高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (1): 10-23.doi: 10.1007/s40242-020-9068-7
YANG Chao1,2, WANG Hao-Fan1, XU Qiang1
收稿日期:
2019-11-27
修回日期:
2019-12-26
出版日期:
2020-02-01
发布日期:
2019-12-25
通讯作者:
XU Qiang
E-mail:q.xu@aist.go.jp
基金资助:
YANG Chao1,2, WANG Hao-Fan1, XU Qiang1
Received:
2019-11-27
Revised:
2019-12-26
Online:
2020-02-01
Published:
2019-12-25
Contact:
XU Qiang
E-mail:q.xu@aist.go.jp
Supported by:
摘要: With the increased energy demand, developing renewable and clean energy technologies becomes more and more significant to mitigate climate warming and alleviate the environmental pollution. The key point is design and synthesis of low cost and efficient materials for a wide variety of electrochemical reactions. Over the past ten years, two-dimensional(2D) nanomaterials that graphene represents have been paid much attention as a class of the most promising candidates for heterogeneous electrocatalysts in electrochemical storage and conversion. Their unique properties, such as good chemical stability, good flexibility, and good electronic properties, along with their nanosized thickness and large specific area, make them exhibit comprehensively good performances for energy storage and conversion. Here, we present an overview on the recent advances in electrochemical applications of graphene, graphdiyne, transition metal dichalcogenides(TMDs), and MXenes for supercapacitors(SCs), oxygen reduction reaction (ORR), and hydrogen evolution reaction(HER).
YANG Chao, WANG Hao-Fan, XU Qiang. Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion[J]. 高等学校化学研究, 2020, 36(1): 10-23.
YANG Chao, WANG Hao-Fan, XU Qiang. Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion[J]. Chemical Research in Chinese Universities, 2020, 36(1): 10-23.
[1] | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666 |
[2] | Sakamoto R., Fukui N., Maeda H., Matsuoka R., Toyoda R., Nishi-hara H., Adv. Mater., 2019, 1804211 |
[3] | Chhowalla M., Shin H. S., Eda G., Li L. J., Loh K., Zhang H., Nat. Chem., 2013, 5, 263 |
[4] | Ghidiu M., Lukatskaya M. R., Zhao M. Q., Gogotsi Y., Barsoum M. W., Nature, 2014, 516, 78 |
[5] | Lin Y., Williams T. V., Connell J. W., J. Phys. Chem. Lett., 2010, 1, 277 |
[6] | Zhang J., Chen Y., Wang X., Energy Environ. Sci., 2015, 8, 3092 |
[7] | Wang Q., O'Hare D., Chem. Rev., 2012, 112, 4124 |
[8] | Chen Y., Fan Z., Zhang Z., Niu W., Li C., Yang N., Chen B., Zhang H., Chem. Rev., 2018, 118, 6409 |
[9] | Peng Y., Li Y., Ban Y., Jin H., Jiao W., Liu X., Yang W., Science, 2014, 346, 1356 |
[10] | Colson J. W., Woll A. R., Mukherjee A., Levendorf M. P., Spitler E. L., Shields V. B., Spencer M. G., Park J., Dichtel W. R., Science, 2011, 332, 228 |
[11] | Kory M. J., Wörle M., Weber T., Payamyar P., van de Poll S. W., Dshemuchadse J., Trapp N., Schlüter A. D., Nat. Chem., 2014, 6, 779 |
[12] | Li L., Yu Y., Ye G. J., Ge Q., Ou X., Wu H., Feng D., Chen X. H., Zhang Y., Nat. Nanotechnol., 2014, 9, 372 |
[13] | Dou L., Wong A. B., Yu Y., Lai M., Kornienko N., Eaton S. W., Fu A., Bischak C. G., Ma J., Ding T., Ginsberg N. S., Wang L. W., Alivisatos A. P., Yang P., Science, 2015, 349, 1518 |
[14] | Jin H., Guo C., Liu X., Liu J., Vasileff A., Jiao Y., Zheng Y., Qiao S. Z., Chem. Rev., 2018, 118, 6337 |
[15] | Sial M. A. Z. G., Din M. A. U., Wang X., Chem. Soc. Rev., 2018, 47, 6175 |
[16] | Wang X., Weng Q., Yang Y., Bando Y., Golberg D., Chem. Soc. Rev., 2016, 45, 4042 |
[17] | Wang X., Sun G., Lia N., Chen P., Chem. Soc. Rev., 2016, 45, 2239 |
[18] | Xue Y., Zhang Q., Wang W., Cao H., Yang Q., Fu L., Adv. Energy Mater., 2017, 7, 1602684 |
[19] | Tan C., Cao X., Wu X. J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G. H., Sindoro M., Zhang H., Chem. Rev., 2017, 117, 6225 |
[20] | Kumar A., Xu Q., Chem. Nano Mat., 2018, 4, 28 |
[21] | Nicolosi V., Chhowalla M., Kanatzidis M. G., Strano M. S., Coleman J. N., Science, 2013, 340, 1226419 |
[22] | Cai X., Luo Y., Liu B., Cheng H. M., Chem. Soc. Rev., 2018, 47, 6224 |
[23] | Zhang X., Xie Y., Chem. Soc. Rev., 2013, 42, 8187 |
[24] | Sun Y., Gao S., Xie Y., Chem. Soc. Rev., 2014, 43, 530 |
[25] | Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K., Proc. Natl. Acad. Sci., 2005, 102, 10451 |
[26] | Coleman J. N., Lotya M., O'Neill A., Bergin S. D., King P. J., Khan U., Young K., Gaucher A., De S., Smith R. J., Shvets I. V., Arora S. K., Stanton G., Kim H. Y., Lee K., Kim G. T., Duesberg G. S., Hallam T., Boland J. J., Wang J. J., Donegan J. F., Grunlan J. C., Moriarty G., Shmeliov A., Nicholls R. J., Perkins J. M., Grieveson E. M., Theuwissen K., McComb D. W., Nellist P. D., Nicolosi V., Sci-ence, 2011, 331, 568 |
[27] | Huang X., Zeng Z., Zhang H., Chem. Soc. Rev., 2013, 42, 1934 |
[28] | Dong L., Yang J., Chhowalla M., Loh K. P., Chem. Soc. Rev., 2017, 46, 7306 |
[29] | Anasori B., Lukatskaya M. R., Gogotsi Y., Nat. Rev. Mater., 2017, 2, 16098. |
[30] | Dines M. B., Mater. Res. Bull., 1975, 10, 287 |
[31] | Hummers W., Offeman R., J. Am. Chem. Soc., 1958, 80, 1339 |
[32] | Paton K. R., Varrla E., Backes C., Smith R. J., Khan U., O'Neill A., Boland C., Lotya M., Istrate O. M., King P., Higgins T., Barwich S., May P., Puczkarski P., Ahmed I., Moebius M., Pettersson H., Long E., Coelho J., O'Brien S. E., McGuire E. K., Sanchez B. M., Duesberg G. S., McEvoy N., Pennycook T. J., Downing C., Crossley A., Nicolosi V., Coleman J. N., Nat. Mater., 2014, 13, 624 |
[33] | Matsumoto M., Saito Y., Park C., Fukushima T., Aida T., Nat. Chem., 2015, 7, 730 |
[34] | Hernandez Y., Nicolosi V., Lotya M., Blighe F. M., Sun Z. Y., De S., McGovern I. T., Holland B., Byrne M., Gun'ko Y. K., Boland J. J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A. C., Coleman J. N., Nat. Nanotechnol., 2008, 3, 563 |
[35] | Yu J., Li J., Zhang W., Chang H., Chem. Sci., 2015, 6, 6705 |
[36] | Zhang Y., Zhang L., Zhou C., Acc. Chem. Res., 2013, 46, 2329 |
[37] | Ji Q., Zhang Y., Zhang Y., Liu Z., Chem. Soc. Rev., 2015, 44, 2587 |
[38] | Shi Y., Li H., Li L. J., Chem. Soc. Rev., 2015, 44, 2744 |
[39] | Du X., Skachko I., Barker A., Andrei E. Y., Nat. Nanotechnol., 2008, 3, 491 |
[40] | Dawlaty J. M., Shivaraman S., Chandrashekhar M., Rana F., Spencer M. G., Appl. Phys. Lett., 2008, 92, 42116 |
[41] | Balandin A. A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C. N., Nano Lett., 2008, 8, 902 |
[42] | Lee C., Wei X. D., Kysar J. W., Hone J., Science, 2008, 321, 385 |
[43] | Novoselov K. S., ECS Transactions, 2009, 19, 3 |
[44] | Li G., Li Y., Liu H., Guo Y., Li Y., Zhu D., Chem. Commun., 2010, 46, 3256 |
[45] | Dai L., Xue Y., Qu L., Choi H. J., Baek J. B., Chem. Rev., 2015, 115, 4823 |
[46] | Yang C., Dong L., Chen Z., Lu H., J. Phys. Chem. C, 2014, 118, 18884 |
[47] | Navalon S., Dhakshinamoorthy A., Alvaro M., Antonietti M., García H., Chem. Soc. Rev., 2017, 46, 4501 |
[48] | Asefa T., Acc. Chem. Res., 2016, 49, 1873 |
[49] | Wu P., Du P., Zhang H., Cai C., Phys. Chem. Chem. Phys., 2013, 15, 6920 |
[50] | Rani P., Jindal V. K., RSC Adv., 2013, 3, 802 |
[51] | Kong X., Chen Q., Sun Z., ChemPhysChem, 2013, 14, 514 |
[52] | Liang J., Jiao Y., Jaroniec M., Qiao S. Z., Angew. Chem. Int. Ed., 2012, 51, 11496 |
[53] | Wang X., Sun G., Routh P., Kim D. H., Huang W., Chen P., Chem. Soc. Rev., 2014, 43, 7067 |
[54] | Karlicky F., Datta K. K. R., Otyepka M., Zboril R., ACS Nano, 2013, 7, 6434 |
[55] | Jeon I. Y., Choi H. J., Choi M., Seo J. M., Jung S. M., Kim M. J., Zhang S., Zhang L., Xia Z., Dai L., Park N., Baek J. B., Sci. Rep., 2013, 3, 1810 |
[56] | Zhang J., Dai L., Angew. Chem. Int. Ed., 2016, 55, 13296 |
[57] | Georgakilas V., Otyepka M., Bourlinos A. B., Chandra V., Kim N., Kemp K. C., Hobza P., Zboril R., Kim K. S., Chem. Rev., 2012, 112, 6156 |
[58] | Chua C. K., Pumera M., Chem. Soc. Rev., 2013, 42, 3222 |
[59] | Quintana M., Spyrou K., Grzelczak M., Browne W. R., Rudolf P., Prato M., ACS Nano, 2010, 4, 3527 |
[60] | Xu Y., Bai H., Lu G., Li C., Shi G. Q., J. Am. Chem. Soc., 2008, 130, 5856 |
[61] | Yan L., Zheng Y. B., Zhao F., Li S. J., Gao X. F., Xu B. Q., Weiss P. S., Zhao Y. L., Chem. Soc. Rev., 2012, 41, 97 |
[62] | Ambrosi A., Chua C. K., Latiff N. M., Loo A. H., Wong C. H. A., Eng A. Y. S., Bonanni A., Pumera M., Chem. Soc. Rev., 2016, 45, 2458 |
[63] | Gao X., Liu H., Wang D., Zhang J., Chem. Soc. Rev., 2019, 48, 908 |
[64] | Huang C., Li Y., Wang N., Xue Y., Zuo Z., Liu H., Li Y., Chem. Rev., 2018, 118, 7744 |
[65] | Kang B., Shi H., Wu S., Zhao W., Ai H., Lee J. Y., Carbon, 2017, 123, 415 |
[66] | Shang H., Zuo Z., Zheng H., Li K., Tu Z., Yi Y., Liu H., Li Y., Li Y., Nano Energy, 2018, 44, 144 |
[67] | Zhao J., Chen Z., Zhao J., J. Mater. Chem. A, 2019, 7, 4026 |
[68] | Zhang J., Chen G., Müllen K., Feng X., Adv. Mater., 2018, 30, 1800528 |
[69] | Gu J., Magagula S., Zhao J., Chen Z., Small Methods, 2019, 1800550 |
[70] | Das B. K., Sen D., Chattopadhyay K. K., Phys. Chem. Chem. Phys., 2016, 18, 2949 |
[71] | He J., Wang N., Yang Z., Shen X., Wang K., Huang C., Yi Y., Tu Z., Li Y., Energy Environ. Sci., 2018, 11, 2893 |
[72] | Wang N., He J., Tu Z., Yang Z., Zhao F., Li X., Huang C., Wang K., Jiu T., Yi Y., Li Y., Angew. Chem. Int. Ed., 2017, 56, 10740 |
[73] | Farimani A. B., Min K., Aluru N. R., ACS Nano, 2014, 8, 7914 |
[74] | Krasnozhon D., Lembke D., Nyffeler C., Leblebici Y., Kis A., Nano Lett., 2014, 14, 5905 |
[75] | Lv R., Robinson J. A., Schaak R. E., Sun D., Sun Y., Mallouk T. E., Terrones M., Acc. Chem. Res., 2014, 48, 56 |
[76] | Splendiani A., Sun L., Zhang Y. B., Li T. S., Kim J., Chim C. Y., Galli G., Wang F., Nano Lett., 2010, 10, 1271 |
[77] | Voiry D., Mohite A., Chhowalla M., Chem. Soc. Rev., 2015, 44, 2702 |
[78] | Acerce M., Voiry D., Chhowalla M., Nat. Nanotechnol., 2015, 10, 313 |
[79] | Li H., Jia X., Zhang Q., Wang X., Chem., 2018, 4, 1 |
[80] | Gutiérrez H. R., Perea-López N., Elía A. L., Berkdemir A., Wang B., Lv R., López-Urías F., Crespi V. H., Terrones H., Terrones M., Nano Lett., 2013, 13, 3447 |
[81] | Wang Z., Shen Y., Ito Y., Zhang Y., Du J., Fujita T., Hirata A., Tang Z., Chen M., ACS Nano, 2018, 12, 1571 |
[82] | Eda G., Yamaguchi H., Voiry D., Fujita T., Chen M. W., Chhowalla M., Nano Lett., 2011, 11, 5111 |
[83] | Tang H., Wang J., Yin H., Zhao H., Wang D., Tang Z., Adv. Mater., 2015, 27, 1117 |
[84] | Chou S. S., Sai N., Lu P., Coker E. N., Liu S., Artyushkova K., Luk T. S., Kaehr B., Brinker C. J., Nat. Commun., 2015, 6, 8311 |
[85] | Lauritsen J. V., Kibsgaard J., Helveg S., Topsøe H., Clausen B. S., Lægsgaard E., Besenbacher F., Nat. Nanotechnol., 2007, 2, 53 |
[86] | Hu Z., Wu Z., Han C., He J., Ni Z., Chen W., Chem. Soc. Rev., 2018, 47, 3100 |
[87] | Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M. W., Adv. Mater., 2011, 23, 4248 |
[88] | Chaudhari N. K., Jin H., Kim B., San Baek D., Joo S. H., Lee K., J. Mater. Chem. A, 2017, 5, 24564 |
[89] | Xiong D., Li X., Bai Z., Lu S., Small, 2018, 14, 1703419 |
[90] | Lukatskaya M. R., Mashtalir O., Ren C. E., Dall'Agnese Y., Rozier P., Taberna P. L., Naguib M., Simon P., Barsoum M. W., Gogotsi Y., Science, 2013, 341, 1502. |
[91] | Ng V. M. H., Huang H., Zhou K., Lee P. S., Que W., Xu J. Z., Kong L. B., J. Mater. Chem. A, 2017, 5, 3039 |
[92] | Naguib M., Mochalin V. N., Barsoum M. W., Gogotsi Y., Adv. Mater., 2014, 26, 992 |
[93] | Chen K., Xue D., Chem. Rec., 2018, 18, 282 |
[94] | Chen K., Xue D., Nanotechnology, 2017, 29, 024003. |
[95] | Chen K., Xue D., Scientia Sinica Technologica, 2018, 49, 175 |
[96] | Chen K., Xue D., Funct. Mater. Lett., 2019, 12, 1830005 |
[97] | Simon P., Gogotsi Y., Nat. Mater., 2008, 7, 845 |
[98] | Wang F., Wu X., Yuan X., Liu Z., Zhang Y., Fu L., Zhu Y., Zhou Q., Wu Y., Huang W., Chem. Soc. Rev., 2017, 46, 6816 |
[99] | Hu Y., Zhao Y., Li Y., Li H., Qu L., Xie X., Dai L. M., Chem. Res. Chinese Universities, 2012, 28(2), 302 |
[100] | Pachfule P., Shinde D., Majumder M., Xu Q., Nat. Chem., 2016, 8, 718 |
[101] | Liang Z., Zhao R., Qiu T., Zou R., Xu Q., Energy Chem., 2019, 1, 100001 |
[102] | Liang X., Chen K., Xue D., Adv. Energy Mater., 2018, 8, 1703329 |
[103] | Yu X., Yun S., Yeon J. S., Bhattacharya P., Wang L., Woo L. S., Hu X., Park H. S., Adv. Energy Mater., 2018, 8, 1702930 |
[104] | Wang Y., Song Y., Xia Y., Chem. Soc. Rev., 2016, 45, 5925 |
[105] | Yang C., Chen Z., Shakir I., Xu Y., Lu H., Nano Res., 2016, 9, 951 |
[106] | Zhang Q. F., Uchaker E., Candelaria S. L., Cao G. Z., Chem. Soc. Rev., 2013, 42, 3127 |
[107] | Yu G., Xie X., Pan L., Bao Z., Cui Y., Nano Energy, 2013, 2, 213 |
[108] | Hu C., Song L., Zhang Z., Chen N., Feng Z., Qu L., Energy Environ. Sci., 2015, 8, 31 |
[109] | Zhang C., Lv W., Tao Y., Yang Q. H., Energy Environ. Sci., 2015, 8, 1390 |
[110] | Wang H., Wu Y., Yuan X., Zeng G., Zhou J., Wang X., Chew J. W., Adv. Mater., 2018, 30, 1704561 |
[111] | Kong L. B., Zhang J., Cai J. J., Yang Z. S., Luo Y. C., Kang L., Chem. Res. Chinese Universities, 2011, 27(2), 295 |
[112] | Wang H., Shi X., Shi Y., Zhang W., Yao S., Chem. Res. Chinese Universities, 2017, 33(4), 638 |
[113] | Brezesinski T., Wang J., Tolbert S. H., Dunn B., Nat. Mater., 2010, 9, 146 |
[114] | Augustyn V., Come J., Lowe M. A., Kim J. W., Taberna P. L., Tolbert S. H., Abrua H. D., Simon P., Dunn B., Nat. Mater., 2013, 12, 518 |
[115] | Xia J., Chen F., Li J., Tao N., Nat. Nanotechnol., 2009, 4, 505 |
[116] | Xu P., Kang J., Choi J. B., Suhr J., Yu J., Li F., Byun J. H., Kim B. S., Chou T. W., ACS Nano, 2014, 8, 9437 |
[117] | Zhu Y., Murali S., Stoller M. D., Ganesh K. J., Cai W., Ferreira P. J., Pirkle A., Wallace R. M., Cychosz K. A., Thommes M., Su D., Stach E. A., Ruoff R. S., Science, 2011, 332, 1537 |
[118] | Cui C., Qian W., Yu Y., Kong C., Yu B., Xiang L., Wei F., J. Am. Chem. Soc., 2014, 136, 2256 |
[119] | Zhang W., Xu C., Ma C., Li G., Wang Y., Zhang K., Li F., Liu C., Cheng H. M., Du Y., Tang N., Ren W., Adv. Mater., 2017, 29, 1701677 |
[120] | Zhao Y., Hu C., Hu Y., Cheng H., Shi G., Qu L., Angew. Chem. Int. Ed., 2012, 51, 11371 |
[121] | Yan J., Wang Q., Wei T., Jiang L., Zhang M., Jing X., Fan Z., ACS Nano, 2014, 8, 4720 |
[122] | Wang T., Wang L. X., Wu D. L., Xia W., Jia D. Z., Sci. Rep., 2015, 5, 9591 |
[123] | Okubo M., Sugahara A., Kajiyama S., Yamada A., Acc. Chem. Res., 2018, 51, 591 |
[124] | Salanne M., Rotenberg B., Naoi K., Kaneko K., Taberna P. L., Grey C. P., Dunn B., Simon P., Nat. Energy, 2016, 1, 16070 |
[125] | Dall'Agnese Y., Lukatskaya M. R., Cook K. M., Taberna P. L., Gogotsi Y., Simon P., Electrochem. Commun., 2014, 48, 118 |
[126] | Wen Y., Rufford T. E., Chen X., Li N., Lyu M., Dai L., Wang L., Nano Energy, 2017, 38, 368 |
[127] | Yoon Y., Lee M., Kim S. K., Bae G., Song W., Myung S., Lim J., Lee S. S., Zyung T., An K. S., Adv. Energy Mater., 2018, 1703173 |
[128] | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I. B., Nørskov J. K., Jaramillo T. F., Science, 2017, 355, eaad4998 |
[129] | Borup R., Meyers J., Pivovar B., Kim Y. S., Mukundan R., Garland N., Myers D., Wilson M., Garzon F., Wood D., Zelenay P., More K., Stroh K., Zawodzinski T., Boncella J., McGrath J. E., Inaba M., Miyatake K., Hori M., Ota K., Ogumi Z., Miyata S., Nishikata A., Siroma Z., Uchimoto Y., Yasuda K., Kimijima K. I., Iwashita N., Chem. Rev., 2007, 107, 3904 |
[130] | Qu L., Liu Y., Baek J. B., Dai L., ACS Nano, 2010, 4, 1321 |
[131] | Ito Y., Qiu H. J., Fujita T., Tanabe Y., Tanigaki K., Chen M., Adv. Mater., 2014, 26, 4145 |
[132] | Yang Z., Yao Z., Li G., Fang G., Nie H., Liu Z., Zhou X., Chen X., Huang S., ACS Nano, 2012, 6, 205 |
[133] | Zhang X., Lu Z., Fu Z., Tang Y., Ma D., Yang Z., J. Power Sources, 2015, 276, 222 |
[134] | Sheng Z. H., Gao H. L., Bao W. J., Wang F. B., Xia X. H., J. Mater. Chem., 2012, 22, 390 |
[135] | Wu J., Rodrigues M. T. F., Vajtai R., Ajayan P. M., Adv. Mater., 2016, 28, 6239 |
[136] | Chai G. L., Qiu K., Qiao M., Titirici M. M., Shang C., Guo Z., Energy Environ. Sci., 2017, 10, 1186 |
[137] | Kang B., Lee J. Y., J. Phys. Chem. C, 2014, 118, 12035 |
[138] | Kang B., Wu S., Ma J., Ai H., Lee, J. Y., Nanoscale, 2019, 11, 16599 |
[139] | Wang N., He J., Wang K., Zhao Y., Jiu T., Huang C., Li Y., Adv. Mater., 2019, 1803202 |
[140] | Lv Q., Si W., Yang Z., Wang N., Tu Z., Yi Y., Huang C., Jiang L., Zhang M., He J., Long Y., ACS Appl. Mater. Interfaces, 2017, 9, 29744 |
[141] | Zhao Y., Tang H., Yang N., Wang D., Adv. Sci., 2018, 5, 1800959 |
[142] | Yu H., Xue Y., Li Y., Adv. Mater., 2019, 1803101 |
[143] | Zhao Y., Wan J., Yao H., Zhang L., Lin K., Wang L., Yang N., Liu D., Song L., Zhu J., Gu L., Liu L., Zhao H., Li Y., Wang D., Nat. Chem., 2018, 10, 924 |
[144] | Feng Z., Ma Y., Li Y., Li R., Liu J., Li H., Tang Y., Dai X., J. Phys.:Condens. Matter, 2019, 31, 465201 |
[145] | Lv Q., Si W., He J., Sun L., Zhang C., Wang N.,Yang Z., Li X., Wang X., Deng W., Long Y., Huang C., Li Y., Nat. Commun., 2018, 9, 3376 |
[146] | Zhang S., Cai Y., He H., Zhang Y., Liu R., Cao H., Wang M., Liu J., Zhang G., Li Y., Liu H., Li B., J. Mater. Chem. A, 2016, 4, 4738 |
[147] | Zhang X., Shi S., Gu T., Li L., Yu S., Phys. Chem. Chem. Phys., 2018, 20, 18184 |
[148] | Huang H., Feng X., Du C., Song W., Chem. Commun., 2015, 51, 7903 |
[149] | Huang H., Feng X., Du C., Song W., J. Mater. Chem. A, 2015, 3, 16050 |
[150] | Zhang H., Tian Y., Zhao J., Cai Q., Chen Z., Electrochim. Acta, 2017, 225, 543 |
[151] | Chua X. J., Luxa J., Eng A. Y. S., Tan S. M., Sofer Z., Pumera M., ACS Catal., 2016, 6, 5724 |
[152] | Eng A. Y. S., Ambrosi A., Sofer Z., Simek P., Pumera M., ACS Nano, 2014, 8, 12185 |
[153] | Jiao Y., Zheng Y., Jaroniec M., Qiao S. Z., Chem. Soc. Rev., 2015, 44, 2060 |
[154] | Nørskov J. K., Bligaard T., Logadottir A., Kitchin J. R., Chen J. G., Pandelov S., Stimming U., J. Electrochem. Soc., 2005, 152, J23 |
[155] | Strmcnik D., Uchimura M., Wang C., Subbaraman R., Danilovic N., van der Vliet D., Paulikas A. P., Stamenkovic V. R., Markovic N. M., Nat. Chem., 2013, 5, 300 |
[156] | Zheng Y., Jiao Y., Li L. H., Xing T., Chen Y., Jaroniec M., Qiao S. Z., ACS Nano, 2014, 8, 5290 |
[157] | Jiao Y., Zheng Y., Davey K., Qiao S. Z., Nat. Energy, 2016, 1, 16130 |
[158] | Ito Y., Cong W., Fujita T., Tang Z., Chen M., Angew. Chem. Int. Ed., 2014, 54, 2131 |
[159] | Hinnemann B., Moses P. G., Bonde J., Jørgensen K. P., Nielsen J. H., Horch S., Chorkendorff I., Nørskov J. K., J. Am. Chem. Soc., 2005, 127, 5308 |
[160] | Tsai C., Chan K., Abild-Pedersen F., Norskov J. K., Phys. Chem. Chem. Phys., 2014, 16, 13156 |
[161] | Fan X. L., Yang Y., Xiao P., Lau W. M., J. Mater. Chem. A, 2014, 2, 20545 |
[162] | Voiry D., Salehi M., Silva R., Fujita T., Chen M., Asefa T., Shenoy V. B., Eda G., Chhowalla M., Nano Lett., 2013, 13, 6222 |
[163] | Yin Y., Han J., Zhang Y., Zhang X., Xu P., Yuan Q., Samad L., Wang X., Wang Y., Zhang Z., Zhang P., Cao X., Song B., Jin S., J. Am. Chem. Soc., 2016, 138, 7965 |
[164] | Yu Y. F., Nam G. H., Wu X. J., Zhang K., Yang Z. Z., Chen J. Z., Ma Q. L., Ran F. R., Wang X. Z., Li H., Huang X., Xiong Q. H., Zhang Q., Gu L., Huang W., Zhang H., Nat. Chem., 2018, 10, 638 |
[1] | ZHENG Xuelian, LIU Ling, YANG Cuicui, HE Yuanyuan, CHEN Jiu, TIAN Wei Quan. Modulation of the Second Order Nonlinear Optical Properties of Helical Graphene Nanoribbons Through Introducing Azulene Defects or/and BN Units[J]. 高等学校化学研究, 2022, 38(4): 974-984. |
[2] | ZHU Junlun, CUI Qian, WEN Wei, ZHANG Xiuhua, WANG Shengfu. Cu/CuO-Graphene Foam with Laccase-like Activity for Identification of Phenolic Compounds and Detection of Epinephrine[J]. 高等学校化学研究, 2022, 38(4): 919-927. |
[3] | GAO Wei, LI Yufeng, ZHAO Jitao, ZHANG Zhe, TANG Weiwei, WANG Jun, WU Zhenyu, LI Zhenyu. Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor[J]. 高等学校化学研究, 2022, 38(4): 1097-1104. |
[4] | LAN Weifei, HU Ruifeng, HUANG Danrong, DONG Xu, SHEN Gangyi, CHANG Shan, DAI Dongsheng. Palladium Nanoparticles/Graphdiyne Oxide Nanocomposite with Excellent Peroxidase-like Activity and Its Application for Glutathione Detection[J]. 高等学校化学研究, 2022, 38(2): 529-534. |
[5] | Hakan, AHAL, Gülben TORĞUT, Erdal CANPOLAT. Optimization of Electrical Conductivity of SA-graphene Nanocomposites Using Response Surface Methodology[J]. 高等学校化学研究, 2022, 38(2): 596-602. |
[6] | CHEN Kaichun, ZHENG Xuelian, YANG Cuicui, TIAN Wei Quan, LI Weiqi, YANG Ling. Theoretical Studies on the Electronic Structure of Nano-graphenes for Applications in Nonlinear Optics[J]. 高等学校化学研究, 2022, 38(2): 579-587. |
[7] | ZHENG Zhiqiang, HE Feng, XUE Yurui, LI Yuliang. Loading Nickel Atoms on GDY for Efficient CO2 Fixation and Conversion[J]. 高等学校化学研究, 2022, 38(1): 92-98. |
[8] | LI Xiaodan, GUO Mengyu, CHEN Chunying. Graphdiyne: from Preparation to Biomedical Applications[J]. 高等学校化学研究, 2021, 37(6): 1176-1194. |
[9] | HU Guilin, HE Jingyi, LI Yongjun. Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry[J]. 高等学校化学研究, 2021, 37(6): 1195-1212. |
[10] | MAN Yixiao, ZHAO Jinyu, LIU Shipeng, PAN Qingyan, ZHAO Yingjie. Heteroatom Doped Graphdiyne and Analogues: Synthesis, Structures and Applications[J]. 高等学校化学研究, 2021, 37(6): 1213-1223. |
[11] | SONG Congying, LI Guoxing. Graphdiyne: A Versatile Material in Electrochemical Energy Conversion and Storage[J]. 高等学校化学研究, 2021, 37(6): 1224-1241. |
[12] | WONG Hon Ho, SUN Mingzi, HUANG Bolong. Synergistic Effect of Graphdiyne-based Electrocatalysts[J]. 高等学校化学研究, 2021, 37(6): 1242-1256. |
[13] | LI Ru, ZHANG Mingjia, LI Xiaodong, MA Xiaodi, HUANG Changshui. Study of Graphdiyne-based Magnetic Materials[J]. 高等学校化学研究, 2021, 37(6): 1257-1267. |
[14] | LI Liang, ZUO Zicheng, HE Feng, JIANG Zhongqing, LI Yuliang. Nitrogen-rich Graphdiyne Film for Efficiently Suppressing the Methanol Crossover in Direct Methanol Fuel Cells[J]. 高等学校化学研究, 2021, 37(6): 1275-1282. |
[15] | LI Meiping, WANG Kaihang, LV Qing. N,P-co-Doped Graphdiyne as Efficient Metal-free Catalysts for Oxygen Reduction Reaction[J]. 高等学校化学研究, 2021, 37(6): 1283-1288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||