高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (1): 24-32.doi: 10.1007/s40242-020-9103-8
ZHU Xiaobo1, Tobias Schulli1,2, WANG Lianzhou1
收稿日期:
2019-12-20
修回日期:
2020-01-02
出版日期:
2020-02-01
发布日期:
2020-01-03
通讯作者:
WANG Lianzhou
E-mail:l.wang@uq.edu.au
基金资助:
ZHU Xiaobo1, Tobias Schulli1,2, WANG Lianzhou1
Received:
2019-12-20
Revised:
2020-01-02
Online:
2020-02-01
Published:
2020-01-03
Contact:
WANG Lianzhou
E-mail:l.wang@uq.edu.au
Supported by:
摘要: The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage. Despite more than ten years of research, high-voltage cathode mate-rials, such as high-voltage layered oxides, spinel LiNi0.5Mn1.5O4, and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes, cathode materials, and cathode electrolyte interphases under high-voltage operation. This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials. The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.
ZHU Xiaobo, Tobias Schulli, WANG Lianzhou. Stabilizing High-voltage Cathode Materials for Next-generation Li-ion Batteries[J]. 高等学校化学研究, 2020, 36(1): 24-32.
ZHU Xiaobo, Tobias Schulli, WANG Lianzhou. Stabilizing High-voltage Cathode Materials for Next-generation Li-ion Batteries[J]. Chemical Research in Chinese Universities, 2020, 36(1): 24-32.
[1] | Akira Y., Angew. Chem. Int. Ed., 2012, 51(24), 5798 |
[2] | Wang J., Tang H., Zhang L., Ren H., Yu R., Jin Q., Qi J., Mao D., Yang M., Wang Y., Liu P., Zhang Y., Wen Y., Gu L., Ma G., Su Z., Tang Z., Zhao H., Wang D., Nat. Energy, 2016, 1, 16050 |
[3] | Zhang J. N., Li Q., Ouyang C., Yu X., Ge M., Huang X., Hu E., Ma C., L, S., Xiao R., Yang W., Chu Y., Liu Y., Yu H., Yang X.Q., Huang X., Chen L., Li H., Nat. Energy, 2019, 4(7), 594 |
[4] | Liu Q., Su X., Lei D., Qin Y., Wen J., Guo F., Wu Y. A., Rong Y., Kou R., Xiao X., Aguesse F., Bareño J., Ren Y., Lu W., Li Y., Nat. Energy, 2018, 3(11), 936 |
[5] | Zhang J., Zhang J., Ou X., Wan C., Peng C., Zhang B., ACS Appl. Mater. Interfaces, 2019, 11(17), 15507 |
[6] | Thackeray M. M., Johnson C. S., Vaughey J. T., Li N., Hackney S. A., J. Mater. Chem., 2005, 15(23), 2257 |
[7] | Nayak P. K., Erickson E. M., Schipper F., Penki T. R., Muni-chandraiah N., Adelhelm P., Sclar H., Amalraj F., Markovsky B., Aurbac D., Adv. Energy Mater., 2018, 8(8), 1702397 |
[8] | Zhu X., Li X., Zhu Y., Jin S., Wang Y., Qian Y., Electrochim. Acta, 2014, 121, 253 |
[9] | Zhu X., Sun D., Luo B., Hu Y., Wang L., Electrochim. Acta, 2018, 284, 30 |
[10] | Zhu X., Li X., Zhu Y., Jin S., Wang Y., Qian Y., J. Power Sources, 2014, 261, 93 |
[11] | Okada S., Sawa S., Egashira M., Yamaki J. I., Tabuchi M., Kageyama H., Konishi T., Yoshino A., J. Power Sources, 2001, 97/98, 430 |
[12] | Li W., Song B., Manthiram A., Chem. Soc. Rev., 2017, 46(10), 3006 |
[13] | Zhan C., Wu T., Lu J., Amine K., Energy Environ. Sci., 2018, 11(2), 243 |
[14] | Birkl C. R., Roberts M. R., McTurk E., Bruce P. G., Howey D. A., J. Power Sources, 2017, 341, 373 |
[15] | Yi T. F., Mei J., Zhu Y. R., J. Power Sources, 2016, 316, 85 |
[16] | Xu X., Deng S., Wang H., Liu J., Yan H., Nano-Micro Letters, 2017, 9(2), 22 |
[17] | Zeng X., Zhan C., Lu J., Amine K., Chem., 2018, 4(4), 690 |
[18] | Lee W., Muhammad S., Sergey C., Lee H., Yoon J., Kang Y. M., Yoon W. S., Angew. Chem. Int. Ed., 2019, doi:10.1002/anie.201902359, https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201902359 |
[19] | Cho J., Kim Y. J., Park B., Chem. Mater., 2000, 12(12), 3788 |
[20] | Wise A. M., Ban C., Weker J. N., Misra S., Cavanagh A. S., Wu Z., Li Z., Whittingham M. S., Xu K., George S. M., Toney M. F., Chem. Mater., 2015, 27(17), 6146 |
[21] | Kim J. W., Kim D. H., Oh D. Y., Lee H., Kim J. H., Lee J. H., Jung Y. S., J. Power Sources, 2015, 274, 1254 |
[22] | Chen Y., Zhang Y., Chen B., Wang Z., Lu C., J. Power Sources, 2014, 256, 20 |
[23] | Liu K., Yang G. L., Dong Y., Shi T., Chen L., J. Power Sources, 2015, 281, 370 |
[24] | Gao Y., Patel R. L., Shen K.Y., Wang X., Axelbaum R. L., Liang X., ACS Omega, 2018, 3(1), 906 |
[25] | Chen Z., Dahn J. R., Electrochem. Solid-State Lett., 2002, 5(10), A213 |
[26] | Wu H. M., Belharouak I., Abouimrane A., Sun Y. K., Amine K., J. Power Sources, 2010, 195(9), 2909 |
[27] | Sun Y. K., Lee Y. S., Yoshio M., Amine K., Electrochem. Solid-State Lett., 2002, 5(5), A99 |
[28] | Mou J., Deng Y., He L., Zheng Q., Jiang N., Lin D., Electrochim. Acta, 2018, 260, 101 |
[29] | Lu Y. C., Mansou A. N., Yabuuchi N., Shao-Horn Y., Chem. Mater., 2009, 21(19), 4408 |
[30] | Cho J., Kim Y. W., Kim B., Lee J. G., Park B., Angew. Chem. Int. Ed., 2003, 42(14), 1618 |
[31] | Xiao B., Liu J., Sun Q., Wang B., Banis M. N., Zhao D., Wang Z., Li R., Cui X., Sham T. K., Sun X., Adv. Sci., 2015, 2(5), 1500022 |
[32] | Bai Y., Chang Q., Yu Q., Zhao S., Jiang K., Electrochim. Acta, 2013, 112, 414 |
[33] | Zhang D., Hu L. L., Sun Y. G., Piao J. Y., Tao X. S., Xu Y. S., Cao A. M., Wan L. J., J. Mater. Chem. A, 2018, 6(19), 8992 |
[34] | Park B. C., Kim H. B., Myung S. T., Amine K., Belharouak I., Lee S. M., Sun Y. K., J. Power Sources, 2008, 178(2), 826 |
[35] | Wu Q., Zhang X., Sun S., Wan N., Pan D., Bai Y., Zhu H., Hu Y. S., Dai S., Nanoscale, 2015, 7(38), 15609 |
[36] | Lu C., Wu H., Zhang Y., Liu H., Chen B., Wu N., Wang S., J. Power Sources, 2014, 267, 682 |
[37] | Xiong X., Wang Z., Guo H., Zhang Q., Li X., J. Mater. Chem. A, 2013, 1(4), 1284 |
[38] | He H., Zan L., Zhang Y., J. Alloys Compd., 2016, 680, 95 |
[39] | Xiong X., Wang Z., Yan G., Guo H., Li X., J. Power Sources, 2014, 245, 183 |
[40] | Wang J., Yao S., Lin W., Wu B., He X., Li J., Zhao J., J. Power Sources, 2015, 280, 114 |
[41] | Chong J., Xun S., Song X., Liu G., Battaglia V. S., Nano Energy, 2013, 2(2), 283 |
[42] | Chong J., Xun S., Zhang J., Song X., Xie H., Battaglia V., Wang R., Chem. Eur. J., 2014, 20(24), 7479 |
[43] | Lu J., Peng Q., Wang W., Nan C., Li L., Li Y., J. Am. Chem. Soc., 2013, 135(5), 1649 |
[44] | Zhang J., Li Z., Gao R., Hu Z., Liu X., J. Phys. Chem. C, 2015, 119(35), 20350 |
[45] | Mou J., Deng Y., Song Z., Zheng Q., Lam K. H., Lin D., Dalton Trans., 2018, 47(20), 7020 |
[46] | Zhao E., Chen M., Hu Z., Chen D., Yang L., Xiao X., J. Power Sources, 2017, 343, 345 |
[47] | Li J., Zhu Y., Wang L., Cao C., ACS Appl. Mater. Interfaces, 2014, 6(21), 18742 |
[48] | Fu J., Mu D., Wu B., Bi J., Cui H., Yang H., Wu H., Wu F., ACS Appl. Mater. Interfaces, 2018, 10(23), 19704 |
[49] | Kim H., Byun D., Chang W., Jung H., J. Mater. Chem. A, 2017, 5(47), 25077 |
[50] | Gabrielli G., Axmann P., Diemant T., Behm R. J., Wohlfahrt-Mehrens M., ChemSusChem, 2016, 9(13), 1670 |
[51] | Zhao R., Li L., Xu T., Wang D., Pan D., He G., Zhao H., Bai Y., ACS Appl. Mater. Interfaces, 2019, 11(17), 16233 |
[52] | Shim J. H., Han J. M., Lee S., ACS Appl. Mater. Interfaces, 2016, 8(19), 12205 |
[53] | Yang Q., Huang J., Li Y., Wang Y., Qiu J., Zhang J., Yu H., Yu X., Li H., Chen L., J. Power Sources, 2018, 388, 65 |
[54] | Deng Y. F., Zhao S. X., Xu Y.H., Nan C. W., J. Power Sources, 2015, 296, 261 |
[55] | Li L., Zhao R., Xu T., Wang D., Pan D., Zhang K., Yu C., Lu X., He G., Bai Y., Nanoscale, 2019, 11(18), 8967 |
[56] | Liang J. Y., Zeng X. X., Zhang X. D., Wang P. F., Ma J. Y., Yin Y. X., Wu X. W., Guo Y. G., Wan L. J., J. Am. Chem. Soc., 2018, 140(22), 6767 |
[57] | Li F., Li J., Zhu F., Liu T., Xu B., Kim T. H., Kramer M. J., Ma C., Zhou L., Nan C. W., Matter, 2019, 1(4), 1001 |
[58] | Aravindan V., Gnanaraj J., Lee Y. S., Madhavi S., J. Mater. Chem. A, 2013, 1(11), 3518 |
[59] | Li H. H., Jin J., Wei J. P., Zhou Z., Yan J., Electrochem. Commun., 2009, 11(1), 95 |
[60] | Gao X. W., Deng Y. F., Wexler D., Chen G. H., Chou S. L., Liu H. K., Shi Z. C., Wang J. Z., J. Mater. Chem. A, 2015, 3(1), 404 |
[61] | Gao X. W., Wang J. Z., Chou S. L., Liu H. K., J. Power Sources, 2012, 220, 47 |
[62] | Kwon Y., Lee Y., Kim S. O., Kim H. S., Kim K. J., Byun D., Choi W., ACS Appl. Mater. Interfaces, 2018, 10(35), 29457 |
[63] | Liu J., Chen Y., Xu J., Sun W., Zheng C., Li Y., RSC Adv., 2019, 9(6), 3081 |
[64] | Gao H., Zeng X., Hu Y., Tileli V., Li L., Ren Y., Meng X., Maglia F., Lamp P., Kim S. J., Amine K., Chen Z., ACS Applied Energy Mater., 2018, 1(5), 2254 |
[65] | Zhao Y., Li J., Dahn J. R., Chem. Mater., 2017, 29(12), 5239 |
[66] | Piao J. Y., Duan S. Y., Li X. J., Tao X. S., Xu Y. S., Cao A. M., Wan L. J., Chem. Commun., 2018, 54(42), 5326 |
[67] | Piao J. Y., Gu L., Wei Z., Ma J., Wu J., Yang W., Gong Y., Sun Y. G., Duan S. Y., Tao X. S., Bin D. S., Cao A. M., Wan L. J., J. Am. Chem. Soc., 2019, 141(12), 4900 |
[68] | Piao J. Y., Sun Y. G., Duan S. Y., Cao A. M., Wang X. L., Xiao R. J., Yu X. Q., Gong Y., Gu L., Li Y., Liu Z. J., Peng Z. Q., Qiao R. M., Yang W. L., Yang X. Q., Goodenough J. B., Wan L. J., Chem., 2018, 4(7), 1685 |
[69] | Lim J. M., Oh R. G., Kim D., Cho W., Cho K., Cho M., Park M. S., ChemSusChem, 2016, 9(20), 2967 |
[70] | Zheng H., Yang R., Liu G., Song X., Battaglia V. S., J. Phys. Chem. C, 2012, 116(7), 4875 |
[71] | Koo B., Kim H., Cho Y., Lee K. T., Choi N. S., Cho J., Angew. Chem. Int. Ed., 2012, 51(35), 8762 |
[72] | Cai Z. P., Liang Y., Li W. S., Xing L. D., Liao Y. H., J. Power Sources, 2009, 189(1), 547 |
[73] | Park J. K., Principles and Applications of Lithium Secondary Bat-teries, John Wiley & Sons, Weinheim, 2012 |
[74] | Choi J., Ryou M. H., Son B., Song J., Park J. K., Cho K. Y., Lee Y. M., Journal of Power Sources, 2014, 252, 138 |
[75] | Pieczonka N. P. W., Borgel V., Ziv B., Leifer N., Dargel V., Aurbach D., Kim J. H., Liu Z., Huang X., Krachkovskiy S. A., Goward G. R., Halalay I., Powell B. R., Manthiram A., Adv. Energy Mater., 2015, 5(23), 1501008 |
[76] | Zhang T., Li J. T., Liu J., Deng Y. P., Wu Z. G., Yin Z. W., Guo D., Huang L., Sun S. G., Chem. Commun., 2016, 52(25), 4683 |
[77] | Zhang S. J., Deng Y. P., Wu Q. H., Zhou Y., Li, J. T., Wu Z. Y., Yin Z. W., Lu Y. Q., Shen C. H., Huang L., Sun S. G., ChemElectroChem, 2018, 5(9), 1321 |
[78] | Zhang S., Gu H., Pan H., Yang S., Du W., Li X., Gao M., Liu Y., Zhu M., Ouyang L., Jian D., Pan F., Adv. Energy Mater., 2017, 7(6), 1601066 |
[79] | Pham H. Q., Kim G., Jung H. M., Song S. W., Adv. Funct. Mater., 2018, 28(2), 1704690 |
[80] | Hitomi S., Kubota K., Horiba T., Hida K., Matsuyama T., Oji H., Yasuno S., Komaba S., ChemElectroChem, 2019, 6(19), 5070 |
[81] | Li G., Liao Y., He Z., Zhou H., Xu N., Lu Y., Sun G., Li W., Elec-trochim. Acta, 2019, 319, 527 |
[82] | Dong T., Zhang H., Ma Y., Zhang J., Du X., Lu C., Shangguan X., Li J., Zhang M., Yang J., Zhou X., Cui G., J. Mater. Chem. A, 2019, 7(42), 24594 |
[83] | Ma Y., Chen K., Ma J., Xu G., Dong S., Chen B., Li J., Chen Z., Zhou X., Cui G., Energy Environ. Sci., 2019, 12(1), 273 |
[84] | Vetter J., Novák P., Wagner M. R., Veit C., Möller K. C., Besenhard J. O., Winter M., Wohlfahrt-Mehrens M., Vogler C., Hammouche A., J. Power Sources, 2005, 147(1), 269 |
[85] | Solchenbach S., Metzger M., Egawa M., Beyer H., Gasteiger H. A., J. Electrochem. Soc., 2018, 165(13), A3022 |
[86] | Gnanaraj J. S., Zinigrad E., Asraf L., Gottlieb H. E., Sprecher M., Schmidt M., Geissler W., Aurbach D., J. Electrochem. Soc., 2003, 150(11), A1533 |
[87] | Xu M., Zhou L., Dong Y., Chen Y., Demeaux J., MacIntosh A. D., Garsuch A., Lucht B. L., Energy Environ. Sci., 2016, 9(4), 1308 |
[88] | Haregewoin A. M., Wotango A. S., Hwang B. J., Energy Environ. Sci., 2016, 9(6), 1955 |
[89] | Zhao H., Yu X., Li J., Li B., Shao H., Li L., Deng Y., J. Mater. Chem. A, 2019, 7(15), 8700 |
[90] | Xu G., Wang X., Li J., Shangguan X., Huang S., Lu D., Chen B., Ma J., Dong S., Zhou X., Kong Q., Cui G., Chem. Mater., 2018, 30(22), 8291 |
[91] | Liu J., Song X., Zhou L., Wang S., Song W., Liu W., Long H., Zhou L., Wu H., Feng C., Guo Z., Nano Energy, 2018, 46, 404 |
[92] | von Aspern N., Diddens D., Kobayashi T., Börner M., Stubbmann-Kazakova O., Kozel V., Röschenthaler G. V., Smiatek J., Winter M., Cekic-Laskovic I., ACS Appl. Mater. Interfaces, 2019, 11(18), 16605 |
[93] | Xu M., Zhou L., Dong Y., Chen Y., Garsuch A., Lucht B. L., J. Electrochem. Soc., 2013, 160(11), A2005 |
[94] | Yang L., Markmaitree T., Lucht B. L., J. Power Sources, 2011, 196(4), 2251 |
[95] | Li Y., Wan S., Veith G. M., Unocic R. R., Paranthaman M. P., Dai S., Sun X. G., Adv. Energy Mater., 2017, 7(4), 1601397 |
[96] | Hong S., Hong B., Song W., Qin Z., Duan B., Lai Y., Jian, F., J. Electrochem. Soc., 2018, 165(2), A368 |
[97] | Xu G., Pang C., Chen B., Ma J., Wang X., Chai J., Wang Q., An W., Zhou X., Cui G., Chen L., Adv. Energy Mater., 2018, 8(9), 1701398 |
[98] | Lan J., Zheng Q., Zhou H., Li J., Xing L., Xu K., Fan W., Yu L., Li W., ACS Appl. Mater. Interfaces, 2019, 11(32), 28841 |
[99] | Lee T. J., Soon J., Chae S., Ryu J. H., Oh S. M., ACS Appl. Mater. Interfaces, 2019, 11(12), 11306 |
[100] | Han J. G., Jeong M. Y., Kim K., Park C., Sung C. H., Bak D. W., Kim K. H., Jeong K. M., Choi N. S., J. Power Sources, 2020, 446, 227366 |
[101] | Wang J., Yamada Y., Sodeyama K., Chiang C. H., Tateyama Y., Yamada A., Nat. Commun., 2016, 7(1), 12032 |
[102] | Doi T., Shimizu Y., Matsumoto R., Hashinokuchi M., Inaba M., ChemistrySelect, 2017, 2(28), 8824 |
[103] | Qiao Y., He Y., Jiang K., Liu Y., Li X., Jia M., Guo S., Zhou H., Adv. Energy Mater., 2018, 8(33), 1802322 |
[104] | Gao X., Wu F., Mariani A., Passerini S., ChemSusChem, 2019, 12(18), 4185 |
[105] | Li J., Ma C., Chi M., Liang C., Dudney N. J., Adv. Energy Mater., 2015, 5(4), 1401408 |
[106] | Chen S., Wen K., Fan J., Bando Y., Golberg D., J. Mater. Chem. A, 2018, 6(25), 11631 |
[1] | HOU Wenhui, OU Yu and LIU Kai. Progress on High Voltage PEO-based Polymer Solid Electrolytes in Lithium Batteries[J]. 高等学校化学研究, 2022, 38(3): 735-743. |
[2] | ZHU Ruonan, WANG Jun, LI Jie. Li4Mn5O12Cathode for Both 3 V and 4 V Lithium-ion Batteries[J]. 高等学校化学研究, 2021, 37(5): 1031-1043. |
[3] | HOU Baoxiu, MA Linlin, ZANG Xiaohuan, SHANG Ningzhao, SONG Jianmin, ZHAO Xiaoxian, WANG Chun, QI Jian, WANG Jiangyan, YU Ranbo. Design and Construction of 3D Porous Na3V2(PO4)3/C as High Performance Cathode for Sodium Ion Batteries[J]. 高等学校化学研究, 2021, 37(2): 265-273. |
[4] | CHEN Chaoxian, ZHAO Chenyang, LI Cuihua, LIU Jianhong, GUI Dayong. Porous NiCo2O4 Nanowire Arrays as Supercapacitor Electrode Materials with Extremely High Cycling Stability[J]. 高等学校化学研究, 2020, 36(4): 715-720. |
[5] | ZHANG Lifeng, SHEN Kechao, JIANG Yongtao, GUO Yu, LIU Yi, GUO Shouwu. Direct Pyrolysis of Molybdophosphate-based Ionic Salt for One-step Synthesis of N,P Co-doped Carbon/MoO3-x Hybrids with Superior Lithium Storage Performance[J]. 高等学校化学研究, 2019, 35(5): 842-847. |
[6] | ZHOU Xuejiao, XU Liangyou, LIU Xiyao, ZHANG Junjun, DIAO Hongchao, MA Xiaohua. Preparation of Monodispersed Carbon Spheres via Hydrothermal Carbonization of Ascorbic Acid and Their Application in Lithium Ion Batteries[J]. 高等学校化学研究, 2018, 34(4): 628-634. |
[7] | DONG Wei, SHENDing, YANG Shaobin, LIANG Bing, WANG Xuelei, LIU Yue, LI Sinan. First-principles Study of Mechanical and Electronic Properties of Co-Sn Intermetallics for Lithium Ion Battery Anode[J]. 高等学校化学研究, 2018, 34(2): 235-240. |
[8] | MENG Yujia, LIU Xiaoyang, LIU Li, LI Benxian, ZHAO Xudong, FENG Likun, WANG Yanxiang, WANG Xiaofeng. Synthesis of LiMn2O4 Nano-wires via Flux Method and Their Usage as Cathode Material for Lithium Ion Batteries[J]. 高等学校化学研究, 2015, 31(5): 820-824. |
[9] | QIU Chengguang, LIU Lina, DU Fei, YANG Xu, WANG Chunzhong, CHEN Gang, WEI Yingjin. Electrochemical Performance of LiMn2O4/LiFePO4 Blend Cathodes for Lithium Ion Batteries[J]. 高等学校化学研究, 2015, 31(2): 270-275. |
[10] | ZHANG Ying, PAN Yue, LIU Jia, WANG Guiling, CAO Dianxue. Synthesis and Electrochemical Studies of Carbon-modified LiNiPO4 as the Cathode Material of Li-ion Batteries[J]. 高等学校化学研究, 2015, 31(1): 117-122. |
[11] | HE Shi-ci, ZHANG Qian, LIU Wei-wei, FANG Guo-qing, SATO Yuichi, ZHENG Jun-wei, LI De-cheng. Influence of Post-annealing in N2 on Structure and Electrochemical Characteristics of LiNi0.5Mn1.5O4[J]. 高等学校化学研究, 2013, 29(2): 329-332. |
[12] | HUANG You-ju, LIN Yu-li, LI Wei-shan. Manganese Dioxide with High Specific Surface Area for Alkaline Battery[J]. 高等学校化学研究, 2012, 28(5): 874-877 . |
[13] | CHEN Hong, WEI Ying-jin, WANG Chun-zhong* and CHEN Gang. Structure of Electrochemically Lithiated Li0.33MnO2[J]. 高等学校化学研究, 2011, 27(4): 669-672. |
[14] | CHEN Hong, WEI Ying-jin, JIANG Tao, CHEN Gang and WANG Chun-zhong*. Synthesis of Monoclinic Li0.33MnO2 and Its Electrochemical Properties in Different Potential Windows[J]. 高等学校化学研究, 2010, 26(3): 449-452. |
[15] | HU Fang, WEI Ying-jin, JIANG Tao, MING Xing, CHEN Gang and WANG Chun-zhong*. Physical and Electrochemical Characterization of Hydrothermal Prepared α′-NaV2O5 Crystals[J]. 高等学校化学研究, 2010, 26(2): 291-293. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||