D., Xia F., ACS Appl. Mater. Interfaces., 2015, 7, 16813 |
[39] | Min X. H., Xia L., Zhuang Y., Wang X. D., Du J., Zhang X. J., Lou X. D., Xia F., Sci. Bull., 2017, 62, 997 |
[40] | Wang L. D., Deng R. J., Li J. H., Chem. Sci., 2015, 6, 6777 |
[41] | Thomson J. M., Parker J., Perou C. M., Hammond S. M., Nat. Methods., 2004, 1, 47 |
[42] | Válóczi A., Hornyik C., Varga N., Burgyán J., Kauppinen S., Havelda Z., Nucleic Acids Res., 2004, 32, e175 |
[43] | Gasic E. V., Wu R. M., Wood M., Walton E. F., Hellens R. P., Plant Methods, 2007, 3, 12 |
[44] | Chen C. F., Ridzon D. A., Broomer A. J., Zhou Z. H., Lee D. H.,. Nguyen J. T., Barbisin M., Xu N. L., Mahuvakar V. R., Andersen M. R., Lao K. Q., Livak K. L., Guegler K. J., Nucleic Acids Res., 2005, 33, e179 |
[45] | Liu N. N., Huang F. J., Lou X. D., Xia F., Sci. China Chem., 2017, 60, 311 |
[46] | Song S. P., Liang Z. Q., Zhang J., Wang L. H., Li G. X., Fan C. H., Angew. Chem. Int. Ed., 2009, 48, 8670 |
[47] | Ge Z. L., Lin M. H., Wang P., Pei H., Yan J., Shi J. Y., Huang Q., He D. N., Fan C.H., Zuo X. L., Anal. Chem., 2014, 86, 2124 |
[48] | Yin B. C., Liu Y. Q., Ye B. C., J. Am. Chem. Soc., 2012, 134, 5064 |
[49] | Shi C., Liu Q., Ma C. P., Zhong W. W., Anal. Chem., 2014, 86, 336 |
[50] | Jiang Y., Li B. L., Milligan J. N., Bhadra S., Ellington A. D., J. Am. Chem. Soc., 2013, 135, 7430 |
[51] | Xu Z. Q., Liao L. L., Chai Y, Q., Wang H. J., Yuan R., Anal. Chem., 2017, 89, 8282 |
[52] | Lizardi P. M., Huang X. H., Zhu Z. R., Ward P. B., Thomas D. C., Ward D. C., Nat. Genet., 1998, 19, 225 |
[53] | Schweitzer B., Roberts S., Grimwade B., Shao W. P., Wang M. M., Fu Q., Shu Q. P., Laroche L., Zhou Z. M., Tchernev V. T., Christiansen J., Velleca M., Kingsmore S. F., Nat. Biotechnol., 2002, 20, 359 |
[54] | Schweitzer B., Wiltshire S., Lambert J., O’Malley S., Kukanskis K., Zhu Z. R., Kingsmore S. F., Lizardi P. M., Ward D. C., PNAS, 2000, 97, 10113 |
[55] | Bi S., Zhang Z. P., Zhu J. J., Chem. Sci., 2013, 4, 1858 |
[56] | Zhao Y. X., Qi L., Chen F., Dong Y. H., Kong Y., Wu Y. Y., Fan C. H., Chem. Commun., 2012, 48, 3354 |
[57] | Yin P., Choi H. M. T., Calvert C. R., Pierce N. A., Nature, 2008, 451, 318 |
[58] | Zheng A. X., Wang J. R., Li J., Song X. R., Chen G. R., Yang H. H., Biosens. Bioelectron., 2012, 36, 217 |
[59] | Hou T., Wang X. Z., Liu X. J., Lu T. T., Liu S. F., Li F., Anal. Chem., 2014, 86, 884 |
[60] | Dirks R. M., Pierce N. A., Proc. Natl. Acad. Sci. USA, 2004, 101, 15275 |
[61] | Huang R. C., Chiu W. J., Li Y. J., Huang C. C., ACS Appl. Mater. Interfaces, 2014, 6, 21780 |
[62] | Sherman W. B., Seeman N. C., Nano Lett., 2004, 4, 1203 |
[63] | Shin J. S., Pierce N. A., J. Am. Chem. Soc., 2004, 126, 10834 |
[64] | Jung C., Allen P. B., Ellington A. D., ACS Nano, 2017, 11, 8047 |
[65] | Bath J., Green S. J., Turberfield A. J., Angew. Chem. Int. Ed., 2005, 44, 4358 |
[66] | Tian Y., He Y., Chen Y., Yin P., Mao C., Angew. Chem. Int. Ed., 2005, 117, 4429 |
[67] | O’Donovan P., Perrett C. M., Zhang X. H., Montaner B., Xu Y. Z., Harwood C. A., McGregor J. M., Walker S. L., Hanaoka F., Karran P., Science, 2005, 309, 1871 |
[68] | You M. X., Chen Y., Zhang X. B., Liu H. P., Wang R. W., Wang K. L., Williams K. R., Tan W. H., Angew. Chem. Int. Ed., 2012, 124, 2507 |
[69] | Wang L. D., Deng R. J., Li J. H., Chem. Sci., 2015, 6, 6777 |
[70] | Cai S. X., Chen M., Liu M. M., He W. H., Liu Z. J., Wu D. Z., Xia Y. K., Yang H. H., Chen J. H., Biosens. Bioelectron., 2016, 85, 184 |
[71] | Shlyahovsky B., Li Y., Lioubashevski O., Elbaz J., Willner I., ACS Nano, 2009, 3, 1831 |
[72] | He Y., Liu D. R., Nature Nanotech., 2010, 5, 778 |
[73] | Shin J. S., Pierce N. A., J. Am. Chem. Soc., 2004, 126, 10834 |
[74] | Thubagere A. J., Li W., Johnson R. F., Chen Z., Doroudi S., Lee Y. L., Izatt G., Wittman S., Srinivas N., Woods D., Winfree E., Qian L., Science, 2017, 357, eaan6558 |
[75] | Ge J., Zhang L. L., Liu S. J., Yu R. Q., Chu X., Anal. Chem., 2014, 86, 1808 |
[76] | Deng R. J., Tang L. H., Tian Q. Q., Wang Y., Lin L., Li J. H., Angew. Chem. Int. Ed., 2014, 53, 2389 |
[77] | Zhang Z., Wang Y. Y., Zhang N. B., Zhang S. S., Chem. Sci., 2016, 7, 4184 |
[78] | Tian W. M., Li P. J., He W. L., Liu C. H., Li Z. P., Biosens. Bioelectron., 2019, 128, 17 |
[79] | Wei Q. M., Huang J., Li J., Wang J. L., Yang X. H., Liu J.B., Wang K. M., Chem. Sci., 2018, 9, 7802 |
[80] | Yue S. Z., Song X. Y., Song W. L., Bi S., Chem. Sci., 2019, 10, 1651 |
[81] | Li D. X., Wu Y. L., Gan C. F., Yuan R., Xiang Y., Nanoscale, 2018, 10, 17623 |
[82] | Liu H. Y., Tian T., Zhang Y. H., Ding L. H., Yu J. H., Yan M., Biosens. Bioelectron., 2017, 89, 710 |
[83] | Zhang Y., Chen Z. W., Tao Y., Wang Z. Z., Ren J. S., Qu X. G., Chem. Commun., 2015, 51, 11496 |
[84] | Li L., Feng J., Liu H. Y., Li Q. L., Tong L. L., Tang B., Chem. Sci., 2016, 7, 1940 |
[85] | Li S. Y., Zhang F., Chen X. M., Cai C. Q., Sensor Actuat B: Chem., 2018, 263, 87 |
[86] | Qu X. M., Xiao M. S., Li F., Lai W., Li L., Zhou Y., Lin C. L., Li Q., Ge Z.L., Wen Y. L., Pei H., Liu G., ACS Appl. Bio. Mater., 2018, 1, 859 |
[87] | Liang C. P., Ma C. Q., Liu H., Guo X. G., Yin B. C., Ye B. C., Angew. Chem. Int. Ed., 2017, 56, 9077 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||