[1] Colley M. E., Esselman A. B., Scott C. F., Spraggins J. M., Annu. Rev. Anal. Chem., 2024, 17, 1. [2] Yu Y. L., Zhu Y. X., Yang J., Zhu W. T., Zhou Z. Q., Zhang R. K., Metabolites, 2021, 11, 381. [3] Uttam Singh B., Atamjit S., Deeksha S., Manish S., Spectroscopic Analyses, IntechOpen, Rijeka, 2017. [4] Illes-Toth E., Hale O. J., Hughes J. W., Strittmatter N., Rose J., Clayton B., Sargeant R., Jones S., Dannhorn A., Goodwin R. J. A., Cooper H. J., Angew. Chem. Int. Ed., 2022, 61, e202202075. [5] Aboulnasr A. A., Elnouri A., Abdel Sameea G., Gouda A. S., Ibrahim M. M., Shalabi T. A., Gaber K. R., J. Obstet. Gynaecol. Res., 2022, 48, 682. [6] Shigematsu Y., Kikawa Y., Sudo M., Kanaoka H., Fujioka M., Dan M., Clin. Chim. Acta, 1991, 203, 369. [7] Briand G., Lemaire S., Parente F., Garnotel R., Ann. Biol. Clin., 2015, 73, 93. [8] Spitzer A. R., Chace D., Clin. Perinatol., 2006, 33, 729. [9] Banerjee S., ACS Omega, 2020, 5, 2041. [10] Cilento E. M., Jin L., Stewart T., Shi M., Sheng L., Zhang J., J. Neurochem., 2019, 151, 397. [11] Haag A. M., Modern Proteomics—Sample Preparation, Analysis and Practical Applications, Springer International Publishing, Cham, 2016. [12] Hossain M., Selected Reaction Monitoring Mass Spectrometry (SRM-MS) in Proteomics: A Comprehensive View, Springer International Publishing, Cham, 2020. [13] Honig R., Woolston J., Appl. Phys. Lett., 1963, 2, 138. [14] Bergman N., Shevchenko D., Bergquist J., Anal. Bioanal. Chem., 2014, 406, 49. [15] Jiang Y., Sun J., Cao X., Liu H., Xiong C., Nie Z., Chemistry: A European Journal, 2022, 28, e202103710. [16] Meng L., Han J., Chen J., Wang X., Huang X., Liu H., Nie Z., Anal. Chem., 2022, 94, 6457. [17] Nemes P., Vertes A., J. Vis. Exp., 2010, e2097. [18] Nemes P., Vertes A., Anal. Chem., 2007, 79, 8098. [19] Wirtz T., Philipp P., Audinot J. N., Dowsett D., Eswara S., Nanotechnology, 2015, 26, 434001. [20] Rao W., Scurr D., Burston J., Alexander M., Barrett D., The Analyst, 2012, 137, 3946. [21] Pace H. E., Rogers N. J., Jarolimek C., Coleman V. A., Higgins C. P., Ranville J. F., Anal. Chem., 2011, 83, 9361. [22] Mellon F. A., Encyclopedia of Food Sciences and Nutrition (Second Edition), Academic Press, Oxford, 2003. [23] Ridgeway M. E., Lubeck M., Jordens J., Mann M., Park M. A., Int. J. Mass Spectrom., 2018, 425, 22. [24] Douglas D. J., Frank A. J., Mao D., Mass Spectrom. Rev., 2005, 24, 1. [25] Soyk M. W., Zhao Q., Houk R. S., Badman E. R., J. Am. Soc. Mass Spectrom., 2008, 19, 1821. [26] Nolting D., Malek R., Makarov A., Mass Spectrom. Rev., 2019, 38, 150. [27] Stafford G. C., Kelley P. E., Syka J. E. P., Reynolds W. E., Todd J. F. J., Int. J. Mass Spectrom. Ion Processes, 1984, 60, 85. [28] Austin D. E., Wang M., Tolley S. E., Maas J. D., Hawkins A. R., Rockwood A. L., Tolley H. D., Lee E. D., Lee M. L., Anal. Chem., 2007, 79, 2927. [29] Greaves J., Roboz J., Mass Spectrometry for the Novice, CRC Press, Boca Raton, 2013. [30] Robinson E. W., Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry, Academic Press, Oxford, 2017. [31] Adamson J. T., Hakansson K., Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Lectin Analysis, Chapter 14, Elsevier Science B.V., Amsterdam, 2007. [32] Marshall A. G., Verdun F. R., Fourier Transform Spectrometry: Common Features, Chapter 4, Elsevier, Amsterdam, 1990. [33] Zubarev R. A., Makarov A., Anal. Chem., 2013, 85, 5288. [34] Hu Q., Noll R. J., Li H., Makarov A., Hardman M., Cooks R. G., J. Mass Spectrom. 2005, 40, 430. [35] Hecht E. S., Scigelova M., Eliuk S., Makarov A., Encyclopedia of Analytical Chemistry, Wiley Press, Chichester, 2019. [36] Hardman M., Makarov A. A., Anal. Chem., 2003, 75, 1699. [37] Makarov A., Denisov E., Kholomeev A., Balschun W., Lange O., Strupat K., Horning S., Anal. Chem., 2006, 78, 2113. [38] Meier F., Park M. A., Mann M., Mol. Cell Proteomics, 2021, 20, 100138. [39] Eiceman G. A., Karpas Z., Ion Mobility Spectrometry, CRC Press, Boca Raton, 2005. [40] Ewald J. C., Ion Detection in Mass Spectrometry, Springer Netherlands, Dordrecht, 1992. [41] Imrie D. C., Pentney J. M., Cottrell J. S., Rapid Commun. Mass Spectrom., 1995, 9, 1293. [42] Barnes J. H., Hieftje G. M., Int. J. Mass Spectrom., 2004, 238, 33. [43] Jungmann J. H., Heeren R. M. A., Rapid Commun. Mass Spectrom., 2013, 27, 1. [44] Boerboom A. J. H. J. J. O. M. S., Journal of Mass Spectrometry: JMS, 1991, 26, 929. [45] Collins R. D., Vacuum, 1969, 19, 105. [46] Dubois F., Knochenmuss R., Zenobi R., Int. J. Mass Spectrom. Ion Processes, 1997, 169/170, 89. [47] Liang Y., Feng Q., Wang Z., Frontiers in Pharmacology, 2022, 13, 887050. [48] Ma X., Fernández F. M., Mass Spectrom. Rev., 2024, 43, 235. [49] Zhan L., Huang X., Xue J., Liu H., Xiong C., Wang J., Nie Z., Food Chem., 2021, 338, 127984. [50] Swales J. G., Tucker J. W., Strittmatter N., Nilsson A., Cobice D., Clench M. R., MacKay C. L., Andren P. E., Takáts Z., Webborn P. J., Goodwin R. J., Anal. Chem., 2014, 86, 8473. [51] McDonnell L. A., Angel P. M., Lou S., Drake R. R., Adv. Cancer Res., 2017, 134, 283. [52] Chen C., McDonald D., Blain A., Sachdeva A., Bone L., Smith A. L. M., Warren C., Pickett S. J., Hudson G., Filby A., Vincent A. E., Turnbull D. M., Reeve A. K., NPJ Parkinson's Disease, 2021, 7, 39. [53] Lecault V., White A. K., Singhal A., Hansen C. L., Curr. Opin. Chem. Biol., 2012, 16, 381. [54] Cheow L. F., SLAS Technology. 2022, 27, 107. [55] Hwang D.-W., Maekiniemi A., Singer R. H., Sato H., Nat. Rev. Genet., 2024, 25, 272. [56] Liu Z., Chen J., Qi Z.-M., Single-cell Analysis by Evanescent Wave Sensing and Hyperspectral Microscopy, Chapter 6, Academic Press, Cambridge, 2022. [57] Li Y., Ma L., Wu D., Chen G., Brief. Bioinform., 2021, 22, bbab024. [58] Zhu C., Preissl S., Ren B., Nat. Meth. 2020, 17, 11. [59] Wen L., Li G., Huang T., Geng W., Pei H., Yang J., Zhu M., Zhang P., Hou R., Tian G., Su W., Chen J., Zhang D., Zhu P., Zhang W., Zhang X., Zhang N., Zhao Y., Cao X., Peng G., Ren X., Jiang N., Tian C., Chen Z. J., Innovation, 2022, 3, 100342. [60] Xiong C., Zhou X., He Q., Huang X., Wang J., Peng W.-P., Chang H.-C., Nie Z., Anal. Chem., 2016, 88, 11913. [61] Zhu X., Xu T., Peng C., Wu S., Frontiers in Chemistry, 2021, 9, 782432. [62] Xu J., Zhang Z., Liu R., Sun Y., Liu H., Nie Z., Zhao X., Pu X., Behav. Brain Res., 2019, 364, 233. [63] Tian F., Liu R., Fan C., Sun Y., Huang X., Nie Z., Zhao X., Pu X., Metabolites, 2020, 10, 27. [64] Vestal M., Li L., Dobrinskikh E., Shi Y., Wang B., Shi X., Li S., Vestal C., Parker K., J. Mass Spectrometry: JMS, 2020, 55, e4423. [65] Dreisewerd K., Anal. Bioanal. Chem., 2014, 406, 2261. [66] Tanaka K., Waki H., Ido Y., Akita S., Yoshida Y., Yoshida T., Matsuo T., Rapid Commun. Mass Spectrom., 1988, 2, 151. [67] Huang X., Zhan L., Sun J., Xue J., Liu H., Xiong C., Nie Z., Anal. Chem., 2018, 90, 8309. [68] Kulkarni A. S., Huang L., Qian K., J. Mater. Chem. B, 2021, 9, 3622. [69] Fagerer S. R., Nielsen S., Ibáñez A., Zenobi R., European Journal of Mass Spectrometry, 2013, 19, 39. [70] Flatley B., Malone P., Cramer R., Biochim. Biophys. Acta, 2014, 1844, 940. [71] Trim P. J., Snel M. F., Methods, 2016, 104, 127. [72] Norris J. L., Caprioli R. M., Chem. Rev., 2013, 113, 2309. [73] Machálková M., Pavlatovská B., Michálek J., Pruška A., Štěpka K., Nečasová T., Radaszkiewicz K. A., Kozubek M., Šmarda J., Preisler J., Navrátilová J., Anal. Chem., 2019, 91, 13475. [74] Minerva L., Ceulemans A., Baggerman G., Arckens L., Proteomics Clinical Applications, 2012, 6, 581. [75] Wu T., Yang X.-H., Zhang C.-J., Wang Z.-P., Du Y.-P., Chin. Chem. Lett., 2016, 27, 901. [76] Fülöp A., Sammour D. A., Erich K., von Gerichten J., van Hoogevest P., Sandhoff R., Hopf C., Scientific Reports, 2016, 6, 33791. [77] Cobice D. F., Goodwin R. J. A., Andrén P. E., Nilsson A., MacKay C. L., Andrew R., Br. J. Pharmacol., 2015, 172, 3266. [78] Cuypers E., Claes B. S. R., Biemans R., Lieuwes N. G., Glunde K., Dubois L., Heeren R. M. A., Anal. Chem., 2022, 94, 6180. [79] Castro D. C., Smith K. W., Norsworthy M. D., Rubakhin S. S., Weisbrod C. R., Hendrickson C. L., Sweedler J. V., Anal. Chem., 2023, 95, 6980. [80] Chen X., Wo F., Chen J., Tan J., Wang T., Liang X., Wu J., Scientific Reports, 2017, 7, 17432. [81] Niehaus M., Soltwisch J., Belov M. E., Dreisewerd K., Nat. Meth., 2019, 16, 925. [82] Bien T., Bessler S., Dreisewerd K., Soltwisch J., Anal. Chem., 2021, 93, 4513. [83] Schlauch D., Fu X., Jones S. F., Burris H. A., 3rd, Spigel D. R., Reeves J., McKenzie A. J., JCO Precision Oncology, 2021, 5, 1625. [84] Sun D., Guan X., Moran A. E., Wu L.-Y., Qian D. Z., Schedin P., Dai M.-S., Danilov A. V., Alumkal J. J., Adey A. C., Spellman P. T., Xia Z., Nat. Biotechnol., 2022, 40, 527. [85] Carella R., Deleonardi G., D'Errico A., Salerno A., Egarter-Vigl E., Seebacher C., Donazzan G., Grigioni W. F., Am. J. Surg. Pathol., 2001, 25, 43. [86] Gown A. M., Arch. Pathol. Lab. Med., 2016, 140, 893. [87] Steurer S., Seddiqi A. S., Singer J. M., Bahar A. S., Eichelberg C., Rink M., Dahlem R., Huland H., Sauter G., Simon R., Minner S., Burandt E., Stahl P. R., Schlomm T., Wurlitzer M., Schlüter H., Anticancer Res., 2014, 34, 2255. [88] Möginger U., Marcussen N., Jensen O. N., Oncotarget., 2020, 11, 3998. [89] Berghmans E., van Raemdonck G., Schildermans K., Willems H., Boonen K., Maes E., Mertens I., Pauwels P., Baggerman G., Methods Protoc., 2019, 2, 44. [90] Ou F.-S., Michiels S., Shyr Y., Adjei A. A., Oberg A. L., J. Thorac. Oncol., 2021, 16, 537. [91] Reardon B., Moore N. D., Moore N. S., Kofman E., AlDubayan S. H., Cheung A. T. M., Conway J., Elmarakeby H., Imamovic A., Kamran S. C., Keenan T., Keliher D., Konieczkowski D. J., Liu D., Mouw K. W., Park J., Vokes N. I., Dietlein F., van Allen E. M., Nature Cancer, 2021, 2, 1102. [92] Belkacem R. A., Bol V., Hamm G., Linehan S., Gomes B., Stauber J., Cancer Res., 2017, 77, 718. [93] O’Rourke M. B., Roediger B. R., Jolly C. J., Crossett B., Padula M. P., Hansbro P. M., Proteomes, 2022, 10, 33. [94] Liu H., Zhou Y., Wang J., Xiong C., Xue J., Zhan L., Nie Z., Anal. Chem., 2018, 90, 729. [95] Shao C.-F., Zhao Y., Wu K., Jia F.-F., Luo Q., Liu Z., Wang F.-Y., Chinese J. Anal. Chem., 2018, 46, 1005. [96] McPhail D. S., J. Mater. Sci. 2006, 41, 873. [97] Walker A. V., Encyclopedia of Spectroscopy and Spectrometry (Third Edition), Academic Press, Oxford, 2017. [98] Benninghoven A., Surf. Sci., 1973, 35, 427. [99] Benninghoven A., Surf. Sci., 1975, 53, 596. [100] McIntyre N. S., Huctwith C. M., Taylor K. F., Keating E., Petersen N. O., Brennenstühl A. M., Surf. Interface Anal., 2002, 33, 447. [101] Saito K., Kato T., Takamori H., Kishimoto T., Fukushima K., Biomacromolecules, 2005, 6, 2688. [102] Ding Y., Zhou Y., Yao J., Szymanski C., Fredrickson J., Shi L., Cao B., Zhu Z., Yu X.-Y., Anal. Chem., 2016, 88, 11244. [103] Ostrowski S. G., van Bell C. T., Winograd N., Ewing A. G., Science, 2004, 305, 71. [104] Chandra S., Morrison G. H., Biol. Cell, 1992, 74, 31. [105] Lockyer N. P., Secondary Ion Mass Spectrometry Imaging of Biological Cells and Tissues, Humana Press, Totowa, 2014. [106] Bhardwaj C., Hanley L., Nat. Prod. Rep., 2014, 31, 756. [107] Fletcher J. S., Vickerman J. C., Anal. Chem., 2013, 85, 610. [108] Deng R. C., Williams P., Anal. Chem., 1989, 61, 1946. [109] Werner H. W., Surf. Interface Anal., 1980, 2, 56. [110] Cooper E., Leggett G. J., Langmuir, 1998, 14, 4795. [111] Guerquin-Kern J.-L., Wu T.-D., Quintana C., Croisy A., Biochimica et Biophysica Acta: General Subjects, 2005, 1724, 228. [112] McDonnell L. A., Heeren R. M., Mass Spectrom. Rev., 2007, 26, 606. [113] Lovrić J., Malmberg P., Johansson B. R., Fletcher J. S., Ewing A. G., Anal. Chem., 2016, 88, 8841. [114] Li D., Ouyang Z., Ma X., Molecules, 2023, 28, 2712. [115] Noun M., Akoumeh R., Abbas I., Microsc. Microanal., 2022, 28, 1. [116] Zhang C., Horikawa M., Kahyo T., Matsudaira T., Tanaka T., Xu L., Takei S., Setou M., Microscopy, 2022, 71, 324. [117] Fletcher J. S., Rabbani S., Henderson A., Lockyer N. P., Vickerman J. C., Rapid Commun. Mass Spectrom., 2011, 25, 925. [118] Malm J., Giannaras D., Riehle M. O., Gadegaard N., Sjövall P., Anal. Chem., 2009, 81, 7197. [119] Chandra S., Morrison G. H., Wolcott C. C., J. Microsc., 1986, 144, 15. [120] Sod E. W., Crooker A. R., Morrison G. H., J. Microsc., 1990, 160, 55. [121] Roddy T. P., Cannon D. M., Ostrowski S. G., Winograd N., Ewing A. G., Anal. Chem., 2002, 74, 4020. [122] Fartmann M., Dambach S., Kriegeskotte C., Wiesmann H. P., Wittig A., Sauerwein W., Lipinsky D., Arlinghaus H. F., Surf. Interface Anal. 2002, 34, 63. [123] Cai L., Xia M.-C., Li Z., Zhang S., Zhang X., Progress in Chemistry, 2021, 33, 97. [124] Steinhauser M. L., Bailey A. P., Senyo S. E., Guillermier C., Perlstein T. S., Gould A. P., Lee R. T., Lechene C. P., Nature, 2012, 481, 516. [125] Huang L., Chen Y., Weng L.-T., Leung M., Xing X., Fan Z., Wu H., Anal. Chem., 2016, 88, 12196. [126] Jungnickel H., Laux P., Luch A., Toxics, 2016, 4, 5. [127] Kempson I. M., Hwu Y., Prestidge C. A., Probing Protein Association with Nano- and Micro-scale Structures with ToF-SIMS, American Chemical Society, Washington, 2012. [128] Keren L., Bosse M., Marquez D., Angoshtari R., Jain S., Varma S., Yang S.-R., Kurian A., van Valen D., West R., Bendall S. C., Angelo M., Cell, 2018, 174, 1373. [129] Chandra S., Ahmad T., Barth R. F., Kabalka G. W., J. Microsc., 2014, 254, 146. [130] Newman C. F., Havelund R., Passarelli M. K., Marshall P. S., Francis I., West A., Alexander M. R., Gilmore I. S., Dollery C. T., Anal. Chem., 2017, 89, 11944. [131] Wedlock L. E. B.-P., Susan J., Aust. J. Chem., 2011, 64, 692. [132] Passarelli M. K., Newman C. F., Marshall P. S., West A., Gilmore I. S., Bunch J., Alexander M. R., Dollery C. T., Anal. Chem., 2015, 87, 6696. [133] Desbenoit N., Schmitz-Afonso I., Baudouin C., Laprévote O., Touboul D., Brignole-Baudouin F., Brunelle A., Anal. Bioanal. Chem., 2013, 405, 4039. [134] Sjövall P., Lausmaa J., Johansson B., Anal. Chem., 2004, 76, 4271. [135] Debois D., Bralet M.-P., Le Naour F., Brunelle A., Laprévote O., Anal. Chem., 2009, 81, 2823. [136] Takáts Z., Wiseman J. M., Gologan B., Cooks R. G., Science, 2004, 306, 471. [137] Claude E., Jones E. A., Pringle S. D., Methods Mol. Biol., 2017, 1618, 65. [138] Chen H., Zheng J., Zhang X., Mingbiao L., Wang Z., Qiao X., Journal of Mass Spectrometry: JMS, 2007, 42, 1045. [139] Manicke N. E., Nefliu M., Wu C., Woods J. W., Reiser V., Hendrickson R. C., Cooks R. G., Anal. Chem., 2009, 81, 8702. [140] Girod M., Shi Y., Cheng J.-X., Cooks R. G., J. Am. Soc. Mass Spectrom., 2010, 21, 1177. [141] Ma Y., Chen Z., He Q., Guo Z.-N., Yang Y., Liu F., Li F., Luo Q., Chang J., Pharmacol. Res., 2022, 185, 106482. [142] Fresnais M., Liang S., Breitkopf M., Lindner J. R., Claude E., Pringle S., Levkin P. A., Demir K., Benzel J., Sundheimer J., Statz B., Pajtler K. W., Pfister S. M., Haefeli W. E., Burhenne J., Longuespée R., Pharmaceuticals, 2022, 15, 694. [143] Yan X., Zhao X., Zhou Z., McKay A., Brunet A., Zare R. N., Anal. Chem., 2020, 92, 13281. [144] Pirro V., Eberlin L. S., Oliveri P., Cooks R. G., Analyst, 2012, 137, 2374. [145] Pirro V., Oliveri P., Ferreira C. R., González-Serrano A. F., Machaty Z., Cooks R. G., Anal. Chim. Acta, 2014, 848, 51. [146] Yang M., Unsihuay D., Hu H., Nguele Meke F., Qu Z., Zhang Z.-Y., Laskin J., Anal. Chem., 2023, 95, 5214. [147] Unsihuay D., Hu H., Qiu J., Latorre-Palomino A., Yang M., Yue F., Yin R., Kuang S., Laskin J., Chem. Sci., 2023, 14, 4070. [148] Roach P. J., Laskin J., Laskin A., Analyst, 2010, 135, 2233. [149] Iqfath M., Wali S. N., Amer S., Hernly E., Laskin J., ACS Measurement Science Au., 2024, 4, 475. [150] He M. J., Pu W., Wang X., Zhang W., Tang D., Dai Y., Frontiers in Oncology, 2022, 12, 891018. [151] Shariatgorji M., Strittmatter N., Nilsson A., Källback P., Alvarsson A., Zhang X., Vallianatou T., Svenningsson P., Goodwin R. J. A., Andren P. E., Neuroimage, 2016, 136, 129. [152] Zhang X., Wu C., Tan W., J. Proteome Res., 2021, 20, 2643. [153] Guo R., Zhou L., Chen X., Anal. Bioanal. Chem., 2021, 413, 5835. [154] Maciel L., Martins R. O., Gondim D. M., Oliveira J. V. A., Pereira J., Pereira G., Ferreira L., Chaves A. R., Vaz B. G., Brazilian Journal of Analytical Chemistry, 2022, 10, 18. [155] Maciel L. I. L., Pereira I., Ramalho R. R. F., Ribeiro R. I., Pinto M. C. X., Vaz B. G., Int. J. Mass Spectrom., 2022, 471, 116730. [156] Huang J., Gao S., Wang K., Zhang J., Pang X., Shi J., He J., Chin. Chem. Lett., 2023, 34, 107865. [157] Dolatmoradi M., Stopka S. A., Corning C., Stacey G., Vertes A., Anal. Chem., 2023, 95, 17741. [158] Hieta J.-P., Kopra J., Räikkönen H., Kauppila T. J., Kostiainen R., Anal. Chem., 2020, 92, 13734. [159] Stopka S. A., Vertes A., Methods Mol. Biol., 2020, 2084, 235. [160] Stopka S. A., Wood E. A., Khattar R., Agtuca B. J., Abdelmoula W. M., Agar N. Y. R., Stacey G., Vertes A., Anal. Chem., 2021, 93, 9677. [161] Kiss A., Smith D. F., Reschke B. R., Powell M. J., Heeren R. M., Proteomics, 2014, 14, 1283. [162] Shrestha B., Vertes A., Anal. Chem., 2014, 86, 4308. [163] Nizioł J., Sunner J., Beech I., Ossoliński K., Ossolińska A., Ossoliński T., Płaza A., Ruman T., Anal. Chem., 2020, 92, 4251. [164] Stopka S. A., Rong C., Korte A. R., Yadavilli S., Nazarian J., Razunguzwa T. T., Morris N. J., Vertes A., Angew. Chem. Int. Ed., 2016, 55, 4482. [165] Davison C., Beste D., Bailey M., Felipe-Sotelo M., Anal. Bioanal. Chem., 2023, 6931. [166] Zheng L.-N., Sang Y.-B., Luo R.-P., Wang B., Yi F.-T., Wang M., Feng W.-Y., J. Anal. At. Spectrom., 2019, 34, 915. [167] Konz I., Fernández B., Fernández M. L., Pereiro R., González H., Álvarez L., Coca-Prados M., Sanz-Medel A., Anal. Bioanal. Chem., 2013, 405, 3091. [168] Caprioli R. M., Proteomics, 2008, 8, 3679. [169] Seeley E. H., Clin. Chem., 2021, 67, 1172. [170] Pól J., Strohalm M., Havlíček V., Volný M., Histochem. Cell Biol., 2010, 134, 423. [171] Ewing A. G., Appl. Surf. Sci., 2006, 252, 6821. [172] Stauber J., Bioanalysis, 2012, 4, 2095. |