高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (3): 386-401.doi: 10.1007/s40242-020-0098-y
CHEN Jianyu, XU Xin, HE Qian, MA Yanwen
收稿日期:
2020-04-08
修回日期:
2020-04-27
出版日期:
2020-06-01
发布日期:
2020-05-30
通讯作者:
MA Yanwen
E-mail:iamywma@njupt.edu.cn
基金资助:
CHEN Jianyu, XU Xin, HE Qian, MA Yanwen
Received:
2020-04-08
Revised:
2020-04-27
Online:
2020-06-01
Published:
2020-05-30
Contact:
MA Yanwen
E-mail:iamywma@njupt.edu.cn
Supported by:
摘要: High-energy-density batteries are in urgent need to solve the ever-increasing energy storage demand for portable electronic devices, electric vehicles, and renewable solar and wind energy systems. Alkali metals, typically lithium(Li), sodium(Na) and potassium(K), are considered as the promising anode materials owing to their low electrochemical potential, low density, and high theoretical gravimetric capacities. However, the problem of dendrite growth of alkali metals during their plating/stripping process will lead to low Coulombic efficiencies, a short lifespan and huge volume expansion, eventually hindering their practical commercialization. To resolve this issue, a very effective approach is engineering the anodes on structured current collectors. This review summarizes the development of the alkali metal batteries and discusses the recent advances in rational design of anode current collectors. First, the challenges and strategies of suppressing alkali-metal dendrite growth are presented. Then the special attention is paid to the novel current collector design for dendrite-free alkali metal anodes. Finally, we give conclusions and perspective on the current challenges and future research directions toward advanced anode current collectors for alkali metal batteries.
CHEN Jianyu, XU Xin, HE Qian, MA Yanwen. Advanced Current Collectors for Alkali Metal Anodes[J]. 高等学校化学研究, 2020, 36(3): 386-401.
CHEN Jianyu, XU Xin, HE Qian, MA Yanwen. Advanced Current Collectors for Alkali Metal Anodes[J]. Chemical Research in Chinese Universities, 2020, 36(3): 386-401.
[1] | Armand M., Tarascon J. M., Nature, 2008, 451, 652 |
[2] | Liu Q., Lei Q., Xu H., Yuan J., Resour. Conserv. Recy., 2018, 128, 78 |
[3] | Schmuch R., Wagner R., Hörpel G., Placke T., Winter M., Nat. Energy, 2018, 3, 267 |
[4] | Wang J., Tang H., Wang H., Yu R., Wang D., Mater. Chem. Front., 2017, 1, 414 |
[5] | Ma H., Cheng F., Chen J. Y., Zhao J. Z., Li C. S., Tao Z. L., Liang J., Adv. Mater., 2007, 19, 4067 |
[6] | Huang X., Tang J., Luo B., Knibbe R., Lin T., Hu H., Rana M., Hu Y., Zhu X., Gu Q., Wang D., Wang L., Adv. Energy Mater., 2019, 1901872 |
[7] | Lai Y., Jiao Y., Song J., Zhang K., Li J., Zhang Z., Mater. Chem. Front., 2018, 2, 376 |
[8] | Mizuno F., Nakanishi S., Kotani Y., Yokoishi S., Iba H., Electrochemistry, 2010, 78, 403 |
[9] | Li X., Yang S., Feng N., He P., Zhou H., Chinese. J. Catal., 2016, 37, 1016 |
[10] | Wang J., Yang J., Nuli Y., Holze R., Electrochem. Commun., 2007, 9, 31 |
[11] | Liu T., Kim G., Casford M. T., Grey C. P., J. Phys. Chem. Lett., 2016, 7, 4841 |
[12] | Li S., Yang H., Xu R., Jiang Y., Gong Y., Gu L., Yu Y., Mater. Chem. Front., 2018, 2(8), 1574 |
[13] | Hu X., Sun J., Li Z., Zhao Q., Chen C., Chen J., Angew. Chem. Int. Ed., 2016, 55, 6482 |
[14] | Wang L., Bao J., Liu Q., Sun C. F., Energy Storage Mater, 2019, 18, 470 |
[15] | Liu Y., Tai Z., Zhang Q., Wang H., Pang W. K., Liu H. K., Konstantinov K., Guo Z., Nano Energy, 2017, 35, 36 |
[16] | Xiao N., Ren X., He M., McCulloch W. D., Wu Y., ACS Appl. Mater. Interfaces, 2017, 9, 4301 |
[17] | Dai L., Zhang W., Hu C., Guo Z., Angew. Chem. Int. Ed., 2019, 9, 3470 |
[18] | Chen J., Zhao J., Lei L., Li P., Chen J., Zhang Y., Wang Y., Ma Y., Wang D., Nano Lett., 2020, DOI:10.1021/acs.nanolett.0c00316 |
[19] | Wang J., Wang H., Xie J., Yang A., Pei A., Wu C. L., Shi F., Liu Y., Lin D., Gong Y., Energy Storage Mater., 2018, 14, 345 |
[20] | Xi, J., Wang J., Lee H. R., Yan K., Li Y., Shi F., Huang W., Pei A., Chen G., Subbaraman R., Sci. Adv., 2018, 4, eaat5168 |
[21] | Lewis G. N., Keyes F. G., J. Am. Chem. Soc., 1913, 35, 340 |
[22] | Wang D., Zhang W., Zheng W. T., Cui X., Rojo T., Zhang Q., Adv. Sci., 2017, 4, 1600168 |
[23] | Whittingham M. S., Chem. Rev., 2004, 104, 4271 |
[24] | Peled E., J. Electrochem. Soc., 1979, 126, 2047 |
[25] | Thackeray M., David W., Bruce P., Goodenough J. B., Mater. Res. Bull., 1983, 18, 461 |
[26] | Jäckle M., Groß A., J. Chem. Phys, 2014, 141, 174710 |
[27] | Brissot C., Rosso M., Chazalviel J. N., Baudry P., Lascaud S., Electrochimi. Acta, 1998, 43, 1569 |
[28] | Chazalviel J. N., Phys. Rev. A, 1990, 42, 7355 |
[29] | Yamaki J. I., Tobishima S. I., Hayashi K., Saito K., Nemoto Y., Arakawa M., J. Power Sources, 1998, 74, 219 |
[30] | Aurbach D., Pollak E., Elazari R., Salitra G., Kelley C. S., Affinito J., J. Electrochem. Soc., 2009, 156, A694 |
[31] | Zhang S. S., Electrochim. Acta, 2012, 70, 344 |
[32] | Aurbach D., Zinigrad E., Cohen Y., Teller H., Solid State Ionics, 2002, 148, 405 |
[33] | Dudney N. J., J. Power. Sources, 2000, 89, 176 |
[34] | Guyer J. E., Boettinger W. J., Warren J. A., McFadden G. B., Phy. Rev. E, 2004, 69, 021603 |
[35] | Ji X., Lee K. T., Nazar L. F., Nat. Mater., 2009, 8, 500 |
[36] | Bhattacharyya R., Key B., Chen H., Best A. S., Hollenkamp A. F., Grey C. P., Nat. Mater., 2010, 9, 504 |
[37] | Li Y., Fitch B., Electrochem. Commun., 2011, 13, 664 |
[38] | Ji X. Liu D. Y., Prendiville D. G., Zhang Y., Liu X., Stucky G. D., Nano Today, 2012, 7, 10 |
[39] | Ely D. R., García R. E., J. Electrochem. Soc, 2013, 160, A662 |
[40] | Sacci R. L., Dudney N. J., More K. L., Parent L. R., Arslan I., Browning N. D., Unocic R. R., Chem. Commun., 2014, 50, 2104 |
[41] | Ding F., Xu W., Graff G. L., Zhang J., Sushko M. L., Chen X., Shao Y., Engelhard M. H., Nie Z., Xiao J., J. Am. Chem. Soc., 2013, 135, 4450 |
[42] | Lu Y., Tu Z., Archer L. A., Nat. Mate., 2014, 13, 961 |
[43] | Qian J., Henderson W. A., Xu W., Bhattacharya P., Engelhard M., Borodin O., Zhang J. G., Nat. Commun., 2015, 6, 1 |
[44] | Yang C. P., Yin Y. X., Zhang S. F., Li N. W., Guo Y. G., Nat. Commun., 2015, 6, 1 |
[45] | Ortiz-Vitoriano N., Batcho T. P., Kwabi D. G., Han B., Pour N., Yao K. P. C., Thompson C. V., Shao-Horn Y., J. Phy. Chem. Lett., 2015, 6, 2636 |
[46] | Luo W., Hu L., ACS Cent. Sci., 2015, 1, 420 |
[47] | Peng Z., Wang S., Zhou J., Jin Y., Liu Y., Qin Y., Shen C., Han W., Wang D., J. Mater. Chem. A, 2016, 4, 2427 |
[48] | Li N. W., Yin Y. X., Yang C. P., Guo Y. G., Adv. Mater., 2016, 28, 1853 |
[49] | Kim I., Park J. Y., Kim C. H., Park J. W., Ahn J. P., Ahn J. H., Kim K. W., Ahn H. J., J. Power. Source, 2016, 301, 332 |
[50] | Knudsen K. B., Nichols J. E., Vegge T., Luntz A. C., McCloskey B. D., Hjelm J. J. Phy. Chem. C, 2016, 120, 10799 |
[51] | Xiao N., McCulloch W. D., Wu Y., J. Am. Chem. Soc., 2017, 139, 9475 |
[52] | Wang D., Zhang W., Zheng W., Cui X., Rojo T., Zhang Q., Adv. Sci., 2017, 4, 1600168 |
[53] | Conder J., Bouchet R., Trabesinger S., Marino C., Gubler L., Villevieille C., Nat. Energy, 2017, 2, 1 |
[54] | Wang J., Huang W., Pei A., Li Y., Shi F., Yu X., Cui, Y., Nat. Energy, 2019, 4, 664 |
[55] | Chi S. S., Qi X. G., Hu Y. S., Fan L. Z., Adv. Energ. Mater., 2018, 8, 1702764 |
[56] | Basile A., Hilder M., Makhlooghiazad F., Pozo-Gonzalo C., MacFarlane D. R., Howlett P. C., Forsyth M., Adv. Energ. Mater., 2018, 8, 1703491 |
[57] | Gao L., Chen J., Liu Y., Yamauchi Y., Huang Z., Kong X., J. Mater. Chem. A, 2018, 6, 12012 |
[58] | Li G., Liu Z., Huang Q., Gao Y., Regula M., Wang D., Chen L. Q., Wang D., Nat. Energy, 2018, 3, 1076. |
[59] | Wang H., Yu D., Kuang C., Cheng L., Li W., Feng X., Zhang Z., Zhang X., Zhang Y., Chemistry, 2019, 5, 313 |
[60] | Li L., Basu S., Wang Y., Chen Z., Hundekar P., Wang B., Shi J., Shi Y., Narayanan, S., Koratkar N., Science, 2018, 359, 1513 |
[61] | Liu Y., Wang W., Wang J., Zhang Y., Zhu Y., Chen Y., Fu L., Wu Y., Chem. Commun., 2018, 54, 2288 |
[62] | Qin L., Lei Y., Wang H., Dong J., Wu Y., Zhai D., Kang F., Tao Y., Yang Q. H., Adv. Energ. Mater., 2019, 9, 1901427 |
[63] | Liu T., Zhang Y., Jiang Z., Zeng X., Ji J., Li Z., Gao X., Sun M., Lin Z., Ling M., Energ. Environ. Sci., 2019, 12(5), 1512 |
[64] | Hueso K. B., Armand M., Rojo T., Energ. Environ. Sci., 2013, 6, 734 |
[65] | Li P., Xu T., Ding P., Deng J., Zha C., Wu Y., Wang Y., Li Y., Energy Storage Mater., 2018, 15, 8 |
[66] | Ren X., Lau K. C., Yu M., Bi X., Kreidler E., Curtiss L. A., Wu Y., ACS Appl. Mater. Interfaces, 2014, 6, 19299 |
[67] | Liu Y., Tai Z., Zhang Q., Wang H., Pang W. K., Liu H. K., Konstantinov K., Guo Z., Nano Energy, 2017, 35, 36 |
[68] | Cheng X. B., Zhang R., Zhao C. Z., Zhang Q., Chem. Rev., 2017, 117, 10403 |
[69] | Zhang X., Wang X. G., Xie Z., Zhou Z., Green Energy & Environment, 2016, 1, 4 |
[70] | Hao F., Verma A., Mukherjee P. P., Energy Storage Mater., 2019, 20, 1 |
[71] | Fan L., Zhuang H. L., Gao L., Lu Y., Archer L. A., J. Mater. Chem. A, 2017, 5, 3483 |
[72] | Hao F., Verma A., Mukherjee P. P., Energy Storage Mater., 2019, 20, 1 |
[73] | Mao X., Shi L., Zhang H., Wang Z., Zhu J., Qiu Z., Zhao Y., Zhang M., Yuan, S., J. Power Sources, 2017, 342, 816 |
[74] | Wang G., Xiong X., Lin Z., Zheng J., Fenghua Z., Li Y., Liu Y., Yang, C., Tang Y., Liu M., Nanoscale, 2018, 10, 10018 |
[75] | Devaux D., Glé D., Phan T. N., Gigmes D., Giroud E., Deschamps M., Denoyel R., Bouchet R., Chem. Mater., 2015, 27, 4682 |
[76] | Zhang H., Eshetu G. G., Judez X., Li C., Rodriguez-Martínez L. M., Armand M., Angew. Chem. Int. Ed., 2018, 57, 15002 |
[77] | Ryou M. H., Lee Y. M., Lee Y., Winter M., Bieker P., Adv. Funct. Mater., 2015, 25, 834 |
[78] | Kang S. W., Xie H. M., Zhang W., Zhang J. P., Ma Z., Wang R. S., Wu X. L., Electrochim. Acta, 2015, 176, 604 |
[79] | Kang S., Xie H., Wei Z., Ma Z. F., Zhang W., Int. J. Electrochem. Sci., 2015, 10, 2324 |
[80] | Yang C. P., Yin Y. X., Zhang S. F., Li N. W., Guo Y. G., Nat. Commun., 2015, 6, 1 |
[81] | Hwang J. Y., Myung S. T., Sun Y. K., Adv. Funct. Mater., 2018, 28, 1802938 |
[82] | Brissot C., Rosso M., Chazalviel J.-N., J. Electrochem. Soc., 1999, 146, 4393 |
[83] | Guo Y., Li H., Zhai T., Adv. Mater., 2017, 29(29), 1700007 |
[84] | Jin S., Jiang Y., Ji H., Yu Y., Adv. Mater., 2018, 30, 1802014 |
[85] | Yang G., Li Y., Tong Y., Qiu J., Liu S., Zhang S., Guan Z., Xu B., Wang Z., Chen L., Nano Lett., 2018, 19, 494499 |
[86] | Zhao Y., Yang X., Kuo L. Y., Kaghazchi P., Sun Q., Liang J., Wang B., Lushington A., Li R., Zhang H., Small, 2018, 14, 1703717 |
[87] | Qin L., Lei Y., Wang H., Dong J., Wu Y., Zhai D., Kang F., Tao Y., Yang Q. H., Adv. Energy Mater., 2019, 9(29), 1901427 |
[88] | Liu Y., Lin D., Jin Y., Liu K., Tao X., Zhang Q., Zhang X., Cui Y., Sci. Adv., 2017, 3, eaao0713 |
[89] | Wang A., Hu X., Tang H., Zhang C., Liu S., Yang Y. W., Yang Q. H., Luo J., Angew. Chem. Int. Ed., 2017, 129, 12083 |
[90] | Liu L., Yin Y. X., Li J. Y., Wang S. H., Guo Y. G., Wan L., J. Adv. Mater., 2018, 30, 1706216 |
[91] | Zuo T. T., Wu X. W., Yang C. P., Yin Y. X., Ye H., Li N. W., Guo Y. G., Adv. Mater., 2017, 29, 1700389 |
[92] | Xiong W. S., Xia Y., Jiang Y., Qi Y., Sun W., He D., Liu Y., Zhao X. Z., ACS Appl. Mater. Inter., 2018, 10, 21254 |
[93] | Zhang J., Wang W., Shi R., Wang W., Wang S., Kang F., Li B., Carbon, 2019, 155, 50 |
[94] | Liu L., Yin Y. X., Li J. Y., Li N. W., Zeng X. X., Ye H., Guo Y. G., Wan L. J., Joule, 2017, 1, 563 |
[95] | Lin D., Liu Y., Liang Z., Lee H. W., Sun J., Wang H., Yan K., Xie J., Cui Y., Nat. Nanotech., 2016, 11(7), 626 |
[96] | Wang H., Lin D., Xie J., Liu Y., Chen H., Li Y., Xu J., Zhou G., Zhang Z., Pei A., Adv. Energ. Mater., 2019, 9, 1802720 |
[97] | Wang A., Tang S., Kong D., Liu S., Chiou K., Zhi L., Huang J., Xia Y. Y., Luo J., Adv. Mater., 2018, 30, 1703891 |
[98] | Sun Z., Jin S., Jin H., Du Z., Zhu Y., Cao A., Ji H., Wan L. J., Adv. Mater., 2018, 30, 1800884 |
[99] | Zhang X., Lv R., Wang A., Guo W., Liu X., Luo J., Angew. Chem. Int. Ed., 2018, 130, 15248 |
[100] | Jin C., Sheng O., Lu Y., Luo J., Yuan H., Zhang W., Huang H., Gan Y., Xia Y., Liang C., Nano Energy, 2018, 45, 203 |
[101] | Liu T., Hu J., Li C., Wang Y., ACS Appl. Energy Mater., 2019, 2, 4379 |
[102] | Shu N., Xie J., Wang X., He X., Xiao L., Pan F., Yuan H., Ye J., Chen C., Zhu Y., Energy Storage Mater., 2020, 24, 689 |
[103] | Hafez A. M., Jiao Y., Shi J., Ma Y., Cao D., Liu Y., Zhu H., Adv. Mater., 2018, 30, 1802156 |
[104] | Wu H., Zhang Y., Deng Y., Huang Z., Zhang C., He Y. B., Lv W., Yang Q. H., Sci. China Mater., 2019, 62, 87 |
[105] | Shen X., Cheng X., Shi P., Huang J., Zhang X., Yan C., Li T., Zhang Q. J., Energ. Chem., 2019, 37, 29 |
[106] | Zhang M., Lu R., Yuan H., Amin K., Mao L., Yan W., Wei Z., ACS Appl. Mater. Inter, 2019, 11, 20873 |
[107] | Ye L., Liao M., Sun H., Yang Y., Tang C., Zhao Y., Wang L., Xu Y., Zhang L., Wang B., Angew. Chem. Int. Ed., 2019, 58, 2437 |
[108] | Zhang Y., Liu B., Hitz E., Luo W., Yao Y., Li Y., Dai J., Chen C., Wang Y., Yang C., Nano Res., 2017, 10, 1356 |
[109] | Zhang Y., Luo W., Wang C., Li Y., Chen C., Song J., Dai J., Hitz E. M., Xu S., Yang C. P., Natl. Acad. Sci. USA, 2017, 114, 3584 |
[110] | Zhang Y., Wang C., Pastel G., Kuang Y., Xie H., Li Y., Liu B., Luo W., Chen C., Hu L., Adv. Energ. Mater., 2018, 8, 1800635 |
[111] | Chu C., Wang N., Li L., Lin L., Tian F., Li Y., Yang J., Dou S. X., Qian Y., Energy Storage Mater., 2019, 23, 137 |
[112] | Sun B., Li P., Zhang J., Wang D., Munroe P., Wang C., Notten P. H., Wang G., Adv. Mater, 2018, 30, 1801334 |
[113] | Go W., Kim M. H., Park J., Lim C. H., Joo S. H., Kim Y., Lee H. W., Nano Lett., 2018, 19, 1504 |
[114] | Chi S. S., Qi X. G., Hu Y. S., Fan L. Z., Adv. Energ. Mater., 2018, 8, 1702764 |
[115] | Tang X., Zhou D., Li P., Guo X., Sun B., Liu H., Yan K., Gogotsi Y., Wang G., Adv. Mater., 2020, 32, 1906739 |
[116] | Yu Y., Wang Z., Hou Z., Ta W., Wang W., Zhao X., Li Q., Zhao Y., Zhang Q., Quan Z., ACS Appl. Energ. Mater., 2019, 2, 3869 |
[117] | Yun Q., He Y. B., Lv W., Zhao Y., Li B., Kang F., Yang Q. H., Adv. Mater., 2016, 28(32), 6932 |
[118] | Tang Y., Shen K., Lv Z., Xu X., Hou G., Cao H., Wu L., Zheng G., Deng Y., J. Power Sources, 2018, 403, 82 |
[119] | Zhao H., Lei D., He Y. B., Yuan Y., Yun Q., Ni B., Lv W., Li B., Yang Q. H., Kang F., Adv. Energy Mater., 2018, 8, 1800266 |
[120] | Zou P., Wang Y., Chiang S. W., Wang X., Kang F., Yang C., Nat. Commun., 2018, 9, 1 |
[121] | Adair K. R., Iqbal M., Wang C., Zhao Y., Banis M. N., Li R., Zhang L., Yang R., Lu S., Sun X., Nano Energy, 2018, 54, 375 |
[122] | Li Q., Zhu S., Lu Y., Adv. Funct. Mater., 2017, 27, 1606422 |
[123] | Wang S. H., Yin Y. X., Zuo T. T., Dong W., Li J. Y., Shi J. L., Zhang C. H., Li N. W., Li C. J., Guo Y. G., Adv. Mater., 2017, 29, 1703729 |
[124] | Qiu H., Tang T., Asif M., Huang X., Hou Y., Adv. Funct. Mater., 2019, 29, 1808468 |
[125] | An Y., Fei H., Zeng G., Xu X., Ci L., Xi B., Xiong S., Feng J., Qian Y., Nano Energy, 2018, 47, 503 |
[126] | Liu H., Wang E., Zhang Q., Ren Y., Guo X., Wang L., Li G., Yu H., Energy Storage Mater., 2019, 17, 253 |
[127] | Umh H. N., Park J., Yeo J., Jung S., Nam I., Yi J., Electrochem. Commun., 2019, 99, 27 |
[128] | Chen K. H., Sanchez A. J., Kazyak E., Davis A. L., Dasgupta N. P., Adv. Energy Mater, 2019, 9, 1802534 |
[129] | Lu L. L., Ge J., Yang J. N., Chen S. M., Yao H. B., Zhou F., Yu S. H., Nano Lett., 2016, 16, 4431 |
[130] | Zhang R., Wen S., Wang N., Qin K., Liu E., Shi C., Zhao N., Adv. Energy Mater., 2018, 8, 1800914 |
[131] | Zhang C., Lyu R., Lv W., Li H., Jiang W., Li J., Gu S., Zhou G., Huang Z., Zhang Y., Adv. Mater., 2019, 31, 1904991 |
[132] | Lu L. L., Zhang Y., Pan Z., Yao H. B., Zhou F., Yu S. H., Energy Storage Mater., 2017, 9, 31 |
[133] | Ke X., Liang Y., Ou L., Liu H., Chen Y., Wu W., Cheng Y., Guo Z., Lai Y., Liu P., Energy Storage Mater., 2019, 23, 547 |
[134] | Wu S., Zhang Z., Lan M., Yang S., Cheng J., Cai J., Shen J., Zhu Y., Zhang K., Zhang W., Adv. Mater., 2018, 30, 1705830 |
[135] | Yu L., Canfield N. L., Chen S., Lee H., Ren X., Engelhard M. H., Li Q., Liu J., Xu W., Zhang J. G., ChemElectroChem, 2018, 5, 761 |
[136] | Fan H., Dong Q., Gao C., Hong B., Lai Y., Mater. Lett., 2019, 234, 69 |
[137] | Liu Y., Li B., Liu J., Li S., Yang S., J. Mater. Chem. A, 2017, 5, 18862 |
[138] | Kim H., Gong Y. J., Yoo J., Kim Y. S., J. Mater. Chem. A, 2018, 6, 15540 |
[139] | Yue X. Y., Li X. L., Bao J., Qiu Q. Q., Liu T., Chen D., Yuan S. S., Wu X. J., Lu J., Zhou Y. N., Adv. Energy Mater., 2019, 9, 1901491 |
[140] | Lu Y., Zhang Q., Han M., Chen J., Chem. Commun., 2017, 53, 12910 |
[141] | Wang T. S., Liu Y., Lu Y. X., Hu Y. S., Fan L. Z., Energy Storage Mater., 2018, 15, 274 |
[142] | Sun J., Guo C., Cai Y., Li J., Sun X., Shi W., Ai S., Chen C., Jiang F., Electrochim. Acta, 2019, 309, 18 |
[143] | Wang C., Wang H., Matios E., Hu X., Li W., Adv. Funct. Mater., 2018, 28, 1802282 |
[144] | Sun J., Zhang M., Ju P., Hu Y., Chen X., Wang W., Chen C., Energy Technology, 2020, 3, 1901250 |
[145] | Liu S., Tang S., Zhang X., Wang A., Yang Q. H., Luo J., Nano Lett., 2017, 17, 5862 |
[146] | Liu P., Wang Y., Gu Q., Nanda J., Watt J., Mitlin D., Adv. Mater., 2019, 1906735 |
[147] | Liu S., Wang A., Li Q., Wu J., Chiou K., Huang J., Luo J., Joule, 2018, 2, 184 |
[148] | Wang H., Matios E., Wang C., Luo J., Lu X., Hu X., Zhang Y., Li W., J. Mater. Chem. A, 2019, 7, 23747 |
[149] | Ye M., Hwang J. Y., Sun Y. K., ACS Nano, 2019, 13, 9306 |
[150] | Liang Z., Zheng G., Liu C., Liu N., Li W., Yan K., Yao H., Hsu P. C., Chu S., Cui Y. Nano Lett., 2015, 15, 2910 |
[151] | Liang Z., Lin D., Zhao J., Lu Z., Liu Y., Liu C., Lu Y., Wang H., Yan K., Tao X., P. Natl. Acad. Sci. USA, 2016, 113, 2862 |
[152] | Zhang H., Liao X., Guan Y., Xiang Y., Li M., Zhang W., Zhu X., Ming H., Lu L., Qiu J., Nat. Commun., 2018, 9, 1 |
[153] | Pu J., Li J., Zhang K., Zhang T., Li C., Ma H., Zhu J., Braun P. V., Lu J., Zhang H., Nat. Commun., 2019, 10, 1 |
[1] | FANG Hengyi, GAO Suning, ZHU Zhuo, REN Meng, WU Quan, LI Haixia, LI Fujun. Recent Progress and Perspectives of Sodium Metal Anodes for Rechargeable Batteries[J]. 高等学校化学研究, 2021, 37(2): 189-199. |
[2] | KE Xi, DENG Lu-lu, SHEN Pei-kang* and CUI Guo-feng*. Electrochemical Quartz Crystal Microbalance(EQCM) Characterization of Electrodeposition and Catalytic Activity of Pd-based Electrocatalysts for Ethanol Oxidation[J]. 高等学校化学研究, 2010, 26(3): 443-448. |
[3] | WANG Hong-zhe, ZHAO Hui-ling, LIU Bing, ZHANG Xing-tang, DU Zu-liang*,.... Facile Preparation of Mn2O3 Nanowires by Thermal Decomposition of MnCO3[J]. 高等学校化学研究, 2010, 26(1): 5-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||