高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (4): 662-679.doi: 10.1007/s40242-020-0163-6
WEN Jinguli, LI Yuwen, GAO Junkuo
收稿日期:
2020-05-28
修回日期:
2020-06-12
出版日期:
2020-08-01
发布日期:
2020-06-15
通讯作者:
GAO Junkuo
E-mail:jkgao@zstu.edu.cn
基金资助:
WEN Jinguli, LI Yuwen, GAO Junkuo
Received:
2020-05-28
Revised:
2020-06-12
Online:
2020-08-01
Published:
2020-06-15
Contact:
GAO Junkuo
E-mail:jkgao@zstu.edu.cn
Supported by:
摘要: The most important topics in the world today are environmental and resource issues. The development of green and clean energy is still one of the great challenges of social sustainable development. Two-dimensional(2D) metal-organic frameworks(MOFs) and derivatives have exceptional potential as high-efficiency electrocatalysts for clean energy technologies. This review summarizes various synthesis strategies and applications of 2D MOFs and derivatives in electrocatalysis. Firstly, we will outline the advantages and uniqueness of 2D MOFs and derivatives, as well as their applicable areas. Secondly, the synthetic strategies of 2D MOFs and derivatives are briefly classified. Each category is summarized and we list classic representative fabrication methods, including specific fabrication methods and mechanisms, corresponding structural characteristics, and insights into the advantages and limitations of the synthesis method. Thirdly, we separately classify and summarize the application of 2D MOFs and derivatives in electrocatalysis, including electrocatalytic water splitting, oxygen reduction reaction(ORR), CO2 reduction reaction(CO2RR), and other electrocatalytic applications. Finally, the development prospects and existing challenges to 2D MOFs and derivatives are discussed.
WEN Jinguli, LI Yuwen, GAO Junkuo. Two-dimensional Metal-Organic Frameworks and Derivatives for Electrocatalysis[J]. 高等学校化学研究, 2020, 36(4): 662-679.
WEN Jinguli, LI Yuwen, GAO Junkuo. Two-dimensional Metal-Organic Frameworks and Derivatives for Electrocatalysis[J]. Chemical Research in Chinese Universities, 2020, 36(4): 662-679.
[1] | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306(5696), 666 |
[2] | Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K., P. Natl. Acad. Sci. USA, 2005, 102(30), 10451 |
[3] | Li H., Wu J., Yin Z., Zhang H., Acc. Chem. Res., 2014, 47(4), 1067 |
[4] | Yi M., Shen Z., J. Mater. Chem. A, 2015, 3(22), 11700 |
[5] | Li M., Luo Z., Zhao Y., Sci. China Chem., 2018, 61(10), 1214 |
[6] | Mendoza-Sanchez B., Gogotsi Y., Adv. Mater., 2016, 28(29), 6104 |
[7] | Choudhary N., Islam M. A., Kim J. H., Ko T.-J., Schropp A., Hurtado L., Weitzman D., Zhai L., Jung Y., Nano Today, 2018, 19, 16 |
[8] | Jin H., Guo C., Liu X., Liu J., Vasileff A., Jiao Y., Zheng Y., Qiao S. Z., Chem. Rev., 2018, 118(13), 6337 |
[9] | Li P., Cheng F.-F., Xiong W.-W., Zhang Q., Inorg. Chem. Front., 2018, 5(11), 2693 |
[10] | Sun T., Xie J., Guo W., Li D. S., Zhang Q., Adv. Energy Mater., 2020, 10(19), 1904199 |
[11] | Zhi Y., Wang Z., Zhang H. L., Zhang Q., Small, 2020, 2001070 |
[12] | Zhan X., Chen Z., Zhang Q., J. Mater. Chem. A, 2017, 5(28), 14463 |
[13] | Furukawa S., Reboul J., Diring S., Sumida K., Kitagawa S., Chem. Soc. Rev., 2014, 43(16), 5700 |
[14] | Lu G., Li S., Guo Z., Farha O. K., Hauser B. G., Qi X., Wang Y., Wang X., Han S., Liu X., DuChene J. S., Zhang H., Zhang Q., Chen X., Ma J., Loo S. C., Wei W. D., Yang Y., Hupp J. T., Huo F., Nat. Chem., 2012, 4(4), 310 |
[15] | Adil K., Belmabkhout Y., Pillai R. S., Cadiau A., Bhatt P. M., Assen A. H., Maurin G., Eddaoudi M., Chem. Soc. Rev., 2017, 46(11), 3402 |
[16] | Gao J., Qian X., Lin R. B., Krishna R., Wu H., Zhou W., Chen B., Angew. Chem. Int. Ed., 2020, 59(11), 4396 |
[17] | Dolgopolova E. A., Rice A. M., Martin C. R., Shustova N. B., Chem. Soc. Rev., 2018, 47(13), 4710 |
[18] | Wu M. X., Yang Y. W., Adv. Mater., 2017, 29(23), 1606134 |
[19] | Qu C., Jiao Y., Zhao B., Chen D., Zou R., Walton K. S., Liu M., Nano Energy, 2016, 26, 66 |
[20] | Zhao R., Liang Z., Zou R., Xu Q., Joule, 2018, 2(11), 2235 |
[21] | Wang K.-B., Xun Q., Zhang Q., Energy Chem., 2020, 2(1), 100025 |
[22] | Wu Z., Xie J., Xu Z. J., Zhang S., Zhang Q., J. Mater. Chem. A, 2019, 7(9), 4259 |
[23] | Zhao Y., Song Z., Li X., Sun Q., Cheng N., Lawes S., Sun X., Energy Storage Mater., 2016, 2, 35 |
[24] | Hou C. C., Xu Q., Adv. Energy Mater., 2018, 9(23), 1801307 |
[25] | Yan Y., Li C., Wu Y., Gao J., Zhang Q., J. Mater. Chem. A, 2020, doi:10.1039/D0TA03749D |
[26] | Wu Y.-P., Wu X.-Q., Wang J.-F., Zhao J., Dong W.-W., Li D.-S., Zhang Q.-C., Crystal Growth & Design, 2016, 16(4), 2309 |
[27] | Qin Z.-S., Dong W.-W., Zhao J., Wu Y.-P., Zhang Q., Li D.-S., Inorg. Chem. Front., 2018, 5(1), 120 |
[28] | Sun L., Campbell M. G., Dinca M., Angew. Chem. Int. Ed., 2016, 55(11), 3566 |
[29] | Cui X., Tang C., Zhang Q., Adv. Energy Mater., 2018, 8(22), 1800369 |
[30] | Tang C., Qiao S. Z., Chem. Soc. Rev., 2019, 48(12), 3166 |
[31] | Gao J., Cong J., Wu Y., Sun L., Yao J., Chen B., ACS Appl. Energy Mater., 2018, 1, 5140 |
[32] | Jahan M., Liu Z., Loh K. P., Adv. Funct. Mater., 2013, 23(43), 5363 |
[33] | Chen G. F., Ren S., Zhang L., Cheng H., Luo Y., Zhu K., Ding L. X., Wang H., Small Methods, 2018, 3(6), 1800337 |
[34] | Ashworth D. J., Foster J. A., J. Mater. Chem. A, 2018, 6(34), 16292 |
[35] | Liu W., Yin R., Xu X., Zhang L., Shi W., Cao X., Adv. Sci., 2019, 6(12), 1802373 |
[36] | Duan J., Li Y., Pan Y., Behera N., Jin W., Coordin. Chem. Rev., 2019, 395, 25 |
[37] | Jiao L., Wang Y., Jiang H. L., Xu Q., Adv. Mater., 2018, 30(37), 1703663 |
[38] | Campbell M. G., Liu S. F., Swager T. M., Dinca M., J. Am. Chem. Soc., 2015, 137(43), 13780 |
[39] | Li Y. L., Zhou J. J., Wu M. K., Chen C., Tao K., Yi F. Y., Han L., Inorg. Chem., 2018, 57(11), 6202 |
[40] | Jayaramulu K., Masa J., Morales D. M., Tomanec O., Ranc V., Petr M., Wilde P., Chen Y. T., Zboril R., Schuhmann W., Fischer R. A., Adv. Sci., 2018, 5(11), 1801029 |
[41] | Sun F., Wang G., Ding Y., Wang C., Yuan B., Lin Y., Adv. Energy Mater., 2018, 8(21), 1800584 |
[42] | Zhu D., Liu J., Zhao Y., Zheng Y., Qiao S. Z., Small, 2019, 15(14), 1805511 |
[43] | Xu H., Fei B., Cai G., Ha Y., Liu J., Jia H., Zhang J., Liu M., Wu R., Adv. Energy Mater., 2019, 10(3), 1902714 |
[44] | Liu S., Zhou J., Song H., Chem. Commun., 2018, 54(70), 9825 |
[45] | Rui K., Zhao G., Lao M., Cui P., Zheng X., Zheng X., Zhu J., Huang W., Dou S. X., Sun W., Nano Lett., 2019, 19(12), 8447 |
[46] | Sakamoto R., Takada K., Pal T., Maeda H., Kambe T., Nishihara H., Chem. Commun., 2017, 53(43), 5781 |
[47] | Zheng C., Zhu J., Yang C., Lu C., Chen Z., Zhuang X., Sci. China Chem., 2019, 62(9), 1145 |
[48] | Wang J., Li N., Xu Y., Pang H., Chem. Eur. J., 2020, 26(29), 6402 |
[49] | Varoon K., Zhang X., Elyassi B., Brewer D. D., Gettel M., Kumar S., Lee J. A., Maheshwari S., Mittal A., Sung C. Y., Cococcioni M., Francis L. F., McCormick A. V., Mkhoyan K. A., Tsapatsis M., Science, 2011, 334(6052), 72 |
[50] | Foster J. A., Henke S., Schneemann A., Fischer R. A., Cheetham A. K., Chem. Commun., 2016, 52(69), 10474 |
[51] | Hernandez Y., Nicolosi V., Lotya M., Blighe F. M., Sun Z., De S., McGovern I. T., Holland B., Byrne M., Gun'Ko Y. K., Boland J. J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A. C., Coleman J. N., Nat. Nanotechnol., 2008, 3(9), 563 |
[52] | Li C., Wu C., Zhang B., ACS Sustain. Chem. Eng., 2019, 8(1), 642 |
[53] | Saines P. J., Tan J. C., Yeung H. H., Barton P. T., Cheetham A. K., Dalton Trans., 2012, 41(28), 8585 |
[54] | Nielsen R. B., Kongshaug K. O., Fjellvåg H., J. Mater. Chem., 2008, 18(9), 1002 |
[55] | Cliffe M. J., Castillo-Martinez E., Wu Y., Lee J., Forse A. C., Firth F. C. N., Moghadam P. Z., Fairen-Jimenez D., Gaultois M. W., Hill J. A., Magdysyuk O. V., Slater B., Goodwin A. L., Grey C. P., J. Am. Chem. Soc., 2017, 139(15), 5397 |
[56] | Tian J., Jiang F., Yuan D., Zhang L., Chen Q., Hong M., Angew. Chem. Int. Ed., 2020, 10.1002/anie.202004420 |
[57] | Peng Y., Li Y., Ban Y., Yang W., Angew. Chem. Int. Ed., 2017, 56(33), 9757 |
[58] | Wu J. X., Yuan W. W., Xu M., Gu Z. Y., Chem. Commun., 2019, 55(77), 11634 |
[59] | Tan J.-C., Saines P. J., Bithell E. G., Cheetham A. K., ACS Nano, 2012, 6, 615 |
[60] | Xu H., Gao J., Qian X., Wang J., He H., Cui Y., Yang Y., Wang Z., Qian G., J. Mater. Chem. A, 2016, 4(28), 10900 |
[61] | Brent J. R., Savjani N., Lewis E. A., Haigh S. J., Lewis D. J., O'Brien P., Chem. Commun., 2014, 50(87), 13338 |
[62] | Coleman J. N., Lotya M., O'Neill A., Bergin S. D., King P. J., Khan U., Young K., Gaucher A., De S., Smith R. J., Science, 2011, 331(6017), 568 |
[63] | Gallego A., Hermosa C., Castillo O., Berlanga I., Gomez-Garcia C. J., Mateo-Marti E., Martinez J. I., Flores F., Gomez-Navarro C., Gomez-Herrero J., Delgado S., Zamora F., Adv. Mater., 2013, 25(15), 2141 |
[64] | Wang H.-S., Li J., Li J.-Y., Wang K., Ding Y., Xia X.-H., NPG Asia Mater., 2017, 9(3), 354 |
[65] | Chandrasekhar P., Mukhopadhyay A., Savitha G., Moorthy J. N., J. Mater. Chem. A, 2017, 5(11), 5402 |
[66] | Au V. K., Nakayashiki K., Huang H., Suginome S., Sato H., Aida T., J. Am. Chem. Soc., 2019, 141(1), 53 |
[67] | Ding Y., Chen Y. P., Zhang X., Chen L., Dong Z., Jiang H. L., Xu H., Zhou H. C., J. Am. Chem. Soc., 2017, 139(27), 9136 |
[68] | Huang J., Li Y., Huang R. K., He C. T., Gong L., Hu Q., Wang L., Xu Y. T., Tian X. Y., Liu S. Y., Ye Z. M., Wang F., Zhou D. D., Zhang W. X., Zhang J. P., Angew. Chem. Int. Ed., 2018, 57(17), 4632 |
[69] | Cho W., Lee H. J., Oh M., J. Am. Chem. Soc, 2008, 130(50), 16943 |
[70] | Peng X., Manna L., Yang W., Wickham J., Scher E., Kadavanich A., Alivisatos A. P., Nature, 2000, 404(2), 59 |
[71] | Gao J., He M., Lee Z. Y., Cao W., Xiong W.-W., Li Y., Ganguly R., Wu T., Zhang Q., Dalton Trans., 2013, 42(32), 11367 |
[72] | Jian M., Liu H., Williams T., Ma J., Wang H., Zhang X., Chem. Commun., 2017, 53(98), 13161 |
[73] | Zhan G., Zeng H. C., Adv. Funct. Mater., 2016, 26(19), 3268 |
[74] | Wang Y., Zhao M., Ping J., Chen B., Cao X., Huang Y., Tan C., Ma Q., Wu S., Yu Y., Lu Q., Chen J., Zhao W., Ying Y., Zhang H., Adv. Mater., 2016, 28(21), 4149 |
[75] | Zhao M., Wang Y., Ma Q., Huang Y., Zhang X., Ping J., Zhang Z., Lu Q., Yu Y., Xu H., Zhao Y., Zhang H., Adv. Mater., 2015, 27(45), 7372 |
[76] | Lin Y., Chen G., Wan H., Chen F., Liu X., Ma R., Small, 2019, 15(18), 1900348 |
[77] | Cao F., Zhao M., Yu Y., Chen B., Huang Y., Yang J., Cao X., Lu Q., Zhang X., Zhang Z., Tan C., Zhang H., J. Am. Chem. Soc., 2016, 138(22), 6924 |
[78] | He T., Ni B., Zhang S., Gong Y., Wang H., Gu L., Zhuang J., Hu W., Wang X., Small, 2018, 14(16), 1703929 |
[79] | Pustovarenko A., Goesten M. G., Sachdeva S., Shan M., Amghouz Z., Belmabkhout Y., Dikhtiarenko A., Rodenas T., Keskin D., Voets I. K., Weckhuysen B. M., Eddaoudi M., de Smet L., Sudholter E. J. R., Kapteijn F., Seoane B., Gascon J., Adv. Mater., 2018, 30(26), 1707234 |
[80] | Xue F., Kumar P., Xu W., Mkhoyan K. A., Tsapatsis M., Chem. Mater., 2017, 30(1), 69 |
[81] | Zhao Y., Jiang L., Shangguan L., Mi L., Liu A., Liu S., J. Mater. Chem. A, 2018, 6(6), 2828 |
[82] | Pham M.-H., Vuong G.-T., Fontaine F.-G., Do T.-O., Cryst. Growth Des., 2012, 12(6), 3091 |
[83] | Lin Y., Wan H., Wu D., Chen G., Zhang N., Liu X., Li J., Cao Y., Qiu G., Ma R., J. Am. Chem. Soc., 2020, 142(16), 7317 |
[84] | Zhao K., Liu S., Ye G., Gan Q., Zhou Z., He Z., J. Mater. Chem. A, 2018, 6(5), 2166 |
[85] | Li F. L., Wang P., Huang X., Young D. J., Wang H. F., Braunstein P., Lang J. P., Angew. Chem. Int. Ed., 2019, 58(21), 7051 |
[86] | Zhuang L., Ge L., Liu H., Jiang Z., Jia Y., Li Z., Yang D., Hocking R. K., Li M., Zhang L., Wang X., Yao X., Zhu Z., Angew. Chem. Int. Ed., 2019, 58(38), 13565 |
[87] | Duan J., Chen S., Zhao C., Nat. Commun., 2017, 8, 15341 |
[88] | Jabarian S., Ghaffarinejad A., J. Inorg. Organomet. Polym., 2019, 29(5), 1565 |
[89] | Wei X., Li N., Liu N., Electrochim. Acta, 2019, 318, 957 |
[90] | Dong R., Zhang T., Feng X., Chem. Rev., 2018, 118(13), 6189 |
[91] | Tan C., Cao X., Wu X. J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G. H., Sindoro M., Zhang H., Chem. Rev., 2017, 117(9), 6225 |
[92] | Rodenas T., Luz I., Prieto G., Seoane B., Miro H., Corma A., Kapteijn F., Llabres I. X. F. X., Gascon J., Nat. Mater., 2015, 14(1), 48 |
[93] | Tsukamoto T., Takada K., Sakamoto R., Matsuoka R., Toyoda R., Maeda H., Yagi T., Nishikawa M., Shinjo N., Amano S., Iokawa T., Ishibashi N., Oi T., Kanayama K., Kinugawa R., Koda Y., Komura T., Nakajima S., Fukuyama R., Fuse N., Mizui M., Miyasaki M., Yamashita Y., Yamada K., Zhang W., Han R., Liu W., Tsubomura T., Nishihara H., J. Am. Chem. Soc., 2017, 139(15), 5359 |
[94] | Makiura R., Konovalov O., Sci. Rep., 2013, 3, 2506 |
[95] | Chen J., Zhuang P., Ge Y., Chu H., Yao L., Cao Y., Wang Z., Chee M. O. L., Dong P., Shen J., Ye M., Ajayan P. M., Adv. Funct. Mater., 2019, 29(37), 1903875 |
[96] | Sakaida S., Otsubo K., Sakata O., Song C., Fujiwara A., Takata M., Kitagawa H., Nat. Chem., 2016, 8(4), 377 |
[97] | Huang X., Sheng P., Tu Z., Zhang F., Wang J., Geng H., Zou Y., Di C. A., Yi Y., Sun Y., Xu W., Zhu D., Nat. Commun., 2015, 6, 7408 |
[98] | Wang Z., Gui M., Asif M., Yu Y., Dong S., Wang H., Wang W., Wang F., Xiao F., Liu H., Nanoscale, 2018, 10(14), 6629 |
[99] | Ning H., Mao Q., Wang W., Yang Z., Wang X., Zhao Q., Song Y., Wu M., J. Alloys Compd., 2019, 785, 7 |
[100] | Wang L., Sahabudeen H., Zhang T., Dong R., NPJ 2D Mater. Appl., 2018, 2(1), 26 |
[101] | Murray D. J., Patterson D. D., Payamyar P., Bhola R., Song W., Lackinger M., Schluter A. D., King B. T., J. Am. Chem. Soc., 2015, 137(10), 3450 |
[102] | Huang L., Zhang X., Han Y., Wang Q., Fang Y., Dong S., J. Mater. Chem. A, 2017, 5(35), 18610 |
[103] | Cai M., Liu Q., Xue Z., Li Y., Fan Y., Huang A., Li M.-R., Croft M., Tyson T. A., Ke Z., Li G., J. Mater. Chem. A, 2020, 8(1), 190 |
[104] | Kukulka W., Cendrowski K., Mijowska E., Electrochim. Acta, 2019, 307, 582 |
[105] | Li Y., Liu H., Wang H., Qiu J., Zhang X., Chem. Sci., 2018, 9(17), 4132 |
[106] | Yao S., Jiao Y., Sun S., Wang L., Li P., Chen G., ACS Sustain. Chem. Eng., 2020, 8(8), 3191 |
[107] | Zhu D., Liu J., Wang L., Du Y., Zheng Y., Davey K., Qiao S. Z., Nanoscale, 2019, 11(8), 3599 |
[108] | Zhao M., Huang Y., Peng Y., Huang Z., Ma Q., Zhang H., Chem. Soc. Rev., 2018, 47(16), 6267 |
[109] | Dhakshinamoorthy A., Asiri A. M., Garcia H., Adv. Mater., 2019, 31(41), 1900617 |
[110] | Li Y.-Z., Fu Z.-H., Xu G., Coordin. Chem. Rev., 2019, 388, 79 |
[111] | Khan K., Tareen A. K., Aslam M., Zhang Y., Wang R., Ouyang Z., Gou Z., Zhang H., Nanoscale, 2019, 11(45), 21622 |
[112] | Zhu Y., Peng W., Li Y., Zhang G., Zhang F., Fan X., Small Methods, 2019, 3(9), 1800438 |
[113] | Du L., Xing L., Zhang G., Sun S., Carbon, 2020, 156, 77 |
[114] | Lu X. F., Xia B. Y., Zang S. Q., Lou X. W. D., Angew. Chem. Int. Ed., 2020, 59(12), 4634 |
[115] | Wang H. F., Chen L., Pang H., Kaskel S., Xu Q., Chem. Soc. Rev., 2020, 49(5), 1414 |
[116] | Morozan A., Jaouen F., Energy Environ. Sci., 2012, 5(11), 9269 |
[117] | Zhang K., Guo W., Liang Z., Zou R., Sci. China Chem., 2019, 62(4), 417 |
[118] | Zhu B., Xia D., Zou R., Coordin. Chem. Rev., 2018, 376, 430 |
[119] | Wang T., Xie H., Chen M., D'Aloia A., Cho J., Wu G., Li Q., Nano Energy, 2017, 42, 69 |
[120] | Rui K., Zhao G., Chen Y., Lin Y., Zhou Q., Chen J., Zhu J., Sun W., Huang W., Dou S. X., Adv. Funct. Mater., 2018, 28(26), 1801554 |
[121] | Ding M., Chen J., Jiang M., Zhang X., Wang G., J. Mater. Chem. A, 2019, 7(23), 14163 |
[122] | Hai G., Jia X., Zhang K., Liu X., Wu Z., Wang G., Nano Energy, 2018, 44, 345 |
[123] | Zhao S., Wang Y., Dong J., He C.-T., Yin H., An P., Zhao K., Zhang X., Gao C., Zhang L., Lv J., Wang J., Zhang J., Khattak A. M., Khan N. A., Wei Z., Zhang J., Liu S., Zhao H., Tang Z., Nat. Energy, 2016, 1(12), 1038 |
[124] | Hao Y., Liu Q., Zhou Y., Yuan Z., Fan Y., Ke Z., Su C. Y., Li G., Energy Environ. Mater., 2019, 2(1), 18 |
[125] | Wang S. S., Jiao L., Qian Y., Hu W. C., Xu G. Y., Wang C., Jiang H. L., Angew. Chem. Int. Ed., 2019, 58(31), 10713 |
[126] | Dong R., Zheng Z., Tranca D. C., Zhang J., Chandrasekhar N., Liu S., Zhuang X., Seifert G., Feng X., Chem. Eur. J., 2017, 23(10), 2255 |
[127] | Wu Y. P., Zhou W., Zhao J., Dong W. W., Lan Y. Q., Li D. S., Sun C., Bu X., Angew. Chem. Int. Ed., 2017, 56(42), 13001 |
[128] | Ji Y., Dong H., Liu C., Li Y., Nanoscale, 2019, 11(2), 454 |
[129] | Lions M., Tommasino J. B., Chattot R., Abeykoon B., Guillou N., Devic T., Demessence A., Cardenas L., Maillard F., Fateeva A., Chem. Commun., 2017, 53(48), 6496 |
[130] | Li L., He J., Wang Y., Lv X., Gu X., Dai P., Liu D., Zhao X., J. Mater. Chem. A, 2019, 7(5), 1964 |
[131] | Zhong H., Ly K. H., Wang M., Krupskaya Y., Han X., Zhang J., Zhang J., Kataev V., Buchner B., Weidinger I. M., Kaskel S., Liu P., Chen M., Dong R., Feng X., Angew. Chem. Int. Ed., 2019, 58(31), 10677 |
[132] | Miner E. M., Fukushima T., Sheberla D., Sun L., Surendranath Y., Dinca M., Nat. Commun., 2016, 7, 10942 |
[133] | Feng X., Pi Y., Song Y., Brzezinski C., Xu Z., Li Z., Lin W., J. Am. Chem. Soc., 2020, 142(2), 690 |
[134] | Ji L., Chang L., Zhang Y., Mou S., Wang T., Luo Y., Wang Z., Sun X., ACS Catal., 2019, 9(11), 9721 |
[135] | Yin Z., Yu C., Zhao Z., Guo X., Shen M., Li N., Muzzio M., Li J., Liu H., Lin H., Yin J., Lu G., Su D., Sun S., Nano Lett., 2019, 19(12), 8658 |
[136] | Varela A. S., Ju W., Strasser P., Adv. Energy Mater., 2018, 8(30), 1703614 |
[137] | Ding M., Flaig R. W., Jiang H. L., Yaghi O. M., Chem. Soc. Rev., 2019, 48(10), 2783 |
[138] | Lei Z., Xue Y., Chen W., Qiu W., Zhang Y., Horike S., Tang L., Adv. Energy Mater., 2018, 8(32), 1801587 |
[139] | Wu J. X., Hou S. Z., Zhang X. D., Xu M., Yang H. F., Cao P. S., Gu Z. Y., Chem. Sci., 2019, 10(7), 2199 |
[140] | Jiang X., Wu H., Chang S., Si R., Miao S., Huang W., Li Y., Wang G., Bao X., J. Mater. Chem. A, 2017, 5(36), 19371 |
[141] | Yang L., Cao L., Huang R., Hou Z. W., Qian X. Y., An B., Xu H. C., Lin W., Wang C., ACS Appl. Mater. Interfaces, 2018, 10(42), 36290 |
[142] | Li Q., Shao Z., Han T., Zheng M., Pang H., ACS Sustain. Chem. Eng., 2019, 7(9), 8986 |
[143] | Zhu D., Guo C., Liu J., Wang L., Du Y., Qiao S. Z., Chem. Commun., 2017, 53(79), 10906 |
[144] | Wang Y., Xue Y. Y., Yan L. T., Li H. P., Li Y. P., Yuan E. H., Li M., Li S. N., Zhai Q. G., ACS Appl. Mater. Interfaces, 2020, 5(6), 5094 |
[145] | Yang L., Ma F. X., Xu F., Li D., Su L., Xu H. C., Wang C., Chem. Asian. J., 2019, 14(20), 3557 |
[146] | Xu Y., Chai X., Ren T., Yu S., Yu H., Wang Z., Li X., Wang L., Wang H., Chem. Commun., 2020, 56(14), 2151 |
[147] | Liu B., Shioyama H., Akita T., Xu Q., J. Am. Chem. Soc., 2008, 130(16), 5390 |
[148] | Li Y., Lu M., He P., Wu Y., Wang J., Chen D., Xu H., Gao J., Yao J., Chem. Asian. J., 2019, 14(9), 1590 |
[149] | Li Y., Lu M., Wu Y., Xu H., Gao J., Yao J., Adv. Mater. Interfaces, 2019, 6(12), 1900290 |
[150] | Guan C., Liu X., Ren W., Li X., Cheng C., Wang J., Adv. Energy Mater., 2017, 7(12), 1602391 |
[151] | Sun H., Lian Y., Yang C., Xiong L., Qi P., Mu Q., Zhao X., Guo J., Deng Z., Peng Y., Energy Environ. Sci., 2018, 11(9), 2363 |
[152] | Zhang X., Liu S., Zang Y., Liu R., Liu G., Wang G., Zhang Y., Zhang H., Zhao H., Nano Energy, 2016, 30, 93 |
[153] | Zhou J., Dou Y., Zhou A., Shu L., Chen Y., Li J.-R., ACS Energy Lett., 2018, 3(7), 1655 |
[154] | Wang Y., Pan Y., Zhu L., Yu H., Duan B., Wang R., Zhang Z., Qiu S., Carbon, 2019, 146, 671 |
[155] | Jiang M., Li J., Cai X., Zhao Y., Pan L., Cao Q., Wang D., Du Y., Nanoscale, 2018, 10(42), 19774 |
[156] | Li Y., Zhao T., Lu M., Wu Y., Xie Y., Xu H., Gao J., Yao J., Qian G., Zhang Q., Small, 2019, 15(43), 1901940 |
[157] | Lu M., Li Y., He P., Cong J., Chen D., Wang J., Wu Y., Xu H., Gao J., Yao J., J. Solid State Chem., 2019, 272, 32 |
[158] | Srinivas K., Lu Y., Chen Y., Zhang W., Yang D., ACS Sustain. Chem. Eng., 2020, 8(9), 3820 |
[159] | Li Y., Dai H., Chem. Soc. Rev., 2014, 43(15), 5257 |
[160] | Shah S. S. A., Najam T., Aslam M. K., Ashfaq M., Rahman M. M., Wang K., Tsiakaras P., Song S., Wang Y., Appl. Catal. B:Environ., 2020, 268(18), 118570 |
[161] | Zhu B., Liang Z., Xia D., Zou R., Energy Storage Mater., 2019, 23, 757 |
[162] | Li Z., Shao M., Zhou L., Yang Q., Zhang C., Wei M., Evans D. G., Duan X., Nano Energy, 2016, 25, 100 |
[163] | Li Z., Shao M., Zhou L., Zhang R., Zhang C., Wei M., Evans D. G., Duan X., Adv. Mater., 2016, 28(12), 2337 |
[164] | Zhong H. X., Wang J., Zhang Y. W., Xu W. L., Xing W., Xu D., Zhang Y. F., Zhang X. B., Angew. Chem. Int. Ed., 2014, 53(51), 14235 |
[165] | Zhang M., Wang C., Yan X., Kwame K. P., Chen S., Xiao C., Qi J., Sun X., Wang L., Li J., J. Mater. Chem. A, 2019, 7(35), 20162 |
[166] | Wang X., Zhu Z., Chai L., Ding J., Zhong L., Dong A., Li T.-T., Hu Y., Qian J., Huang S., J. Power Sources, 2019, 440, 227158 |
[167] | Dang S., Zhu Q.-L., Xu Q., Nat. Rev. Mater., 2017, 3(1), 17075 |
[168] | Chen Y. Z., Wang C., Wu Z. Y., Xiong Y., Xu Q., Yu S. H., Jiang H. L., Adv. Mater., 2015, 27(34), 5010 |
[169] | Shen K., Chen X., Chen J., Li Y., ACS Catal., 2016, 6(9), 5887 |
[170] | Zhang S. L., Guan B. Y., Lou X. W. D., Small, 2019, 15(13), 1805324 |
[171] | Ren Q., Wang H., Lu X. F., Tong Y. X., Li G. R., Adv. Sci., 2018, 5(3), 1700515 |
[172] | Zhang S. L., Guan B. Y., Wu H. B., Lou X. W. D., Nano-Micro Lett., 2018, 10(3), 44 |
[1] | MA Chunrong, SONG Bingyi, MA Zhentao, WANG Xiaoqian, TIAN Lin, ZHANG Haoran, CHEN Cai, ZHENG Xusheng, YANG Li-ming, WU Yuen. A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction[J]. 高等学校化学研究, 2022, 38(5): 1219-1225. |
[2] | WANG Wenyang, LIU Hanlin, YANG Caoyu, FAN Ting, CUI Chengqian, LU Xiaoquan, TANG Zhiyong, LI Guodong. Coordinating Zirconium Nodes in Metal-Organic Framework with Trifluoroacetic Acid for Enhanced Lewis Acid Catalysis[J]. 高等学校化学研究, 2022, 38(5): 1301-1307. |
[3] | ZHANG Bingyi, ZHANG Xiaolei, SU Ruochen, SUN Yue and DUAN Lian. ESIPT-regulated Mechanoresponsive Luminescence Process by Introducing Intramolecular Hydrogen Bond in Naphthalimide Derivatives[J]. 高等学校化学研究, 2022, 38(4): 1050-1056. |
[4] | LI Jingkang, JIANG Yanxiao, YANG Jukun, SUN Ying, MA Pinyi, and SONG Daqian. Fabrication of the Metal-Organic Framework Membrane with Excellent Adsorption Properties for Paraben Based on Micro Fibrillated Cellulose[J]. 高等学校化学研究, 2022, 38(3): 790-797. |
[5] | ZHANG Ziqi, WANG Hanbo, LI Yuxin, XIE Minggang, LI Chunguang, LU Haiyan, PENG Yu, and SHI Zhan. Confined Pyrolysis Synthesis of Well-dispersed Cobalt Copper Bimetallic Three-dimensional N-Doped Carbon Framework as Efficient Water Splitting Electrocatalyst[J]. 高等学校化学研究, 2022, 38(3): 750-757. |
[6] | HAO Zhimin, LIU Dapeng, GE Huaiyun, ZUO Xintao, FENG Xilan, SHAO Mingzhe, YU Haohan, YUAN Guobao, and ZHANG Yu. Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction[J]. 高等学校化学研究, 2022, 38(3): 823-828. |
[7] | CHEN Kaichun, ZHENG Xuelian, YANG Cuicui, TIAN Wei Quan, LI Weiqi, YANG Ling. Theoretical Studies on the Electronic Structure of Nano-graphenes for Applications in Nonlinear Optics[J]. 高等学校化学研究, 2022, 38(2): 579-587. |
[8] | ZHANG Tingting, LUO Pan, LAI Can, LIU Zheyi, JIN Yan, WANG Fangjun. Catalyst-free Photochemical Bromination of Unprotected Aromatic Amino Acid Derivatives by Using a Rotating Ultraviolet Photoreactor[J]. 高等学校化学研究, 2022, 38(2): 505-509. |
[9] | QIAO Junyi, LIU Xinyao, ZHANG Lirong, LIU Yunling. Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective[J]. 高等学校化学研究, 2022, 38(1): 31-44. |
[10] | LI Hengbo, WANG Kuikui, WU Mingyan, HONG Maochun. A Cage-based Porous Metal-Organic Framework for Efficient C2H2 Storage and Separation[J]. 高等学校化学研究, 2022, 38(1): 82-86. |
[11] | YOU Dongyu, ZHAO Yujuan, YANG Weiting, PAN Qinhe, LI Jiyang. Metal-Organic Framework-based Wood Aerogel for Effective Removal of Micro/Nano Plastics[J]. 高等学校化学研究, 2022, 38(1): 186-191. |
[12] | QI Qi, XU Lekai, DU Jiang, YANG Nailiang, WANG Dan. Fabrication and Application of Graphdiyne-based Heterogeneous Compositions: from the View of Interaction[J]. 高等学校化学研究, 2021, 37(6): 1158-1175. |
[13] | FU Xinliang, ZHU Aonan, CHEN Xiaojie, ZHANG Shifu, WANG Mei, YUAN Mingjian. Stabilization of Cu/Ni Alloy Nanoparticles with Graphdiyne Enabling Efficient CO2 Reduction[J]. 高等学校化学研究, 2021, 37(6): 1328-1333. |
[14] | LI Huangong, ZHAO Yangyang, SUN Pengwei, GAO Li, XIONG Lixia, YANG Na, ZHOU Sha, LI Yuxin, LI Zhengming. Targeted Synthesis of Anthranilic Diamides Insecticides Containing Trifluoroethoxyl Phenylpyrazole[J]. 高等学校化学研究, 2021, 37(3): 655-661. |
[15] | ZHANG Ling, FU Yihong, DING Yue, MENG Jiao, WANG Zhenchao, WANG Peiyi. Antibacterial Activity of Novel 18β-Glycyrrhetinic Hydrazide or Amide Derivatives[J]. 高等学校化学研究, 2021, 37(3): 662-667. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||